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Abstract: In this paper, we investigate a class of eigenvalue problem of the LE operator. By

applying Bochner type formula, we obtain a Lichnerowicz-Obata type estimate for the first nonzero

eigenvalue of this eigenvalue problem, which extends the results of [3] and [7] to the LE case.
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1 Introduction

Let (M, g) be a compact Riemannian manifold, and let A be a smooth symmetric,
positive definite (1,1)-tensor on M . Denote by ∇ and ∆ the gradient operator and the
Lapacian of M , respectively. Define the operator LA as follows:

LA = divA∇.

It is easy to see that LA is an elliptic operator, and if A is the (1, 1)-tensor associated to the
tensor g, LA = ∆.

For the eigenvalue problem

LA(f) = −λAf, on M, (1.1)

when LA = ∆, Lichnerowicz [1] proved that if M is an n-dimensional compact Riemannian
manifold with Ricci curvature bounded below by (n − 1)K, K > 0, then the first nonzero
eigenvalue λ1 of the problem (1.1) satisfies λ1 ≥ nK2. Moreover, one can get the fact
that the above equality holds if and only if M is isometric to a sphere from the proof of
Obata Theorem(see[2]). This is the so-called Lichnerowicz-Obata type estimate of Laplacian
eigenvalue problem.
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In recent years, there are also many other Lichnerowicz-Obata type results about the
first nonzero eigenvalue of the problem (1.1). When M is an n-dimensional compact im-
mersed hypersurfaces of a space form and T1 is the first Newton transformation associated
to the shape operator of the immersion, [3] obtained a Lichnerowicz-Obata type estimate of
the eigenvalue problem (1.1) with A = T1. The operator LT1 plays a key role in the study
of stability for hypersurfaces with constant high order curvature (cf.[4,5,6]). Later, we [7]
obtained more Lichnerowicz-Obata type estimates of the problem (1.1) with A = Tr(Tr is
the rth Newton transformation, 2 ≤ r ≤ n− 1). In [3], they also considered the case A = S

(here S is the Schouten operator of an n(n ≥ 4)-dimensional compact Riemannian manifold
which has harmonic Weyl tensr), and proved a Lichnerowicz-Obata type result for LS .

On the basis of the above researches, our aim in this paper is to establish Lichnerowicz-
Obata type estimate for the eigenvalue problem (1.1) with A = E. E is the Einstein operator
defined by E = 1

2
RId−Ric, where R is the scalar curvature and Ric is the linear operator

associated with the Ricci tensor. This kind of LE operator has very important application
value both in general relativity and fuzzy mathematics(cf.[8]).

For this sake, we prove the following result:
Theorem 1.1 Let (M, g) be an n-dimensional compact Riemannian manifold and E

be the Einstein operator on M . Suppose that Einstein operator E satisfies

0 < aId ≤ E ≤ bId,

where a, b are positive constants. Then, for the first nonzero eigenvalue λE
1 of the problem

(1.1) with A = E, we have

λE
1 ≥

nb

2(nb− a)
[R0a− 2b2 − 1

2
c + d]

where R0 is the lower bound of the scalar curvature of M , c is the supremum of laplacian of
the scalar curvature R and d is the infimum of laplacian of all eigenvalue functions of Ric.

Furthermore, the equalities hold if and only if M is a sphere.

2 Preliminaries

Let {ω1, . . . , ωn} be a locally orthonormal coframe field on the n-dimensional Rieman-
nian manifold (M, g). Let φ = Σn

i,j=1φijωi⊗ωj be a symmetric (0, 2)-tensor on M . Associated
to tensor φ we have the (1, 1)-tensor, still denoted by φ, defined by

〈φ(X), Y 〉 = φ(X, Y ),∀X, Y ∈ T (M),

and vice versa.
Then, we denote by Ric the Ricci tensor of M . Namely

Ric(X, Y ) =
n∑

i=1

〈Rm(X, ei)Y, ei〉,
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where Rm(X, Y )Z = ∇Y∇XZ − ∇X∇Y Z + ∇[X,Y ]Z is the curvature tensor of M and
{e1, . . . , en} is an orthonormal frame. We will also denote by Ric the linear operator associ-
ated with the Ricci tensor, (i.e.,Ric(X, Y ) = 〈Ric(X), Y 〉), as well as its coordinates will be
denoted by Ricij .

In [9], Cheng and Yau introduced an operator ¤ associated to φ by

¤l =
n∑

i,j=1

φijlij , (2.1)

where l is any smooth function on M .
Now, let us review two following basic properties of the operator ¤:

1. It follows from Cheng and Yau (Proposition 1 in [9]) that ¤l = div(φ(∇l))−∑n

i=1(
∑n

j=1 φijj)li.

2. One says that φ is divergence free if divφ = 0 or, equivalently,
∑n

j=1 φijj = 0, for all
1 ≤ i ≤ n.

Remark If M is compact, it is not hard to check that ¤ is self-adjoint if and only if φ is
divergence free from [9]. Of course, by the above properties, we know that ¤f = div(φ(∇f ))
when φ is divergence free. If φ is symmetric and positive definite, then ¤ is strictly elliptic.
therefore, we can assert that ¤ is strictly elliptic and self-adjoint when φ is divergence free,
symmetric and positive definite. Furthermore, the spectrum of ¤ is discrete and it makes
sense to consider the eigenvalue problem.

To prove the main theorem, we also need the following lemmas.
Lemma 2.1 Let (M, g) be a Riemannian manifold and E is the Einstein opera-

tor(Einstein tensor) on M . Then we have divE = 0.
Proof It is well known that (see[10],P39) divRic = 1

2
dR. Then, we get

divE = divRic − 1
2
div(RId) =

1
2
dR − 1

2
dR = 0.

Lemma 2.2 (Bochner type formula[7]) Let (M, g) be an n-dimensional Riemannian
manifold and φ = Σn

i,j=1φijωi ⊗ ωj be a divergence free, symmetric tensor defined on M .
Then , for any smooth function l : M → R, we have,

1
2
div(φ(∇|∇l |2)) =

1
2
¤(|∇l |2) =〈∇l,∇(div(φ(∇l)))〉+ 〈φ(∇l),∇(∆l)〉

+ 2
n∑

i,j ,k=1

φij lik lkj + 2
n∑

i,j ,k ,m=1

li ljφimRmkjk

−
n∑

i,j=1

lilj∆φij +
n∑

k=1

(
n∑

i,j=1

lilj(φjik − φjki))k

−
n∑

k=1

(
n∑

i,j=1

likφijlj)k.

(2.2)
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For the proof details of lemma 2.2 , one can refer to the lemma 2.1 in [7].
Lemma 2.3 (Generalized Newton inequality[3]) Let P and Q be two n×n symmetric

matrices. If Q is positive definite, then

tr(P 2Q) ≥ [tr(PQ)]2

trQ
(2.3)

and the equality holds if and only if P = αI for some α ∈ R.
Proof Let B be a positive definite matrix. By the fact tr[(PQ)2] ≤ tr(P 2Q2), which

holds for symmetric matrices, and using the Cauchy-Schwarz inequality with P
√

B and
(
√

B)−1Q, one can obtian

[tr(PQ)]2 = tr(P
√

B(
√

B)−1Q)2 ≤ tr(P 2B)tr(Q2B−1).

In particular, since Q is positive definite, we can choose B = Q to obtain

[tr(PQ)]2 ≤ tr(P 2Q)trQ,

The equality holds if and only if

P
√

Q =α(
√

Q)−1Q ⇔ (P
√

Q)
√

Q

=α(
√

Q)−1Q
√

Q ⇔ PQ = αQ ⇔ P = αI.

3 Proof of the main Theorem

Proof of Theorem 1.1 Let f be an eigenfunction of λE
1 , i.e. LE f = −λE

1 f . From
Lemma 2.1, we know that E is divergence free. Now, by applying the Bochner type formula
in Lemma 2.2 to tensor E and f , we obtain

1
2
div(E (∇|∇f |2)) =〈∇f,∇(div(E (∇f )))〉+ 〈E (∇f ),∇(∆f )〉

+ 2
n∑

i,j ,k=1

(E )ij fik fkj + 2
n∑

i,j ,k ,m=1

fi fj (E )imRmkjk

−
n∑

i,j=1

fifj∆(E)ij +
n∑

k=1

(
n∑

i,j=1

fifj((E)jik − (E)jki))k

−
n∑

k=1

(
n∑

i,j=1

fik(E)ijfj)k.

(3.1)

By integrating both sides of (3.1) and using the divergence theorem, we have

0 =
∫

M

〈∇f,∇(LEf))〉+
∫

M

〈E(∇f),∇(∆f)〉+ 2
∫

M

n∑
i,j,k=1

(E)ijfikfkj

+ 2
∫

M

n∑
i,j,k,m=1

fifj(E)imRmkjk −
∫

M

n∑
i,j=1

fifj∆Eij

(3.2)
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Then, with the fact LEf = −λE
1 f , one have

∫

M

〈∇f,∇(LEf))〉 = −λE
1

∫

M

|∇f |2. (3.3)

We also have

div(∆f E∇f )) =∆f div(E (∇f )) + 〈E (∇f ),∇(∆f )〉
=∆f · LE (∇f ) + 〈E (∇f ),∇(∆f )〉.

(3.4)

Hence we get ∫

M

〈E(∇f),∇(∆f )〉 =−
∫

M

∆f · LE f

=λE
1

∫

M

f∆f

=− λE
1

∫

M

|∇f |2.

(3.5)

Then we estimate other parts in (3.2). For convenience, we choose an orthonormal
frame {e1, . . . , en} such that Ric is diagonalized in a neighborhood of any point p ∈ Mn, i.e.
Ricij = µiδij , where µi is eigenvalue of the Ricci tensor at point p.

Thus, for Einstein tensor E = 1
2
RId−Ric, at point p, we have

(E)ij =
1
2
Rδij − µiδij . (3.6)

From Lemma 2.3 and the fact E is positive definite, divergence free, we can obtain

2
∫

M

n∑
i,j,k=1

(E)ijfikfkj ≥2
∫

M

(
∑n

i,j=1(E)ijfij)2

tr(E)

=2
∫

M

(LEf)2

tr(E)

=2
∫

M

(λE
1 f)2

tr(E)
.

(3.7)

By appling divergence Theorem and the fact LE(f2) = 2fLEf +2〈E(∇f),∇f〉, we have
∫

M

〈E(∇f),∇f〉 = −
∫

M

f · λE
1 f = λE

1

∫

M

f2. (3.8)

With the condition 0 < aId ≤ E ≤ bId, it is easy to check that

a|∇f |2 ≤ 〈E(∇f),∇f〉 ≤ b|∇f |2. (3.9)

Then, from (3.7),(3.8) and (3.9), we obtain

2
∫

M

n∑
i,j,k=1

(E)ijfikfkj ≥ 2λE
1 a

nb

∫

M

|∇f |2. (3.10)
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We can also obtain

2
∫

M

n∑
i,j,k,m=1

fifj(E)imRmkjk =2
∫

M

Ric(∇f,E(∇f))

=2
∫

M

〈Ric(∇f), E(∇f)〉

=2
∫

M

〈(1
2
RId− E)∇f,E(∇f)〉

=
∫

M

[R〈∇f,E(∇f)〉 − 2〈∇f,E2(∇f)〉]

≥(R0a− 2b2)
∫

M

|∇f |2,

(3.11)

where R0 is the lower bound of the scalar curvature R.
For any function h ∈ C2(M), by the Hopf maximum principle, it is not hard to find

that (∆h)min ≤ 0 and (∆h)max ≥ 0 on M . Then, let d be the infimum of laplacian of all
eigenvalue functions of Ric. Hence we have c , (∆R)max ≥ 0 and d ≤ 0.

Under the above frame, we have

−
n∑

i,j=1

fifj∆Eij =−
n∑

i,j,p=1

fifjEijpp

=−∆R

n∑
i=1

f2
i +

n∑
i

(∆µi)f2
i

≥(−c + d)|∇f |2.

(3.12)

Hence

−
∫

M

n∑
i,j=1

fifj∆Eij ≥ (−c + d)
∫

M

|∇f |2. (3.13)

Finally, taking (3.3), (3.5), (3.10), (3.11) and (3.13) back into (3.2), we obtain

0 ≥ [−2λE
1 +

2λE
1 a

nb
+ R0a− 2b2 − c + d]

∫

M

|∇f |2. (3.14)

Therefore
λE

1 ≥
nb

2(nb− a)
[R0a− 2b2 − 1

2
c + d]. (3.15)

Now, we consider the equality case. If we suppose M = Sn(1), we have R0 = n(n− 1),
E = (n−1)(n−2)

2
Id, LEf = (n−1)(n−2)

2
∆f and λE

1 = n(n−1)(n−2)
2

. In this case, the estimate
becomes euqality with the assumption that a = b = (n−1)(n−2)

2
. On the other hand, if the

equality holds, the equality case of Lemma 2.3, implies that fij = pgij , for some real constant
p, and following the proof of Obata Theorem, cf [2], we can obtain that M is a sphere.

Remark There is still much to be studied about the Lichnerowicz-Obata type esti-
mate of this kind of problem (1.1). Especially, when the ambient space of M is an Einstein
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manifold, the first nonzero eigenvalue λT
1 is of great significance to the study of variational

problem that characterizes hypersurfaces with constant 2-mean curvature in Einstein man-
ifolds (cf.[11]). To the author’s knowledge, the Lichnerowicz-Obata type estimate of LT1 in
this kind of ambient space is still wide open.
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LE 算子的一个Lichnerowicz-Obata 型估计

史江海

(长江大学信息与数学学院, 湖北 荆州 434023)

摘要: 本文研究了LE算子的一类特征值问题. 利用Bochner 型公式, 我们得到了此类问题第一非零特

征值的一个Lichnerowicz-Obata 型估计, 进而将[3]和[7]中的结果推广到了LE算子的情形.
关键词: 第一非零特征值; Bochner 型公式; 椭圆算子; Einstein 张量
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