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Abstract: In this paper, we introduce a special Lagrangian type operator, and consider the

corresponding Dirichlet problem of the special Lagrangian type equation with supercritical phase.

By establishing the global C2 estimates, we obtain the existence theorem of classical solutions by

the method of continuity.
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1 Introduction

For a smooth function u(x) in Rn (n ≥ 3), we assume λ = (λ1, λ2, · · · , λn) are the
eigenvalue of Hessian matrix D2u := { ∂2u(x)

∂xi∂xj
}1≤i,j≤n. Then there is a mapping induced by

D2u as follows

Pei =
n∑

j=1

uijej ,

where {e1, · · · , en} is the standard basis of Rn. As in Caffarelli-Nirenberg-Spruck [1], we
consider the self-adjoint mapping

U =
n−1∑
k=1

1⊗ · · · ⊗ P
k
⊗ · · · ⊗ 1,

acting on the real vector space Λn−1Rn, that is

U(ei1 ∧ · · · ∧ ein−1) =
n−1∑
k=1

ei1 ⊗ · · · ⊗ Peik

k

⊗ · · · ⊗ ein−1 .

Then the eigenvalues of U are η = (η1, η2, · · · , ηn) with

ηi =
∑
k 6=i

λk, ∀i = 1, 2, · · · , n.

∗ Received date: 2022-04-07 Accepted date: 2022-05-17

Foundation item: Supported by National Natural Science Foundation of China (12171260).

Biography: Zhu Sheng (1998 –), male, born at Wenzhou, Zhejiang, postgraduate, major in partial

differential equations. E-mail:zsningbo2022@163.com.



No. 6 The dirichlet problem of a special lagrangian type equation with supercritical phase 483

Hence we have a special Lagrangian type operator

arctan η =: arctan η1 + arctan η2 + · · ·+ arctan ηn.

In fact, if λ = (λ1, λ2, · · · , λn) are the eigenvalue of Hessian matrix D2u, η = (η1, η2, · · · , ηn)
are the eigenvalue of matrix {∆uIn −D2u}, and

arctan η = arctan{∆uIn −D2u}.

In this paper, we study the Dirichlet problems of the corresponding special Lagrangian
type equation

{
arctan{∆uIn −D2u} = Θ(x), in Ω ⊂ Rn,

u = ϕ(x), on ∂Ω.
(1.1)

where Θ(x) ∈ (−nπ
2

, nπ
2

) is called the phase. In particular, Θ = (n−2)π
2

is the critical phase,
and if (n−2)π

2
< Θ(x) < nπ

2
, the equation (1.1) is called special Lagrangian type equation

with supercritical phase.
The special Lagrangian equation

arctanD2u =: arctanλ1 + arctanλ2 + · · ·+ arctanλn = Θ.

was introduced by Harvey-Lawson [2] in the study of calibrated geometries. Here Θ is a
constant called the phase angle. In this case the graph x 7→ (x,Du(x)) defines a calibrated,
minimal submanifold of R2n. Since the work of Harvey-Lawson, special Lagrangian manifolds
have gained wide interests, due in large part to their fundamental role in the Strominger-
Yau-Zaslow description of mirror symmetry [3]. For the special Lagrangian equations with
supercritical phase, Yuan obtained the interior C1 estimate with Warren in [4] and the
interior C2 estimate with Wang in [5]. Recently Collins-Picard-Wu [6] obtained the exis-
tence theorem of the Dirichlet problem by adopting the classic method with some important
observation about the concavity of the operator.

In fact, the Dirichlet problems of elliptic equations in Rn were widely studied. For
the Laplace equation, the Dirichlet problem was well studied in [7, 8]. For fully nonlinear
elliptic equations, the pioneering work was done by Caffarelli-Nirenberg-Spruck in [1, 9] and
Ivochkina in [10]. In their papers, they solved the Dirichlet problem for Monge-Ampère
equations and k-Hessian equations elegantly. Since then, many interesting fully nonlinear
equations with different structure conditions have been researched, such as Hessian quotient
equations, which were solved by Trudinger in [11]. For more information, we refer the
citations of [9].

In this paper, we establish the following existence theorem of (1.1)
Theorem 1.1 Suppose Ω ⊂ Rn is a C4 strictly convex domain, ϕ ∈ C2(∂Ω) and

Θ(x) ∈ C2(Ω) with (n−2)π
2

< Θ(x) < nπ
2

in Ω. Then there exists a unique solution u ∈
C3,α(Ω) to the Dirichlet problem (1.1).
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Remark 1.2 In addition, if Ω, Θ and ϕ are all smooth, the solution u is also smooth
on Ω.

Remark 1.3 As in [6], if we assume there is a subsolution u instead of the strict
convexity of Ω, Theorem 1.1 still holds.

The rest of the paper is organized as follows. In Section 2, we give some properties and
establish the C0 estimates. In Section 3 and 4, we establish the C1 and C2 estimates for the
Dirichlet problem (1.1). And Theorem 1.1 is proved in the Section 5.

2 Some Properties and a Priori Estimates

In this section, we give some properties and establish the C0 estimates for the Dirichlet
problem (1.1).

Property 2.1 Let Ω ⊂ Rn be a domain and Θ(x) ∈ C0(Ω) with (n−2)π
2

< Θ(x) < nπ
2

in Ω. Suppose u ∈ C2(Ω) is a solution of the equation (1.1) and λ = (λ1, λ2, · · · , λn) are the
eigenvalues of the Hessian matrix D2u with

λ1 ≤ λ2 · ·· ≤ λn. (2.1)

Then we have the following properties:

η1 ≥ η2 · · · ≥ ηn, (2.2)

η1 + η2 · · ·+ηn > 0, (2.3)

|ηn| ≤ ηn−1, (2.4)

|ηn| ≤ C0, (2.5)

where C0 = max
{

tan
{

(n−1)π
2

−min
Ω

Θ(x)
}

, tan(
max

Ω
Θ(x)

n
)
}

.

These properties are well-known and can be similarly found in [5, 12] and [13].
Property 2.2 Suppose Ω ⊂ Rn is a domain and Θ(x) ∈ C2(Ω) with (n−2)π

2
< Θ(x) <

nπ
2

in Ω. Let u ∈ C4(Ω) be a solution of (1.1). Then for any ξ ∈ Sn−1, we have

n∑
ij=1

F ijuijξξ ≥ Θξξ −AΘξ
2, in Ω, (2.6)

where F ij = ∂ arctan η
∂uij

and A = 2

tan

(
min
Ω

Θ− (n−2)π
2

) .

Proof of Property 2.2 For any x ∈ Ω, we can assume D2u is diagonal with λi = uii,
since (2.6) is invariant under rotating the coordinates. Then we have

F ij =:
∂ arctan η

∂uij

=
∂ arctan η

∂λp

∂λp

∂uij

=





∂ arctan η
∂λi

= ∂ arctan η
∂ηp

∂ηp

∂λi
=

∑
p6=i

1
1+η2

p
, if i = j,

0, if i 6= j,
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and

F ij,kl = :
∂2 arctan η

∂uij∂ukl

=
∂2 arctan η

∂λp∂λq

∂λp

∂uij

∂λq

∂ukl

+
∂ arctan η

∂λp

∂2λp

∂uij∂ukl

=





∂2 arctan η
∂λi∂λk

= ∂2 arctan η
∂ηp∂ηq

∂ηp

∂λi

∂ηq

∂λk
, if i = j, k = l,

∂ arctan η
∂λi

− ∂ arctan η
∂λj

λi−λj
= − ηi+ηj

(1+η2
i )(1+η2

j )
, if i = l, j = k, i 6= j,

0, otherwise .

From the equation (1.1), we know

Θξ =
n∑

ij=1

F ijuijξ =
∂ arctan η

∂λp

∂λp

∂uij

uijξ =
∂ arctan η

∂ηp

∂ηp

∂λi

uiiξ,

and
n∑

ij=1

F ijuijξξ =Θξξ −
n∑

ijkl=1

F ij,kluijξuklξ = Θξξ −
n∑

i,k=1

F ii,kkuiiξukkξ −
∑
i 6=j

F ij,jiu2
ijξ

≥Θξξ −
n∑

i,k=1

F ii,kkuiiξukkξ. (2.7)

From the concavity lemma (Lemma 2.2 in [6]), we know

−
n∑

i,k=1

F ii,kkuiiξukkξ =− ∂2 arctan η

∂ηp∂ηq

∂ηp

∂λi

∂ηq

∂λk

· uiiξukkξ = −∂2 arctan η

∂ηp∂ηp

· ∂ηp

∂λi

uiiξ · ∂ηp

∂λk

ukkξ

≥− 2

tan
(
min

Ω
Θ− (n−2)π

2

)( n∑
p=1

∂ arctan η

∂ηp

· ∂ηp

∂λi

uiiξ

)2

=− 2

tan
(
min

Ω
Θ− (n−2)π

2

)Θξ
2. (2.8)

Hence (2.6) holds.
The C0 estimate is easy.
Theorem 2.3 Let Ω ⊂ Rn be a bounded domain and ϕ ∈ C0(∂Ω). Suppose u ∈

C2(Ω) ∩ C0(Ω) is the solution of (1.1) and Θ(x) ∈ C0(Ω) with (n−2)π
2

< Θ(x) < nπ
2

in Ω,
then we have

sup
Ω

|u| ≤ M0, (2.9)

where M0 depends on n, diam(Ω), max
∂Ω

|ϕ| and max
Ω

Θ.

Proof of Theorem 2.3 From (2.3), we have

∆u = λ1 + λ2 + · · ·+ λn =
1

n− 1

n∑
i

ηi > 0. (2.10)
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Then it yields from the maximum principle

max
Ω̄

u = max
∂Ω

ϕ. (2.11)

Without loss of generality, we assume 0 ∈ Ω, and denote B = 1
2(n−1)

tan(
max

Ω̄
Θ

n
) and

F (D2u) =: arctan η. Then we have

F (D2u(x)) = Θ(x) ≤ max
Ω

Θ = F (D2(B|x|2)). (2.12)

By the maximum principle, we can get

min
Ω

(u−B|x|2) = min
∂Ω

(u−B|x|2). (2.13)

Hence

u ≥ u−B|x|2 ≥ min
∂Ω

(u−B|x|2) ≥ min
∂Ω

ϕ−Bdiam(Ω)2. (2.14)

3 Global Gradient Estimate

In this section, we will prove the global gradient estimate of (1.1).
Theorem 3.1 Let Ω ⊂ Rn be a C2 strictly convex domain and ϕ ∈ C1(∂Ω). Suppose

u ∈ C3(Ω) ∩ C1(Ω) is the solution of (1.1) and Θ(x) ∈ C1(Ω) with (n−2)π
2

< Θ(x) < nπ
2

in
Ω, then we have

sup
Ω

|Du| ≤ M1, (3.1)

where M1 depends on n, diam(Ω), |ϕ|C1 and |Θ|C1 .
Proof of Theorem 3.1 In the following, we prove Theorem 3.1 by two steps.
Step 1 Prove max

Ω̄
|Du| ≤ max

∂Ω
|Du|+ C.

Consider the auxiliary function

P (x) = |Du(x)|+ eu(x), (3.2)

assume P (x) attains its maximum at x0 ∈ Ω̄. If x0 ∈ ∂Ω, then we have

|Du(x)| ≤ max
∂Ω

|Du(x)|+ eu(x0) − eu(x). (3.3)

If x0 ∈ Ω, we can choose the coordinates {e1, e2, · · · , en} at x0 such that

u1(x0) = |Du(x0)| > 0, {uij(x0)}2≤i,j≤n is diagonal. (3.4)

Then

P̃ (x) =: u1(x) + eu(x) (3.5)
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also attains its local maximum at x0. Hence we have at x0

0 = P̃i = u1i + euui, (3.6)

which yields

u11 = −euu1 < 0, (3.7)

u1i = 0, i ≥ 2. (3.8)

So we know {D2u(x0)} is diagonal. It follows that F ij =: ∂ arctan η
∂uij

is diagonal at x0. In fact,

F ij =
∑

p

∂ arctan η

∂λp

∂λp

∂uij

=





∂ arctan η
∂λi

=
∑
p6=i

1
1+ηp

2 , i = j,

0, i 6= j.
(3.9)

Also, we have

0 ≥ P̃ii = u1ii + eu(ui
2 + uii), (3.10)

and then

0 ≥
∑

i

F iiP̃ii =
∑

i

F iiuii1 + eu(
∑

i

F iiui
2 +

∑
i

F iiuii)

=Θ1 + eu(F 11u1
2 +

∑
p

ηp

1 + η2
p

)

≥− |DΘ|+ u1
2 eu

1 + C0
2 − eu n

2
. (3.11)

Hence u1 ≤ C, and then |Du(x)| ≤ C.
Step 2 Prove max

∂Ω
|Du| ≤ C.

From the boundary condition u = ϕ on ∂Ω, we know uτ = ϕτ for any tangential vector
τ of ∂Ω and |uτ | ≤ max |Dϕ|.

Now we consider the normal derivative uν , where ν is the unit normal vector of ∂Ω.
Firstly, we extend ϕ to Ω̄ by

{
∆ϕ̃= 0, in Ω,

ϕ̃ = ϕ, on ∂Ω.
(3.12)

It is easy to know ϕ̃ ∈ C∞(Ω) ∩ C2(Ω̄), and

u ≤ ϕ̃, in Ω; (3.13)

u = ϕ̃, on ∂Ω. (3.14)

Since Ω is a C2 strictly convex domain, then there is a defining function h ∈ C2(Ω̄) such
that

h = 0, on ∂Ω; h < 0 in Ω; (3.15)

D2h ≥ c0In > 0 in Ω. (3.16)
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Then we can prove

u(x) =: ϕ̃ + Bh(x) (3.17)

is a subsolution for B is large enough. In fact, the eigenvalues of D2u are λi ≥ Bc0− |D2ϕ̃|,
and η

i
≥ (n− 1)[Bc0 − |D2ϕ̃|]. Hence for B large enough, we have

u ≤ u, in Ω; (3.18)

u = u, on ∂Ω. (3.19)

which yields |Dνu(x)| ≤ max{|Du|, |Dϕ̃|} for x ∈ ∂Ω. This completes the proof of Theorem
3.1.

4 Global Second Derivatives Estimate

We come now to the a priori estimates of global second derivatives and we obtain the
following theorem.

Theorem 4.1 Suppose Ω ⊂ Rn is a C4 strictly convex domain and ϕ ∈ C2(∂Ω). Let
Θ(x) ∈ C2(Ω) with (n−2)π

2
< Θ(x) < nπ

2
in Ω and u ∈ C4(Ω) ∩C2(Ω) be a solution of (1.1),

then we have
sup
Ω

|D2u| ≤ M2, (4.1)

where M2 depends on n, Ω, min
Ω

Θ, |u|C1 , |Θ|C2 and |ϕ|C2 .

Proof of Theorem 4.1 In the following, we prove Theorem 4.1 by two steps.
Step 1 Prove max

Ω̄
|D2u| ≤ C(1 + max

∂Ω
|D2u|).

Consider the auxiliary function

P (x) = log λmax(D2u) + b|x|2, (4.2)

where λmax(D2u(x)) is the largest eigenvalue of D2u(x) and b = 1
4diam(Ω)2

. Assume P (x)
attains its maximum at x0 ∈ Ω̄. If x0 ∈ ∂Ω, then we have

log λmax(D2u(x)) ≤ P (x) ≤ max
∂Ω

log λmax(D2u) + b|x0|2, (4.3)

hence max
Ω̄
|D2u| ≤ C(1 + max

∂Ω
|D2u|).

If x0 ∈ Ω, we can choose the coordinates {e1, e2, · · · , en} at x0 such that

D2u(x0) is diagonal. (4.4)

Without loss of generality, we assume u11(x0) ≥ u22(x0) ≥ · · · ≥ unn(x0). Then

P̃ (x) =: u11(x) + b|x|2 (4.5)

also attains its local maximum at x0 ∈ Ω. Hence we have at x0

0 = P̃i =
u11i

u11

+ 2bxi, (4.6)
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hence

u11i

u11

= −2bxi, i = 1, 2, · · · , n. (4.7)

Moreover, we have at x0

0 ≥ P̃ii =
u11ii

u11

− u2
11i

u2
11

+ 2b =
u11ii

u11

− 4b2x2
i + 2b. (4.8)

Hence we have at x0

0 ≥
n∑

i=1

F iiP̃ii =

∑
i

F iiuii11

u11

+ 2b
∑

i

F ii(1− 2bx2
i ) (4.9)

≥ 1
u11

(Θ11 −AΘ2
1) + b

n∑
i=1

F ii

≥ 1
u11

(Θ11 −AΘ2
1) + b

1
1 + C2

0

.

Hence u11(x0) ≤ C, and then |D2u(x0)| ≤ C.
Step 2 Prove max

∂Ω
|D2u| ≤ C.

For any point x0 ∈ ∂Ω, we assume x0 = 0 ∈ ∂Ω, and ∂Ω is expressed by xn = ρ(x′)
near x0 = 0, where x′ = (x1, · · · , xn−1). Moreover, we can assume

ρ(0) = 0, Dρ(0) = 0, (4.10)

ρ(x′) =
1
2

n−1∑
i=1

bix
2
i + O(|x′|3).

From the boundary condition of (1.1), we have u(x′, ρ(x)) = ϕ(x′, ρ(x)) near 0, and then for
i, j = 1, 2, · · · , n− 1, it yields

ui + unρi = ϕi + ϕnρi, (4.11)

uij + uinρj + unjρi + unnρiρj + unρij = ϕij + ϕinρj + ϕnjρi + ϕnnρiρj + ϕnρij .

Hence

uij(0) = ϕij(0) + ϕn(0)ρij(0)− un(0)ρij(0), (4.12)

and |uij(0)| ≤ C for i, j ≤ n− 1.
Now we estimate |uin(0)| for i = 1, · · · , n. Define

T =
∂

∂xi

+ bi(xi
∂

∂xn

− xn
∂

∂xi

),

then we have

|
∑
i,j

F ij∂ijT (u− ϕ̃)| = |
∑
i,j

F ij∂ijTu−
∑
i,j

F ij∂ijT ϕ̃)| ≤ |TΘ|+ C
∑

i

F ii ≤ C, (4.13)
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in Ω ∩Bε(0) with ε > 0 small, and on ∂Ω ∩Bε(0)

|T (u− ϕ̃)| = |(∂i + ∂iρ∂n)(u− ϕ̃) + O(|x′|2)− bixn∂i(u− ϕ̃)| ≤ C|x′|2. (4.14)

Denote w(x) = ρ(x′)− xn − a |x′|+ x2
n, in Ω ∩Bε(0), then we have

∑
F ijwij =

n−1∑
i,j=1

F ij(ρij − aδij) + F nn ≥ ε0

∑
i≤n−1

F ii + F nn ≥ c0 > 0, (4.15)

where a is a very small positive constant. Hence for K large enough, we have
∑
i,j

F ij∂ij [Kw ± T (u− ϕ̃)] ≥ 0, in Ω ∩Bε(0). (4.16)

Moreover, on ∂Ω ∩Bε(0), we have xn = ρ(x′), and then

Kw ± T (u− ϕ̃) (4.17)

=K(−a|x′|2 + ρ(x′)2)± T (u− ϕ̃) ≤ K(−a|x′|2 + ρ(x′)2) + C|x′|2 ≤ 0,

if we choose K > 0 large enough and ε > 0 small enough. On Ω∩∂Bε(0), we have ρ(x′) ≤ xn

and xn ≥ c0 > 0, and then

Kw ± T (u− ϕ̃) (4.18)

≤K(ρ(x′)− xn − cρ(x′) + x2
n)± T (u− ϕ̃) ≤ K(−cxn + x2

n) + C ≤ 0.

Hence we have

|∂n(T (u− ϕ̃))(0)| ≤ K|∂nw(0)|, (4.19)

and |uin(0)| ≤ C.
At last, we prove |unn(0)| ≤ C. The idea is from Trudinger [11], and later used by

Guan [14]. See also [6]. For any point x ∈ ∂Ω, let {ei}n
i=1 be an orthonormal local frame

defined in a neighbourhood of x such that en is the inner normal. For 1 ≤ α, β ≤ n − 1,
define σαβ = 〈∇eα

eβ, en〉, where ∇ denotes the covariant derivative with respect to the flat
Euclidean metric. In fact, σαβ is the second fundamental form of ∂Ω. Since u = u on ∂Ω
(here u is a subsolution defined in (3.17)), we have

uαβ(x)− uαβ(x) = −(u− u)n(x)σαβ(x), x ∈ ∂Ω, (4.20)

where

uαβ = ∇eβ
(∇eα

u)−∇∇eβ
eα

u (4.21)

is the Riemannian Hessian with the eigenvalues λ′(uαβ) = (λ′1, λ
′
2, · · · , λ′n−1). As in [6],

assume g(λ) = −e−A
∑

arctan ηi and ψ(x) = −e−AΘ(x), where A is defined in Property 2.2.
Then for any x ∈ ∂Ω, we can define

G̃(λ′(uαβ)) = lim
R→∞

g(λ′, R) = −e−A arctan(λ′1+···+λ′n−1)−A
(n−1)π

2 . (4.22)
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Assume the minimum value of G̃(λ′(uαβ))(x) − ψ(x) on ∂Ω is achieved at y0 ∈ ∂Ω. As in
[6], we can prove |unn(y0)| ≤ C, and then

G̃(λ′(uαβ))(x)− ψ(x) ≥ G̃(λ′(uαβ))(y0)− ψ(y0) ≥ 2c0 > 0. (4.23)

Hence there exists a R0 large such that

g(λ′, R0) ≥ G̃(λ′(uαβ))− c0 ≥ ψ(x) + c0. (4.24)

If |unn(0)| ≥ Rδ0 , we have from Lemma 1.2 in [1]

λn ≥ R0, |λ− (λ′, λn)| < δ0, (4.25)

and then

(λ(uij))(0) ≥g(λ′, λn)− c0

2
≥ g(λ′, R0)− c0

2
≥ ψ(0) +

c0

2
, (4.26)

which is a contradiction. Hence |unn(0)| ≤ Rδ0 .

5 Proof of Theorem 1.1

In this section, we complete the proof of the Theorem 1.1.
For the Dirichlet problem of equation (1.1), we have established the C0, C1 and C2

estimates in Section 2, 3 and 4. By the global C2 priori estimate, the equation (1.1) is
uniformly elliptic in Ω. From Property 2.2, we know −e−A arctan η is concave with respect
to D2u, where A is defined in Property 2.2. Following the discussions in the Evans-Krylov
theorem [15, 16], we can get the global Hölder estimate of second derivatives,

|u|C2,α(Ω) ≤ C, (5.1)

where C and α depend on n, Ω, max
Ω

Θ, min
Ω

Θ, |Θ|C2 and |ϕ|C2 . From (5.1), one also obtains

C3,α(Ω) estimates by differentiating the equation (1.1) and applies the Schauder theory for
linear uniformly elliptic equations.

Applying the method of continuity (see [6]), the existence of the classical solution holds.
By the standard regularity theory of uniformly elliptic partial differential equations, we can
obtain the higher regularity.
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超临界相位的 Special Lagrangian方程的狄利克雷边值问题

朱 圣

(宁波大学数学与统计学院, 浙江 宁波 315211)

摘要: 在这篇文章中, 我们介绍了一种 Special Lagrangian 方程, 并且研究此方程在超临界相位时对

应的狄利克雷边值问题. 通过建立整体的 C2 估计, 运用经典的连续性方法得到解的存在性.
关键词: Special Lagrangian 方程; 狄利克雷问题; 超临界相位

MR(2010)主题分类号: 35J60; 35B45 中图分类号: O175.25


