Vol 42 (2022) J. of Math. (PRC)

THE DIRICHLET PROBLEM OF A SPECIAL
LAGRANGIAN TYPE EQUATION WITH
SUPERCRITICAL PHASE
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(School of Mathematics and Statistics, Ningbo University, Ningbo 315211, C’hina)

Abstract: In this paper, we introduce a special Lagrangian type operator, and consider the
corresponding Dirichlet problem of the special Lagrangian type equation with supercritical phase.
By establishing the global C? estimates, we obtain the existence theorem of classical solutions by
the method of continuity.
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1 Introduction

For a smooth function u(z) in R™ (n > 3), we assume A = (A1, Ao, -, \,) are the
8%u(x)

eigenvalue of Hessian matrix D?u := {552
10T

ti<ij<n. Then there is a mapping induced by
D?y as follows

n
Pei = E uijej,
Jj=1

where {ej, -+ ,e,} is the standard basis of R™. As in Caffarelli-Nirenberg-Spruck [1], we

consider the self-adjoint mapping
n—1
U = 1®--- @1
dle-w PR 81,
k=1
acting on the real vector space A" !R", that is
n—1
U(@il /\"-/\einfl) :Zeil ®".®P6ik®.'.®ein—l'
k
k=1

Then the eigenvalues of U are n = (91,72, ,n,) with

nizz/\ka Vz:1,2,,n
ki
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Hence we have a special Lagrangian type operator
arctann =: arctanmn; + arctanny + - - - + arctan,.

In fact, if A = (A1, Ag, - -+ , \,,) are the eigenvalue of Hessian matrix D?u, n = (11,12, , M)

are the eigenvalue of matrix {Aul, — D?u}, and
arctann = arctan{Aul, — D?u}.

In this paper, we study the Dirichlet problems of the corresponding special Lagrangian

type equation

{ arctan{Aul,, — D*u} = O(x), in QCR", (1.1)

u=¢(x), on Of.

where O(x) € (=47, %F) is called the phase. In particular, © = (”;2)“

and if @ < O(z) < 4F, the equation (1.1) is called special Lagrangian type equation

is the critical phase,

with supercritical phase.

The special Lagrangian equation
arctan D*u =: arctan \; + arctan Ay + - - - 4+ arctan \,, = ©.

was introduced by Harvey-Lawson [2] in the study of calibrated geometries. Here © is a
constant called the phase angle. In this case the graph z — (z, Du(z)) defines a calibrated,
minimal submanifold of R?". Since the work of Harvey-Lawson, special Lagrangian manifolds
have gained wide interests, due in large part to their fundamental role in the Strominger-
Yau-Zaslow description of mirror symmetry [3]. For the special Lagrangian equations with
supercritical phase, Yuan obtained the interior C' estimate with Warren in [4] and the
interior C? estimate with Wang in [5]. Recently Collins-Picard-Wu [6] obtained the exis-
tence theorem of the Dirichlet problem by adopting the classic method with some important
observation about the concavity of the operator.

In fact, the Dirichlet problems of elliptic equations in R™ were widely studied. For
the Laplace equation, the Dirichlet problem was well studied in [7, 8]. For fully nonlinear
elliptic equations, the pioneering work was done by Caffarelli-Nirenberg-Spruck in [1, 9] and
Ivochkina in [10]. In their papers, they solved the Dirichlet problem for Monge-Ampere
equations and k-Hessian equations elegantly. Since then, many interesting fully nonlinear
equations with different structure conditions have been researched, such as Hessian quotient
equations, which were solved by Trudinger in [11]. For more information, we refer the
citations of [9].

In this paper, we establish the following existence theorem of (1.1)

Theorem 1.1 Suppose  C R™ is a C* strictly convex domain, p € C?(9Q) and
O(z) € C?(Q) with 2T < ©(z) < “F in Q. Then there exists a unique solution u €

2
C3<(Q) to the Dirichlet problem (1.1).
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Remark 1.2 In addition, if 2, © and ¢ are all smooth, the solution w is also smooth

on €.

Remark 1.3 As in [6], if we assume there is a subsolution u instead of the strict
convexity of €2, Theorem 1.1 still holds.

The rest of the paper is organized as follows. In Section 2, we give some properties and
establish the C° estimates. In Section 3 and 4, we establish the C* and C? estimates for the
Dirichlet problem (1.1). And Theorem 1.1 is proved in the Section 5.

2 Some Properties and a Priori Estimates

In this section, we give some properties and establish the C° estimates for the Dirichlet
problem (1.1).

Property 2.1 Let Q C R" be a domain and ©(z) € C°(Q) with @ <0O(z) < 4F
in Q. Suppose u € C?() is a solution of the equation (1.1) and A = (A1, A, -+, \,,) are the

eigenvalues of the Hessian matrix D?u with
A< Ag - <A, (2.1)

Then we have the following properties:

M= > N, (2.2)
m+mn2- -+, >0, (2.3)
Ml < 1, (2.4)
7| < C, (2.5)

max O(z)
where Cy = max {tan {("_21)” — min @(x)} ,tan(”n)}.
Q
These properties are well-known and can be similarly found in [5, 12] and [13].
Property 2.2 Suppose 2 C R" is a domain and O(z) € C?(2) with @ < 0O(x) <

2% in Q. Let u € C*(Q) be a solution of (1.1). Then for any & € S"~!, we have

n
Z Fijuijfg > @55 - A@gZ, in Q, (26)
ij=1
where [ = 22ctenn and 4 = 2 .
Wij tan (ngn @—@)
Q

Proof of Property 2.2 For any x € €2, we can assume D?u is diagonal with \; = u;,

since (2.6) is invariant under rotating the coordinates. Then we have

O arctanm darctann 9np Z 1 LY .
= = ifi =y,
pF#i

) O arctanm B Oarctann O\, B o oy 0N 1+n2°

Fii =
8Uij 8)\p 8Uij O, if i ?é j,
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and

d*arctann  0%arctann O\, O\, ~Oarctann 0%\,

Fij,kl — . —
8uij8ukl 8)\,,6)\(1 8’LLU 8ukl a)\p auijaukl
8% arctann __ 8% arctann Onp Ong e e .
ONONr OnpOng O\ DA’ ifi=yjk=1,

darctanm _ darctann

— OX; 2y _ ni+n; e . . .

DY =~y Hi=hi=ki#g

0, otherwise .

From the equation (1.1), we know

Z s Oarctann O\, 0 arctann 0n,

U'L - T a\ ul - a_ uZ'L b
= KON, Oug YT T om,  on
and

ij ij,kl _ ~ i kk ij.ji
Y Fluijee =Oce — > FIMujeupe = Oge — Y F'Mujeuppe — > F97ul,
ij=1 ijhi=1 ik=1 i#j
>0 — Z FR e e (2.7)
ik=1

From the concavity lemma (Lemma 2.2 in [6]), we know

zn: ik, 9? arctann dn, dn, o 9% arctann 677p on, o,

- TTUiigUkke = — T3 A Ay Ay WiigUkke = — 3 A Ujie - Kk
e onpOng O\ 0N on,on, O\ O
2 OJarctann On 2
2 — . (n—2)m (Z ) a)\p “5)
tan (ngn@ - T) — "p
Q
2
=— o.°. (2.8)
tan (min 0 - @) ¢

Q
Hence (2.6) holds.
The C° estimate is easy.
Theorem 2.3 Let Q C R" be a bounded domain and ¢ € C°(d9Q). Suppose u €
C2(Q) N C°(Q) is the solution of (1.1) and O(z) € C°(Q) with “=2~ 2 < O(z) < ¥ inQ,
then we have
sup |u| < My, (2.9)
Q
where Mj depends on n, diam(2), max |p| and max ©.
Q

Proof of Theorem 2.3 From (2.3), we have

1 n
Au=XA\+A+ -+ A, = Zm>0. (2.10)

n—1
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Then it yields from the maximum principle

= . 2.11
MAX Y = MAX 5 (2.11)

max ©

tan(—~—) and

Without loss of generality, we assume 0 € (), and denote B = m

F(D?u) =: arctann. Then we have
F(D?u(z)) = O(z) < mgx@ = F(D*(B|z|?)). (2.12)

By the maximum principle, we can get

min(u — Blz|*) = min(u — Blz|?). (2.13)
Q o0
Hence
u>u— Blz|* > Ig}zn(u — Blz|?) > rg})ngo — Bdiam(9)?. (2.14)

3 Global Gradient Estimate

In this section, we will prove the global gradient estimate of (1.1).

Theorem 3.1 Let Q C R" be a C? strictly convex domain and ¢ € C(99). Suppose
u € C3(Q) N C'(Q) is the solution of (1.1) and O(z) € C1(Q) with 22T < () < 2 in
Q, then we have

sup |Du| < M, (3.1)
Q

where M; depends on n, diam(2), |p|c1 and |O|c:.
Proof of Theorem 3.1 In the following, we prove Theorem 3.1 by two steps.
Step 1 Prove max |Du| < max |Du| + C.
Q

Consider the auxiliary function
P(x) = |Du(x)| + @, (3.2)

assume P(x) attains its maximum at zo € Q. If 2o € 99, then we have

|Du(z)| < max |Du(z)| 4 e“(®0) — gu(@), (3.3)
If xy € Q, we can choose the coordinates {e1, ez, - ,e,} at xy such that
ur(zo) = |Du(zo)| >0, {uij(zo)}2<ij<n is diagonal. (3.4)

Then

P(z) = uy(x) + @ (3.5)



No. 6 The dirichlet problem of a special lagrangian type equation with supercritical phase 487

also attains its local maximum at xg. Hence we have at x

0= Pi = Uy + e“ui, (36)
which yields
u; = —euy <0, (3.7)

So we know {D?u(x¢)} is diagonal. It follows that F'% =: %W is diagonal at . In fact,

O arctann —_ 1 5
i Z darctann A, ax; g;i T2 YT (3.9)
o N Ouy 0, i # 5.
Also, we have
0> Py = ury + e (u;® + uii), (3.10)

and then
0> F'Py =) Flug +¢" () Fu+ ) Fiiuy)

:@1+e“(F11u12+Z Tlp )
p

1+
e 0

Hence u; < C, and then |Du(z)| < C.

Step 2 Prove Hé%X|Du| <C.

From the boundary condition u = ¢ on 90, we know u, = @, for any tangential vector
7 of 0Q and |u,| < max|De|.

Now we consider the normal derivative u,, where v is the unit normal vector of 0.

Firstly, we extend ¢ to Q by

Ap= in
=0, i &, (3.12)
@ =, on Of.

It is easy to know @ € C>(Q) N C?(Q), and
u<p, in; (3.13)
uw =@, on 0. (3.14)

Since  is a C? strictly convex domain, then there is a defining function h € C2(Q) such
that

h=0, on 99Q; h<O0in (3.15)
D?h > ¢y, > 0in Q. (3.16)
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Then we can prove
u(z) =: ¢ + Bh(x) (3.17)

is a subsolution for B is large enough. In fact, the eigenvalues of D?*u are \; > Becg — |D?¢|,

and 1. > (n — 1)[Beg — |D*¢]. Hence for B large enough, we have

u < u, in (3.18)
u = u, on Of). (3.19)

which yields |D,u(z)| < max{|Du|, |D@|} for z € 9. This completes the proof of Theorem
3.1.

4 Global Second Derivatives Estimate

We come now to the a priori estimates of global second derivatives and we obtain the
following theorem.

Theorem 4.1 Suppose  C R" is a C* strictly convex domain and ¢ € C?*(99). Let
O(z) € C*(Q) with 22" < ©(z) < 2% in Q and u € C*(Q) N C2(Q) be a solution of (1.1),
then we have

sup |D*u| < My, (4.1)
Q

where M, depends on n, Q, min O, |u|c1, |O]c2 and |p|ce.
Q
Proof of Theorem 4.1 In the following, we prove Theorem 4.1 by two steps.
Step 1 Prove max|D?*u| < C(1+ max | D?ul).
Q

Consider the auxiliary function
P(x) = log Amax (D*u) + b|z|?, (4.2)

where Apax(D?*u(z)) is the largest eigenvalue of D?*u(z) and b = Assume P(x)

1
B 4diam(€2)2 *
attains its maximum at xq € . If zg € 91, then we have

10g Amax(D*u(x)) < P(z) < maxlog Amax(D*u) + blzol*, (4.3)
hence max |D?u| < C(1+ max | D%ul).
Q
If xy € Q, we can choose the coordinates {e1, ez, - ,€,} at xo such that
D?u(xy) is diagonal. (4.4)

Without loss of generality, we assume u11(zg) > u2(xg) >+ > Upn (o). Then
P(x) =: uyy () + b|z|? (4.5)
also attains its local maximum at zg € ). Hence we have at xg

0=P =1 4 opy,, (4.6)
U11
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hence
Y opg,, i=1,2,-- ,m. (4.7)
U1
Moreover, we have at xg
0> Py = i Dt gy BINE 202 4 oy, (4.8)
U1 Uq U1l
Hence we have at z
n Z Fiiunll
0> Fip,="—— +2bY FU(1—2ba? 4.9
> RO BLEE (1.9)

U11 P

1 1
> (0, — A6? b—.
T U (O )+ 1+ C?

Hence u1;(z0) < C, and then |D?u(zq)| < C.
Step 2 Prove r%%x|D2u| <C.
For any point zq € 02, we assume xy = 0 € 99, and 99 is expressed by x,, = p(z’)

near zo = 0, where 2/ = (21, ,2,_1). Moreover, we can assume

p(0) =0, Dp(0)=0, (4.10)

/71 2 13
plel) = 5 Dbt + O

From the boundary condition of (1.1), we have u(2’, p(x)) = ¢(2’, p(z)) near 0, and then for
i,7=1,2,--- ;n—1, it yields

U; + UnP; = Pi + PnpPi, (4.11)
Uij + UinPj + UnjPi + UnnPiPj + UnPij = Pij T PinPj + PnjPi + PanPiPj + Onpij-

Hence
uij(0) = ¢ij(0) + ¢,(0)pi;(0) — 1, (0)p;(0), (4.12)
and |u;;(0)] < C fori,j <mn—1.
Now we estimate |u;,(0)| for s =1,--- ,n. Define
0 3} 3}
T = bl in_ . 4ngy )
ox; b oxy, v &ri)

then we have

) " FU0,T(uw— )| =) F70,Tu—Y FI9,T¢)| <|TO|+CY F'<C, (413)

(2% 0,J 4,J
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in 2N B.(0) with € > 0 small, and on 92N B.(0)
T (u = @)| = 1(0: + 0:pOn) (v — &) + O(|2'*) = biwn0i(u — §)| < Cla'[*. (4.14)

Denote w(z) = p(z') — z, — a 2’| + 22, in QN B.(0), then we have

n?

n—1
ZFijwij: ZF”(pm—a&j)—l—F”nZ«So Z Fii+anZCO>Ov (415)
i,j=1 i<n—1

where a is a very small positive constant. Hence for K large enough, we have
> FUo[KwET(u—$)] >0, in QnBe(0). (4.16)
2%
Moreover, on 92 N B.(0), we have =, = p(z’), and then
Kw+xT(u— @) (4.17)
=K(=a|z']> + p(2')*) £ T(u — @) < K(=a|2']* + p(z')*) + Cla'|* < 0,
if we choose K > 0 large enough and ¢ > 0 small enough. On QN9IB.(0), we have p(z') < z,
and z,, > co > 0, and then
Kw+ T(u— ) (4.18)
<K(p(x') —2p —cp(z’) +22) £ T(u—p) < K(—cx, +22)+ C <0.

Hence we have
0,(T'(u— ¢))(0)| < K[0,w(0)], (4.19)

and |u;, (0)] < C.

At last, we prove |un,,(0)] < C. The idea is from Trudinger [11], and later used by
Guan [14]. See also [6]. For any point = € 99, let {e;},_, be an orthonormal local frame
defined in a neighbourhood of x such that e, is the inner normal. For 1 < o, < n — 1,
define 0,43 = (V. e€g3,€,), where V denotes the covariant derivative with respect to the flat
Euclidean metric. In fact, 0,4 is the second fundamental form of 0. Since u = u on 90

(here w is a subsolution defined in (3.17)), we have

Uap(T) = Ups(®) = —(u — w)n(T)0ap(x), = €09, (4.20)

where
Uap = Ve, (Ve,u) = Vy, e u (4.21)
is the Riemannian Hessian with the eigenvalues X (ung) = (N[, Ay, ---,A,_;). As in [6],

assume g(\) = —e~Axarctanm and o)(z) = —e~A49@) where A is defined in Property 2.2.
Then for any x € 0f), we can define

G (ttap)) = Jim g(X', R) = —e~Ametniid, )=t (4.22)
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Assume the minimum value of G(N (uap))(z) — () on I is achieved at yo € IN. As in
[6], we can prove |u,,(yo)| < C, and then

G(N (uap)) (@) = (@) = G(N (uap))(yo) — ¥ (yo) = 2¢9 > 0. (4.23)
Hence there exists a Ry large such that
g\, Ro) > G(N (uap)) — co > ¥(x) + co. (4.24)

If |4y, (0)] > Rs,, we have from Lemma 1.2 in [1]

Ap > Ro, |/\ — ()\/7 )\n)l < 50, (425)
and then
C Ci Ci
(Muig)(0) 29N, M) = 5 2 9N, Ro) = 5 2 9(0) + 3, (4.26)

which is a contradiction. Hence |u,,,,(0)] < Ry, .

5 Proof of Theorem 1.1

In this section, we complete the proof of the Theorem 1.1.

For the Dirichlet problem of equation (1.1), we have established the C° C' and C?
estimates in Section 2, 3 and 4. By the global C? priori estimate, the equation (1.1) is
uniformly elliptic in . From Property 2.2, we know —e 42"t i5 concave with respect
to D?u, where A is defined in Property 2.2. Following the discussions in the Evans-Krylov

theorem [15, 16], we can get the global Holder estimate of second derivatives,
[ulcz.o@ < C, (5.1)

where C' and « depend on n, Q, max ©, min O, |0|c2 and |¢|c2. From (5.1), one also obtains
Q Q

C32(Q) estimates by differentiating the equation (1.1) and applies the Schauder theory for
linear uniformly elliptic equations.

Applying the method of continuity (see [6]), the existence of the classical solution holds.
By the standard regularity theory of uniformly elliptic partial differential equations, we can
obtain the higher regularity.

References

[1] Caffarelli L, Nirenberg L, Spruck J. The Dirichlet problem for nonlinear second order elliptic equa-
tions III, Functions of the eigenvalues of the Hessian[J]. Acta Math., 1985, 155(1): 261-301.

[2] Harvey R, Lawson B. Calibrated geometries[J]. Acta Math., 1982, 148(1): 47-157.

[3] Stromginer A, Yau S T, Zaslow E. Mirror symmetry is T-duality[J]. Nuclear Phys. B, 1996, 479(2):
243-259.



492 Journal of Mathematics Vol. 42
[4] Warren M, Yuan Y. Hessian and gradient estimates for three dimensional special Lagrangian equa-
tions with large phase[J]. Amer. J. Math., 2010, 132(3): 751-770.
[5] Wang D K, Yuan Y. Hessian estimates for special Lagrangian equations with critical and supercritical
phases in general dimensions[J]. Amer. J. Math., 2014, 136(2): 481-499.
[6] Collins T C, Picard S, Wu X. Concavity of the Larangian phase operator and applications[J]. Calc.
Var., 2017, 56(4): 89-111
[7] ChenY Z, Wu L C. Second Order Elliptic Equations and Elliptic Systems[M]. Providence, RI: Amer.
Math. Soc., 1998.
[8] Gilbarg D, Trudinger N. Elliptic partial differential equations of second order[M]. New York-Berlin:
Springer-Verlag, 1977.
[9] Caffarelli L, Nirenberg L, Spruck J. The Dirichlet problem for nonlinear second order elliptic equa-
tions I, Monge-Ampére equations[J]. Comm. Pure Appl. Math., 1984, 37(3): 369-402
[10] Ivochkina N M. Solutions of the Dirichlet problem for certain equations of Monge-Ampere type[J].
Math. USSR, Sb., 1987, 56(1): 403-415.
[11] Trudinger N S. On the Dirichlet problem for Hessian equations[J]. Acta Math., 1995, 175(2): 151—
164.
[12] Yuan Y. Global solutions to special Lagrangian equations[J]. Proc. Amer. Math. Soc., 2006, 134(5):
1355-1358.
[13] Chen C Q, Ma X N, Wei W. The Neumann problem of special Lagrangian equations with super-
critical phase[J]. J. Differential Equations, 2019, 267(9): 5388-5409.
[14] Guan B. Second-order estimates and regularity for fully nonlinear elliptic equations on Riemannian
manifolds[J]. Duke Math. J., 2014, 163(8): 1491-1524.
[15] Evans L C. Classical solutions of fully nonlinear, convex, second order elliptic equations[J]. Commun.
Pure Appl. Math., 1982, 35(1): 333-363.
[16] Krylov N V. Boundedly inhomogeneous elliptic and parabolic equations in a domain[J]. Math. USSR,

Izv., 1983, 20(1): 459-492.

BlEFEALAY Special Lagrangian FERIINF 52 T 1B {E o) @0

KO£

(TR S S 220%, T 9 315211)

WE: EXEXES, BAOINH T —Fh Special Lagrangian J5 72, F H A 78 1 75 #2468 G S A L B %

N2 PRV e TR G M e . R ST R C2 A, 18 I ISR T VA AT SR AR AE T

X ##18): Special Lagrangian 77 #%; ZCF) 5 8 il @ H G S AEAL
MR(2010)F 8 4> 2 5: 35J60; 35B45 FESES: 0175.25



