Vol. 43 (2023) No. 1

A LICHNEROWICZ-OBATA TYPE ESTIMATE FOR L_E OPERATOR

SHI Jiang-hai

(School of Information and Mathematics, Yangtze University, Jingzhou 434023, China)

Abstract: In this paper, we investigate a class of eigenvalue problem of the L_E operator. By applying Bochner type formula, we obtain a Lichnerowicz-Obata type estimate for the first nonzero eigenvalue of this eigenvalue problem, which extends the results of [3] and [7] to the L_E case. **Keywords:** first nonzero eigenvalue; Bochner type formula; elliptic operator; einstein tensor **2010 MR Subject Classification:** 53C20; 58C40

Document code: A Article ID: 0255-7797(2023)01-0022-07

1 Introduction

Let (M,g) be a compact Riemannian manifold, and let A be a smooth symmetric, positive definite (1,1)-tensor on M. Denote by ∇ and Δ the gradient operator and the Lapacian of M, respectively. Define the operator L_A as follows:

$$L_A = \operatorname{div} A \nabla.$$

It is easy to see that L_A is an elliptic operator, and if A is the (1, 1)-tensor associated to the tensor $g, L_A = \Delta$.

For the eigenvalue problem

$$L_A(f) = -\lambda^A f, \text{ on } M, \tag{1.1}$$

when $L_A = \Delta$, Lichnerowicz [1] proved that if M is an n-dimensional compact Riemannian manifold with Ricci curvature bounded below by (n-1)K, K > 0, then the first nonzero eigenvalue λ_1 of the problem (1.1) satisfies $\lambda_1 \ge nK^2$. Moreover, one can get the fact that the above equality holds if and only if M is isometric to a sphere from the proof of Obata Theorem(see[2]). This is the so-called Lichnerowicz-Obata type estimate of Laplacian eigenvalue problem.

^{*} Received date: 2021-05-25 Accepted date: 2021-06-25

Foundation item: Supported by NSF of Hubei provincial Department of Education(D20221302), National Natural Science Foundation of China(11971358) and the PhD Start-up Fund of Yangtze University.

Biography: Shi Jianghai(1986–), male, born at Jingzhou, Hubei, lecturer, major in geometrical analysis and spectral geometry.

In recent years, there are also many other Lichnerowicz-Obata type results about the first nonzero eigenvalue of the problem (1.1). When M is an n-dimensional compact immersed hypersurfaces of a space form and T_1 is the first Newton transformation associated to the shape operator of the immersion, [3] obtained a Lichnerowicz-Obata type estimate of the eigenvalue problem (1.1) with $A = T_1$. The operator L_{T_1} plays a key role in the study of stability for hypersurfaces with constant high order curvature (cf.[4,5,6]). Later, we [7] obtained more Lichnerowicz-Obata type estimates of the problem (1.1) with $A = T_r(T_r \text{ is}$ the *r*th Newton transformation, $2 \le r \le n-1$). In [3], they also considered the case A = S(here S is the Schouten operator of an $n(n \ge 4)$ -dimensional compact Riemannian manifold which has harmonic Weyl tensr), and proved a Lichnerowicz-Obata type result for L_S .

On the basis of the above researches, our aim in this paper is to establish Lichnerowicz-Obata type estimate for the eigenvalue problem (1.1) with A = E. E is the Einstein operator defined by $E = \frac{1}{2}RId - Ric$, where R is the scalar curvature and Ric is the linear operator associated with the Ricci tensor. This kind of L_E operator has very important application value both in general relativity and fuzzy mathematics(cf.[8]).

For this sake, we prove the following result:

Theorem 1.1 Let (M, g) be an *n*-dimensional compact Riemannian manifold and *E* be the Einstein operator on *M*. Suppose that Einstein operator *E* satisfies

$$0 < aId \le E \le bId,$$

where a, b are positive constants. Then, for the first nonzero eigenvalue λ_1^E of the problem (1.1) with A = E, we have

$$\lambda_1^E \ge \frac{nb}{2(nb-a)} [R_0 a - 2b^2 - \frac{1}{2}c + d]$$

where R_0 is the lower bound of the scalar curvature of M, c is the supremum of laplacian of the scalar curvature R and d is the infimum of laplacian of all eigenvalue functions of Ric.

Furthermore, the equalities hold if and only if M is a sphere.

2 Preliminaries

Let $\{\omega_1, \ldots, \omega_n\}$ be a locally orthonormal coframe field on the *n*-dimensional Riemannian manifold (M, g). Let $\phi = \sum_{i,j=1}^n \phi_{ij} \omega_i \otimes \omega_j$ be a symmetric (0, 2)-tensor on M. Associated to tensor ϕ we have the (1, 1)-tensor, still denoted by ϕ , defined by

$$\langle \phi(X), Y \rangle = \phi(X, Y), \forall X, Y \in T(M),$$

and vice versa.

Then, we denote by Ric the Ricci tensor of M. Namely

$$Ric(X,Y) = \sum_{i=1}^{n} \langle Rm(X,e_i)Y,e_i \rangle,$$

No. 1

Vol. 43

where $Rm(X,Y)Z = \nabla_Y \nabla_X Z - \nabla_X \nabla_Y Z + \nabla_{[X,Y]}Z$ is the curvature tensor of M and $\{e_1, \ldots, e_n\}$ is an orthonormal frame. We will also denote by Ric the linear operator associated with the Ricci tensor, (i.e., $Ric(X,Y) = \langle Ric(X), Y \rangle$), as well as its coordinates will be denoted by Ric_{ij} .

In [9], Cheng and Yau introduced an operator \Box associated to ϕ by

$$\Box l = \sum_{i,j=1}^{n} \phi_{ij} l_{ij}, \qquad (2.1)$$

where l is any smooth function on M.

Now, let us review two following basic properties of the operator \Box :

- 1. It follows from Cheng and Yau (Proposition 1 in [9]) that $\Box l = \operatorname{div}(\phi(\nabla l)) \sum_{i=1}^{n} (\sum_{j=1}^{n} \phi_{ijj}) l_i$.
- 2. One says that ϕ is divergence free if $\operatorname{div}\phi = 0$ or, equivalently, $\sum_{j=1}^{n} \phi_{ijj} = 0$, for all $1 \leq i \leq n$.

Remark If M is compact, it is not hard to check that \Box is self-adjoint if and only if ϕ is divergence free from [9]. Of course, by the above properties, we know that $\Box f = \operatorname{div}(\phi(\nabla f))$ when ϕ is divergence free. If ϕ is symmetric and positive definite, then \Box is strictly elliptic. therefore, we can assert that \Box is strictly elliptic and self-adjoint when ϕ is divergence free, symmetric and positive definite. Furthermore, the spectrum of \Box is discrete and it makes sense to consider the eigenvalue problem.

To prove the main theorem, we also need the following lemmas.

Lemma 2.1 Let (M, g) be a Riemannian manifold and E is the Einstein operator(Einstein tensor) on M. Then we have divE = 0.

Proof It is well known that (see[10],P39) div $Ric = \frac{1}{2}dR$. Then, we get

$$\operatorname{div} E = \operatorname{div} Ric - \frac{1}{2} \operatorname{div}(RId) = \frac{1}{2} dR - \frac{1}{2} dR = 0.$$

Lemma 2.2 (Bochner type formula[7]) Let (M, g) be an *n*-dimensional Riemannian manifold and $\phi = \sum_{i,j=1}^{n} \phi_{ij} \omega_i \otimes \omega_j$ be a divergence free, symmetric tensor defined on M. Then, for any smooth function $l: M \to \mathbb{R}$, we have,

$$\frac{1}{2}\operatorname{div}(\phi(\nabla|\nabla l|^{2})) = \frac{1}{2}\Box(|\nabla l|^{2}) = \langle \nabla l, \nabla(\operatorname{div}(\phi(\nabla l))) \rangle + \langle \phi(\nabla l), \nabla(\Delta l) \rangle \\
+ 2\sum_{i,j,k=1}^{n} \phi_{ij} l_{ik} l_{kj} + 2\sum_{i,j,k,m=1}^{n} l_{i} l_{j} \phi_{im} R_{mkjk} \\
- \sum_{i,j=1}^{n} l_{i} l_{j} \Delta \phi_{ij} + \sum_{k=1}^{n} (\sum_{i,j=1}^{n} l_{i} l_{j} (\phi_{jik} - \phi_{jki}))_{k} \\
- \sum_{k=1}^{n} (\sum_{i,j=1}^{n} l_{ik} \phi_{ij} l_{j})_{k}.$$
(2.2)

For the proof details of lemma 2.2, one can refer to the lemma 2.1 in [7].

Lemma 2.3 (Generalized Newton inequality[3]) Let P and Q be two $n \times n$ symmetric matrices. If Q is positive definite, then

$$tr(P^2Q) \ge \frac{[tr(PQ)]^2}{trQ}$$
(2.3)

and the equality holds if and only if $P = \alpha I$ for some $\alpha \in \mathbb{R}$.

Proof Let *B* be a positive definite matrix. By the fact $tr[(PQ)^2] \leq tr(P^2Q^2)$, which holds for symmetric matrices, and using the Cauchy-Schwarz inequality with $P\sqrt{B}$ and $(\sqrt{B})^{-1}Q$, one can obtian

$$[tr(PQ)]^2 = tr(P\sqrt{B}(\sqrt{B})^{-1}Q)^2 \le tr(P^2B)tr(Q^2B^{-1}).$$

In particular, since Q is positive definite, we can choose B = Q to obtain

$$[tr(PQ)]^2 \le tr(P^2Q)trQ,$$

The equality holds if and only if

$$\begin{split} P\sqrt{Q} = &\alpha(\sqrt{Q})^{-1}Q \Leftrightarrow (P\sqrt{Q})\sqrt{Q} \\ = &\alpha(\sqrt{Q})^{-1}Q\sqrt{Q} \Leftrightarrow PQ = \alpha Q \Leftrightarrow P = \alpha I. \end{split}$$

3 Proof of the main Theorem

Proof of Theorem 1.1 Let f be an eigenfunction of λ_1^E , i.e. $L_E f = -\lambda_1^E f$. From Lemma 2.1, we know that E is divergence free. Now, by applying the Bochner type formula in Lemma 2.2 to tensor E and f, we obtain

$$\frac{1}{2} \operatorname{div}(E(\nabla|\nabla f|^{2})) = \langle \nabla f, \nabla(\operatorname{div}(E(\nabla f))) \rangle + \langle E(\nabla f), \nabla(\Delta f) \rangle \\
+ 2 \sum_{i,j,k=1}^{n} (E)_{ij} f_{ik} f_{kj} + 2 \sum_{i,j,k,m=1}^{n} f_{i} f_{j}(E)_{im} R_{mkjk} \\
- \sum_{i,j=1}^{n} f_{i} f_{j} \Delta(E)_{ij} + \sum_{k=1}^{n} (\sum_{i,j=1}^{n} f_{i} f_{j}((E)_{jik} - (E)_{jki}))_{k} \\
- \sum_{k=1}^{n} (\sum_{i,j=1}^{n} f_{ik}(E)_{ij} f_{j})_{k}.$$
(3.1)

By integrating both sides of (3.1) and using the divergence theorem, we have

$$0 = \int_{M} \langle \nabla f, \nabla (L_E f) \rangle + \int_{M} \langle E(\nabla f), \nabla (\Delta f) \rangle + 2 \int_{M} \sum_{i,j,k=1}^{n} (E)_{ij} f_{ik} f_{kj}$$

$$+ 2 \int_{M} \sum_{i,j,k,m=1}^{n} f_i f_j (E)_{im} R_{mkjk} - \int_{M} \sum_{i,j=1}^{n} f_i f_j \Delta E_{ij}$$

$$(3.2)$$

Then, with the fact $L_E f = -\lambda_1^E f$, one have

$$\int_{M} \langle \nabla f, \nabla (L_E f)) \rangle = -\lambda_1^E \int_{M} |\nabla f|^2.$$

We also have

$$\operatorname{div}(\Delta f \ E\nabla f)) = \Delta f \operatorname{div}(E(\nabla f)) + \langle E(\nabla f), \nabla(\Delta f) \rangle$$

= $\Delta f \cdot L_E(\nabla f) + \langle E(\nabla f), \nabla(\Delta f) \rangle.$ (3.4)

Hence we get

$$\int_{M} \langle E(\nabla f), \nabla(\Delta f) \rangle = -\int_{M} \Delta f \cdot L_{E} f$$
$$= \lambda_{1}^{E} \int_{M} f \Delta f$$
$$= -\lambda_{1}^{E} \int_{M} |\nabla f|^{2}.$$
(3.5)

Then we estimate other parts in (3.2). For convenience, we choose an orthonormal frame $\{e_1, \ldots, e_n\}$ such that *Ric* is diagonalized in a neighborhood of any point $p \in M^n$, i.e. $Ric_{ij} = \mu_i \delta_{ij}$, where μ_i is eigenvalue of the Ricci tensor at point p.

Thus, for Einstein tensor $E = \frac{1}{2}RId - Ric$, at point p, we have

$$(E)_{ij} = \frac{1}{2} R \delta_{ij} - \mu_i \delta_{ij}.$$
 (3.6)

From Lemma 2.3 and the fact E is positive definite, divergence free, we can obtain

$$2\int_{M} \sum_{i,j,k=1}^{n} (E)_{ij} f_{ik} f_{kj} \ge 2\int_{M} \frac{(\sum_{i,j=1}^{n} (E)_{ij} f_{ij})^{2}}{tr(E)}$$
$$= 2\int_{M} \frac{(L_{E}f)^{2}}{tr(E)}$$
$$= 2\int_{M} \frac{(\lambda_{1}^{E}f)^{2}}{tr(E)}.$$
(3.7)

By appling divergence Theorem and the fact $L_E(f^2) = 2fL_E f + 2\langle E(\nabla f), \nabla f \rangle$, we have

$$\int_{M} \langle E(\nabla f), \nabla f \rangle = -\int_{M} f \cdot \lambda_{1}^{E} f = \lambda_{1}^{E} \int_{M} f^{2}.$$
(3.8)

With the condition $0 < aId \leq E \leq bId$, it is easy to check that

$$a|\nabla f|^2 \le \langle E(\nabla f), \nabla f \rangle \le b|\nabla f|^2.$$
(3.9)

Then, from (3.7), (3.8) and (3.9), we obtain

$$2\int_{M}\sum_{i,j,k=1}^{n} (E)_{ij}f_{ik}f_{kj} \ge \frac{2\lambda_{1}^{E}a}{nb}\int_{M} |\nabla f|^{2}.$$
(3.10)

(3.3)

We can also obtain

$$2\int_{M}\sum_{i,j,k,m=1}^{n}f_{i}f_{j}(E)_{im}R_{mkjk} = 2\int_{M}Ric(\nabla f, E(\nabla f))$$

$$=2\int_{M}\langle Ric(\nabla f), E(\nabla f)\rangle$$

$$=2\int_{M}\langle (\frac{1}{2}RId - E)\nabla f, E(\nabla f)\rangle$$

$$=\int_{M}[R\langle \nabla f, E(\nabla f)\rangle - 2\langle \nabla f, E^{2}(\nabla f)\rangle]$$

$$\geq (R_{0}a - 2b^{2})\int_{M}|\nabla f|^{2},$$
(3.11)

where R_0 is the lower bound of the scalar curvature R.

For any function $h \in C^2(M)$, by the Hopf maximum principle, it is not hard to find that $(\Delta h)_{min} \leq 0$ and $(\Delta h)_{max} \geq 0$ on M. Then, let d be the infimum of laplacian of all eigenvalue functions of Ric. Hence we have $c \triangleq (\Delta R)_{max} \geq 0$ and $d \leq 0$.

Under the above frame, we have

$$-\sum_{i,j=1}^{n} f_i f_j \Delta E_{ij} = -\sum_{i,j,p=1}^{n} f_i f_j E_{ijpp} = -\Delta R \sum_{i=1}^{n} f_i^2 + \sum_{i}^{n} (\Delta \mu_i) f_i^2 \geq (-c+d) |\nabla f|^2.$$
(3.12)

Hence

$$-\int_{M} \sum_{i,j=1}^{n} f_{i} f_{j} \Delta E_{ij} \ge (-c+d) \int_{M} |\nabla f|^{2}.$$
(3.13)

Finally, taking (3.3), (3.5), (3.10), (3.11) and (3.13) back into (3.2), we obtain

$$0 \ge \left[-2\lambda_1^E + \frac{2\lambda_1^E a}{nb} + R_0 a - 2b^2 - c + d\right] \int_M |\nabla f|^2.$$
(3.14)

Therefore

$$\lambda_1^E \ge \frac{nb}{2(nb-a)} [R_0 a - 2b^2 - \frac{1}{2}c + d].$$
(3.15)

Now, we consider the equality case. If we suppose $M = \mathbb{S}^n(1)$, we have $R_0 = n(n-1)$, $E = \frac{(n-1)(n-2)}{2}Id$, $L_E f = \frac{(n-1)(n-2)}{2}\Delta f$ and $\lambda_1^E = \frac{n(n-1)(n-2)}{2}$. In this case, the estimate becomes equality with the assumption that $a = b = \frac{(n-1)(n-2)}{2}$. On the other hand, if the equality holds, the equality case of Lemma 2.3, implies that $f_{ij} = pg_{ij}$, for some real constant p, and following the proof of Obata Theorem, cf [2], we can obtain that M is a sphere.

Remark There is still much to be studied about the Lichnerowicz-Obata type estimate of this kind of problem (1.1). Especially, when the ambient space of M is an Einstein

manifold, the first nonzero eigenvalue λ_1^T is of great significance to the study of variational problem that characterizes hypersurfaces with constant 2-mean curvature in Einstein manifolds (cf.[11]). To the author's knowledge, the Lichnerowicz-Obata type estimate of L_{T_1} in this kind of ambient space is still wide open.

References

- Lichnerowicz A. Géométrie des groupes de transformations[M]. Paris: Travaux et Recherches Mathématiques, 1958.
- [2] Obata M. Certain conditions for a Riemannian manifold to be isometric with a sphere[J]. J. Math. Soc. Japan., 1962, 14(3): 333–340.
- [3] Alencar H, Neto G S, Zhou Detang. Eigenvalue estimates for a class of elliptic differential operators on compact manifolds[J]. Bull. Braz. Math. Soc.(N.S.)., 2015, 46(3): 491–514.
- [4] Alencar H, Do Carmo M, Rosenberg H. On the first eigenvalue of the linearized operator of the rth mean curvature of a hypersurface[J]. Ann. Global Anal. Geom., 1993, 11(4): 387–395.
- [5] Reilly R. Variational properties of functions of the mean curvatures for hypersurfaces in space forms[J]. J.Differential Geom., 1973, 8(3): 465–477.
- [6] Voss K. Variation of curvature integrals[J]. Results Math., 1991, 20(3-4): 789-796.
- [7] Shi Jianghai. Eigenvalue estimates for some natural elliptic operators on hypersurfaces[J]. Differential Geom. Appl., 2016, 49: 97–110.
- [8] Cheng Xu. An almost-Schur type lemma for symmetric (2,0) tensors and applications[J]. Pacific J. Math., 2014, 267(2): 325–340.
- Cheng S Y, Yau S T. Hypersurfaces with constant scalar curvature[J]. Math. Ann., 1977, 225(3): 195–204.
- [10] Petersen P. Riemannian geometry (2nd ed)[M]. New York: Springer, 2006.
- [11] Elbert M F. Constant positive 2-mean curvature hypersurfaces[J]. Illinois J. Math., 2002, 46(1): 247–267.

L_E 算子的一个Lichnerowicz-Obata 型估计

史江海

(长江大学信息与数学学院,湖北 荆州 434023)

摘要: 本文研究了*L*_E算子的一类特征值问题.利用Bochner 型公式,我们得到了此类问题第一非零特征值的一个Lichnerowicz-Obata 型估计,进而将[3]和[7]中的结果推广到了*L*_E算子的情形.

关键词: 第一非零特征值; Bochner 型公式; 椭圆算子; Einstein 张量

MR(2010)主题分类号: 53C20; 58C40 中图分类号: O186.12