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ON UQ-RINGS AND STRONG UJII-RINGS
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Abstract: In this paper, we introduce the notions of UQ-rings and strong UJII-rings which
generalize the concept of UJ-rings. We provide many properties and structures of these two classes
of rings by using theoretical skills in rings. The conclusions enrich the theory that is related to
elements decomposition.
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1 Introduction

All rings considered are associative with unity. Let R be a ring. The set of all units,
the set of all idempotents and the Jacobson radical of R are denoted by U(R), idem(R)
and J(R), respectively. The symbol M, (R) stands for the n x n matrix ring over R whose
identity element we write as I,,.

Rings whose elements are sums of certain special elements have been widely studied
in ring theory. Recall that a ring R is called clean if every element of R is the sum of an
idempotent and a unit. Clean rings were introduced by Nicholson [1] in relation to exchange
rings. A ring R is called strongly clean [2] if every element of R is the sum of an idempotent
and a unit that commutes. According to [3, 4], a ring R is called J-clean if for each a € R,
a=e+j for some e? = e € Rand j € J(R) (also called a semiboolean ring in [5]). Recently,
Danchev [6] and Kosan et al. [3] called a ring R UJ if every unit of R is the sum of an
idempotent and an element from J(R), or equivalently, U(R) = 1+ J(R). It was shown in
[3] that a ring R is J-clean if and only if R is a clean UJ-ring.

Due to Harte [7], an element a € R is called quasinilpotent if 1 — az € U(R) for every
x € comm(a); the set of all quasinilpotents of R is denoted by R. Clearly, J(R) C R,
Motivated by the above, we say that a unit u of a ring R is UQ if u = 1 + ¢ for some
q € R™!; and a ring R is UQ if every unit of R is UQ (equivalently, U(R) = 1 + R).
Elementary properties of UQ-elements are studied in section 2, and some characterizations

of UQ-rings are provided in section 3. In section 4, we investigate rings for which every unit
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is the sum of two idempotents and an element from the Jacobson radical that commute with

each other.

2 On UQ-elements

Let R be a ring. We say that a unit u of R is UJ if u = 1 4 j for some j € J(R).
Clearly, all UJ-elements are U(Q). In this section, we study the properties of UQ-elements
(including U J-elements).

The following result can be obtained by a direct check.

Proposition 2.1 The product of UJ-elements is UJ.
Remark 2.2 The product of UQ-elements needs not to be UQ). For example, let Z,
be the ring of integers modulo 2, and let

1 0 1 1
u:(l 1),1):(0 1)€U(M2(Zz)).

Then u,v are clearly UQ. But

=G0 =(s) )

is not UQ since < (1) . ¢ U(M2(Z2)).

For a ring R, we denote 2 x 2 upper triangular matrix ring over R by T5(R).
Proposition 2.3 Let R be a ring, u,v € U(R). Then

(1) u,v are UJ if and only if < g N ) is UJ in T3(R) for any = € R.
v

T

(2) w,v are UQ if and only if, for any x € R, < g is UQ in Ty (R).

Proof (1) Assume that u,v are UJ. Let u = 1+ j1, v = 1 + j where jy,j2 € J(R).

Then
U x _ 1471 x _ nox 4 1 0
0 v | 0 1+5 /] L 0 js 0o 1/’

Since ‘78 * > € J(T2(R)) for any = € R, we get ( g * ) is UJ in Tx(R).
J2 v

. . 1 0 —1
For the converse, since “T ) isUg , we have = “ v
0 v 0 v 0 1 0 v—1

where v — 1 and v — 1 are in J(R). Hence u,v are UJ.
(2) Suppose that u,v are UQ. Let u = 1+ q1, v = 1 + g2 where q;,q, € R™!. Then

( woT >_< 10 ) - ( E ) € T»(R). Next we show that [ & ¥ | € (1u(R))™". Let
q2

0 o 0 1 0 ¢ 0
a y : a y o @ @z a
A _ . Then aq; = a0, bgz =
<Ob>€z(R)w1 <0b><092> <0q2><0 b) en aqi = q1a, bqz
QQb. Since q, ¢ c anil’ 1 +aq1 € U(R) al’ld 1 +qu - U(R) SO IQ —+ ( agl ax;;]qu —
2

( Ltaq az+ye > € U(T5(R)). This proves ( v ) is UQ in T3 (R).
0 1+ bg2 0 v
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Conversely, it suffices to prove that both © — 1 and v — 1 are quasinilpotents in R. We

u—b 0 > € (Tx(R))™. By an
0 v—1

easy computation, one gets u — 1 € R7 and v — 1 € R™! | as required.

Proposition 2.4 Let R be a ring, and a,b € R.

(1) If ab is UJ, then ba is UJ if and only if a,b € U(R).

(2) If ab is UQ, then ba is UQ if and only if a,b € U(R).

Proof The proof of (2) follows from [8, Theorem 2.11]. We give a new proof of (1).

(1) Suppose that a,b € U(R). As abis UJ, one has 1 —ab € J(R) = NM; where M,
is all maximal right ideal of R. If ba is not UJ, then 1 — ba ¢ J(R). So, there exists a
maximal right ideal M;, such that 1 — ba ¢ M;,. It follows that R = M;, + (1 — ba)R =
M;, +a ta(l —ba)R = M;, + a*(1 — ab)aR. Since 1 —ab € J(R), a~*(1 — ab)aR C J(R).
So M;, + J(R) = R, which is a contradiction. Therefore, ba is UJ. The converse is trivial.

Jacobson’s Lemma states that for any a,b € R, 1—ab € U(R) if and only if 1-ba € U(R).
Recall that a ring R is reversible if ab = 0 implies ba = 0 for any a,b € R.

may let z = 0. Since ( g 0 ) is UQ in T2(R), we have (
v

Proposition 2.5 Let R be a ring.

(1) For any a,b € R with 1 —ab is UJ, then 1 — ba is UJ if and only if R/J(R) is
reversible.

(2) 1 —abis UQ if and only if 1 — ba is UQ.

Proof By a direct computation, we can prove (1).

For (2), we can deduce from [9, Lemma 2.1]. Here, we give a simple proof for a con-
venience. Note that (2) is equivalent to the comment “ab is quasinilpotent if and only if so
is ba”. Now we assume that ab € R but ba ¢ R™". Then there exists y € R such that
(ba)y = y(ba) and 1 + bay ¢ U(R). From bay = yba, we obtain ab(ay?b) = (ay?b)ab. Since
ab € R 1 — ab(ay®b) € U(R). By Jacobson’s Lemma, we have 1 — babay® = 1 — (bay)? €
U(R), which implies 1 + bay € U(R), a contradiction. So ba € RI™".

3 UQ-rings

This section is devoted to the study of UQ-rings.

Proposition 3.1 Let R be a UQ-ring.

(1) For any q1,¢2 € R™™ gy + g2 + q1g2 € R™.

(2) If ¢1,q2 € R™" and q1q2 = q2q1, then ¢, + g2 € R,

Proof (1) Note that (1+¢1)(1+¢2) € U(R). Since R is a UQ-ring, 14+q1+q2+q1g2 €
1+ R™! and so q + ¢z + qiqa € R,

(2) Let g1,q2 € R™" and q1g2 = g2¢1. Then

I+q+g=>0+q)1+(1+q) " ') €UR)=1+R"".

Soqi+¢q € Rt
Proposition 3.2 Let R be a UQ-ring. Then:
(1) 2 € J(R).
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(2) eRe is UQ-ring.

Proof (1) Let —1 = 1+ z with # € R, Then z = —2. Note that x is central.
Hence, 2 € J(R).

(2) Let « € U(eRe). Then there exists y € eRe such that zy = e = yx. So we have
+(1—-e)y+(1—e)]=e+0+0+1—e=1=[y+ (1 —e)][z+ (1 —e)], which implies
[z 4+ (1 —¢€)] € U(R). Since R is a UQ-ring, z + (1 — e) = 1 + ¢ for some ¢ € R, Then
r—e=q¢€ (RM™)NeRe = (eRe)?™" by [10, Lemma 3.5(2)]. So eRe is UQ-ring.

Proposition 3.3 Let R be a UQ-ring. Then M, (R) is not UQ for any n > 2.

Proof By Proposition 3.2(2), it suffices to prove Ms(R) isnot UQ. Let A; = ( g ; ) :

0 0 1

Ag = ( 10 ) Then A17A2 S MQ(R)Q"“. But Al +A2 +A1A2 = < 1 (1) > ¢ MQ(R)qnil.

By Proposition 3.1(1), Ms(R) is not UQ.

We next determine when a single matrix over a field is UQ). For a matrix A over a filed,
we write tr(A) and detA for the trace and the determinate of A, respectively.

Example 3.4 Let F' be a field, U € U(Mx(F')). Then U is UQ if and only if U = I,

or there exists an invertible matrix P € My(F') such that P"'UP = ( (1) ;1 )

Proof By [8, Example 2.2], (My(F))?% equals the set of all nilpotents in My(F).

Suppose that U is UQ. By Hamilton-Cayley Theorem, we have U? = tr(U) - U —
detU - I,. Since U is UQ, we have U — I, is nilpotent, and so (U — I5)? = 0. It follows
that tr(U) - U — detU - I = 2U — I, and then (tr(U) — 2)U = (detU — 1)I,. Notice that
0 = det(U — I) = detU — tr(U) + 1. Thus, detU = tr(U) — 1. Combing this equation
with (tr(U) — 2)U = (detU — 1)I5, we have (tr(U) — 2)U = (trU — 2)1. If tr(U) # 2, then
U = I, and detU = tr(U) — 1 # 1, which is a contradiction. So tr(U) = 2, and detU = 1.
Assume that U # I,. Then there exists an invertible matrix P € M(F) such that P7'UP =

< 0 @ > where a;,as € F. Since det(P~'UP) = detU and tr(P~'UP) = tr(U), one gets

1 a2

-1
a; = —1 and ay = 2. Therefore, P'UP = ( (1) 5 ) The converse is clear.

Proposition 3.5 Let R be a ring.

(1) Ris UJ-ring if and only if J(R) ={zx € R: 1+ 2z € U(R)}.

(2) Ris UQ-ring if and only if R ={qe R:1+q€ U(R)}.

Proof We only need to prove (1). The proof of (2) is similar to that of (1).

(1) Assume that R is a UJ-ring. Clearly, J(R) C{zr € R:14+x € U(R)}. Let z € R
be such that 14+2 € U(R). Since Ris UJ, 142 = 1+ for some j € J(R). Sox = j € J(R).
Thus, J(R) 2 {x € R: 1+ 2 € U(R)}, and then J(R) ={z € R: 1+ 2z € U(R)}.

Conversely, let w € U(R). Thenu =1+ (u—1). As J(R) ={z: 14+ 2 € U(R)}, we get
u—1 € J(R), which implies that u is UJ, and hence R is a U J-ring.

Recall that a ring R is abelian if every idempotent of R is central.

Theorem 3.6 Let R be a ring. Then the following are equivalent:

(1) R is a regular UQ-ring.
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(2) R is an abelian regular UQ-ring.

(3) R has the identity 2> = x (i.e., R is Boolean).

Proof (1) = (2). Since R is regular, J(R) = 0 and every nonzero right ideal contains
a nonzero idempotent. Let a € R, if a # 0,a> = 0. By [11, Theorem 2.1], there is an
idempotent e € RaR such that eRe = M, (T) for some non-trivial ring T. As R is a UQ-ring,
eRe is UQ. So My(T) is a UQ-ring, which is a contradiction. So a = 0, and this proves that
R is reduced. As is well known, reduced rings are abelian.

(2) = (3). Let ¢ € Q(R). Since R is strongly regular, there exist e? = ¢ and u € U(R)
such that ¢ = eu = ue. So 1 —e = 1 — qu! € U(R), and whence e = 0, which implies
g =0. Thus Q(R) =0, and so U(R) = 1+ Q(R) = 1. Clearly, a strongly regular ring R with
U(R) =1 is Boolean.

(3) = (1). Clearly, R is regular. Let u € U(R). Then u? = u, which implies that u = 1,
and thus, R is a UQ-ring.

Corollary 3.7 Let R be a ring with J(R) = 0. Then the followings are equivalent:

(1) R is an exchange UQ-ring.

(2) R is a clean UQ-ring.

Proof (2)= (1) is clear.

(1) = (2). Since R is an exchange ring with J(R) = 0, by Theorem 3.6, every nonzero
right ideal contains a nonzero idempotent. In view of the proof (1) = (2) of Theorem 3.6,
we have R is abelian. By [1, Propsition 1.8(2)], abelian exchange rings are clean.

Theorem 3.8 Let R be a ring. Then the followings are equivalent:

(1) R is a strongly clean UQ-ring.

(2) For any a € R, there exist €2 = ¢ € R and ¢ € R such that a = e+q and ae = ea.

Proof (2) = (1). By (2),a=e+q= (1 —¢€)+ (2¢ — 1+ q) where > = ¢ € R and
q € R™". Note that 2e — 1 —q= (2e — 1) —q= (2e — 1)[1 — (2¢ — 1)q] € U(R) as eq = qe.
Hence, R is a strongly clean ring. Further, for any v € U(R), we have v = ¢ + ¢q. Then
e=v—q=v(l—v"1)q € U(R), which yields e = 1 and v = 1+¢. Thus R is also a UQ-ting.

(1) = (2). Let a € R. As R is a strongly clean ring, we have 1 + a = e + u where
e =e € R, u € UR) and ae = ea. Since R is a UQ-ring, u = 1 + ¢ for some ¢ € R,
Thus, 1+a=e+u=e+1+¢q, and so a = e+ ¢ and ae = ea.

Recall that a ring R is Dedekind finite if ab = 1 implies ba = 1 for any a,b € R.

Theorem 3.9 Every UQ-ring is Dedekind finite.

Proof We first show the following claim:

Claim If a ring R contains a set of matrix units {e;; }; j<2 such that e;; # 0 for i = 1, 2,
then R is not a UQ-ring.
Proof of Claim. Let f = ej; + €20 and u = eq5 + €31 + e25. Then it is easy to know that f
is an idempotent, u(u — f) = (v — f)u = f and fuf = u. Hence u, u — f € U(fRf). As
(fRE)™ NU(fRf) = @, we obtain u — f ¢ (fRf)?", that is to say fRf is not UQ-ring.
By Proposition 3.2(2), R is not a UQ-ring. So the Claim follows.

Let R be a UQ-ring, and assume that R is not Dedekind finite. Let a,b € R be such
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that ab =1 and e = ba # 1. Clearly, e is a nontrivial idempotent. In view of [12, Example
21.26], there exists a set of nonzero matrix units of the form e;; = b*(1—e)a’?. Then applying

the above Claim, we get that R is not a UQ-ring, a contradiction.

4 Strong UJII-rings

We call a ring R a strong U JII-ring if for each u € U(R), u = j+e+ f where j € J(R),
e, f € idem(R) and j, e, f commute with one another. UJ-rings are strong U.JII-rings.

Proposition 4.1 Let R be a strong UJII-ring.

(1) R™ = J(R).

(2) J(R) =+/J(R) where y/J(R) = {z € R| 2" € J(R) for some integer k > 1}.

Proof (1) Let b € R™! Then 1+4+b € U(R). Write 1 +b = j + e + f where
j € J(R), e, f € idem(R) and b, j,e, f all commute. So (1 —e) — f = j — b. Note that
(1—e)—f=1[(1-¢€)— f]?. Then (b—j)* =b—j. It follows that b —b*> = b(1 — b*) € J(R).
Since 1 — b? € U(R), we obtain b € J(R). Thus, R/ C J(R), and whence R = J(R).

(2) It suffices to show that y/J(R) C J(R). Let x € \/J(R). Then 2* € J(R) with
k>1and 1—z € U(R). By hypothesis, 1 —z = j+e+ f for some j € J(R), e, f € idem(R),
and j, e, f all commute. Clearly, (1—e)— f = j+xz. Note that (1—e)—f = ((1—¢)— f)?™*!

for any positive integer m. Since ¥ € J(R) and jz = xj, we obtain
Q—e)=f=(1—e)= NH*=(+a)"" e J(R) + 2> = J(R).

So1—[(1—e)— f]** € UR). Tt follows from [(1 —e) — f][1 — ((1 —e) — f)**] = 0 that
(1—e)—f=0. Thus 1 — e = f, and whence z = —j € J(R). Hence y/J(R) = J(R).
Corollary 4.2 Let R be a ring. Then M, (R) is not strong UJII for any n > 2.
Proof Note that any matrix unit E;; is quasinilpotent when i # j. However, E;; ¢
J(M,(R)). By Proposition 4.1(1), M, (R) is not strong UJII.
Proposition 4.3 If R is a strong UJII-ring, then 6 € J(R).
Proof Write —1 = j+e+ f, where j € J(R), e, f € idem(R) and j, e, f all commute.
Then

142j+52 = (—1—j)2 = (e+f)2 =e+ f+2ef = (—1—j)+2e(—1—j—e) = —1—j—4e—2ej.

We get 2+4e = —3j — j2 — 2¢j, and then 6e = (2+4e)e = (—3j —j% —2¢ej)e = — (e +je)j €
J(R). Similarly, 6f € J(R). Then —6 = 65 + 6e +6f € J(R), so 6 € J(R).
Clearly, a direct product of rings is strong UJII if and only if each ring is strong UJII.
Corollary 4.4 Let R be a ring with J(R) = 0. Then R is a strong UJII-ring if and
only if R= A ® B where A, B are strong UJII-rings, and 2=01in A and 3 =0 in B.
Proof Suppose that R is a strong UJII-ring. Since J(R) = 0, by Proposition 4.3,
6 = 0. By Chinese Remainder Theorem, R = R/2R® R/3R. Let A = R/2R, B = R/3R.
So A, B are strong UJII-rings, and 2 =0 in A, 3 =0 in B. The other direction is obvious.



408 Journal of Mathematics Vol. 42

A ring R is 2-UJ [13] if for any u € U(R), u> = 1 + j for some j € J(R). Recall that
a ring R is called reduced if R contains no nonzero nilpotent elements (equivalently, a? = 0
implies a = 0 for any a € R).

Proposition 4.5 If R is a strong UJII-ring, then R is 2-UJ and R/J(R) is reduced.

Proof Letu € U(R). Write u = j + e+ f where j € J(R), e, f € idem(R) and j, e, f
all commute. Then u—j = e+ f € U(R). Set ' =u—j =e—f+2f. Then v —2f =e— f,
and we get (u' — 2f)® = u'’ - 6ul2f +12u' f — 8f = u'® - 2f + 6(ul2f +2u'f) = u — 2f.
By Proposition 4.3, W = 6(u,2f +2u'f) € J(R), and thus WIo1e J(R). It follows
that u? — 1 = (u'2 —1)+2u'j 4+ 5> € J(R). Hence R is a 2-UJ ring. Next we show that
R/J(R) is reduced. Let z € R with 22 € J(R). It is easy to see that z € R/, In view of
Proposition 4.1(2), we get « € J(R), which implies that R/J(R) is reduced.

Theorem 4.6 Let R be a strong UJII-ring. Then the followings are equivalent:

(1) For any u € U(R), there exists a unique j € J(R) such that v = e + f + j where
e, f € idem(R).

(2) R is abelian.

Proof (1) = (2). For any ¢? = e € R and 7 € R, we have er(1 —e) € N(R). By
Proposition 4.1(1), er(l —e) € J(R). So 1+ er(l —e) € U(R). Write t = 1+ er(1 —e).
Thent=14+0+er(l—e)=[e+er(l —e)]+ (1 —e)+0 are two UJII expressions of ¢t. By
assumption, er(1 —e) = 0, and thus, er = ere. Similarly, we can deduce that re = ere, and
so er = re. Therefore, R is abelian.

(2) = (1). Let uw € U(R). We may assume that

u=e + f1+ (1)

and
u=ey+ fo+ jo, (2)

where e;, f; € idem(R), j; € J(R) and i = 1, 2. Multiplying the above two equations by 1—ey,
we get u(l—ey) = fi(l—e1)+71(1—e1) and u(l —ey) = ea(1—e1) + fa(l—e1) +ja(1 —€1).
Note that fl(l—el) € U((l—61>R(1—61))mldem((1—€1)R<1—61)) Thus, f1(1—61) = 1—61.
It follows that

0=[fill—e1) +ji(1 —er)] —[e2(1 —e1) + fo(l —e1) + ja (1 — e1)]
=[1—=e)+(1—e)] = [ea(l —e1) + fo(1 —e1) + j2(1 — e1)]
=1 —e)(l—ex—f2) +51(1 —e1) = ja(1l —€1).

So one has (1—e;)(1—ey— f2) € J(R). Since 1 —e; € idem(R), (1—ea— f2)®> = 1—ey— fy and
(1—e1)(1—ey— fo) are a tripotent. A direct check will reveal that (1 —e;)(1 —es — f2) = 0.
Similarly, multiplying equations (1) and (2) by 1 — e, we obtain (1 —e3)(1 —e; — f1) = 0.
Thus, (1 —e;1)fe = (1 — e2) f1, and whence f; — fo = eaf1 — e1f2. One may note that eq, es
and f1, fo are parallel. So we can also get e; — ey = fae; — frea. Therefore, e; + f1 = es + fo.
This shows that j; = jo, and we are done.
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Theorem 4.7 Let R be a ring. Then the followings are equivalent:

(1) Ris a strong UJII-ring and 2 € J(R).

(2) Risa UJ ring.

Proof (1)= (2). Let u € U(R). Then u = j+ e+ f where j € J(R), e, f € idem(R)
and j, e, f all commute. Write g := e+ f —2ef and ¢ := j +2ef. Then g2 = g and ¢ € J(R)
as 2 € J(R). Sou =g+ c and ug = gu. It follows that g =u — c € U(R). Thus g = 1, and
therefore, u = 1 4 ¢, which implies that R is a UJ ring.

(2) = (1). By hypothesis, =1 = 1+ j. So 2 € J(R). It is clear that R is a strong
UJII-ring.

We finish this short paper with following problems:

Problem (1) If R is a strong UJII-ring, is eRe strong UJII for any €?> = e € R?
(2) Characterize when a group ring is strong UJII.
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