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Abstract: In this paper, we introduce the notions of UQ-rings and strong UJII-rings which

generalize the concept of UJ-rings. We provide many properties and structures of these two classes

of rings by using theoretical skills in rings. The conclusions enrich the theory that is related to

elements decomposition.
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1 Introduction

All rings considered are associative with unity. Let R be a ring. The set of all units,
the set of all idempotents and the Jacobson radical of R are denoted by U(R), idem(R)
and J(R), respectively. The symbol Mn(R) stands for the n × n matrix ring over R whose
identity element we write as In.

Rings whose elements are sums of certain special elements have been widely studied
in ring theory. Recall that a ring R is called clean if every element of R is the sum of an
idempotent and a unit. Clean rings were introduced by Nicholson [1] in relation to exchange
rings. A ring R is called strongly clean [2] if every element of R is the sum of an idempotent
and a unit that commutes. According to [3, 4], a ring R is called J-clean if for each a ∈ R,
a = e+ j for some e2 = e ∈ R and j ∈ J(R) (also called a semiboolean ring in [5]). Recently,
Danchev [6] and Kosan et al. [3] called a ring R UJ if every unit of R is the sum of an
idempotent and an element from J(R), or equivalently, U(R) = 1 + J(R). It was shown in
[3] that a ring R is J-clean if and only if R is a clean UJ-ring.

Due to Harte [7], an element a ∈ R is called quasinilpotent if 1− ax ∈ U(R) for every
x ∈ comm(a); the set of all quasinilpotents of R is denoted by Rqnil. Clearly, J(R) ⊆ Rqnil.
Motivated by the above, we say that a unit u of a ring R is UQ if u = 1 + q for some
q ∈ Rqnil; and a ring R is UQ if every unit of R is UQ (equivalently, U(R) = 1 + Rqnil).
Elementary properties of UQ-elements are studied in section 2, and some characterizations
of UQ-rings are provided in section 3. In section 4, we investigate rings for which every unit
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is the sum of two idempotents and an element from the Jacobson radical that commute with
each other.

2 On UQ-elements

Let R be a ring. We say that a unit u of R is UJ if u = 1 + j for some j ∈ J(R).
Clearly, all UJ-elements are UQ. In this section, we study the properties of UQ-elements
(including UJ-elements).

The following result can be obtained by a direct check.
Proposition 2.1 The product of UJ-elements is UJ .
Remark 2.2 The product of UQ-elements needs not to be UQ. For example, let Z2

be the ring of integers modulo 2, and let

u =

(
1 0

1 1

)
, v =

(
1 1

0 1

)
∈ U(M2(Z2)).

Then u, v are clearly UQ. But

uv =

(
1 0

1 1

) (
1 1

0 1

)
=

(
1 1

1 0

)
=

(
1 0

0 1

)
+

(
0 1

1 1

)

is not UQ since
(

0 1

1 1

)
/∈ U(M2(Z2)).

For a ring R, we denote 2× 2 upper triangular matrix ring over R by T2(R).
Proposition 2.3 Let R be a ring, u, v ∈ U(R). Then

(1) u, v are UJ if and only if
(

u x

0 v

)
is UJ in T2(R) for any x ∈ R.

(2) u, v are UQ if and only if, for any x ∈ R,
(

u x

0 v

)
is UQ in T2(R).

Proof (1) Assume that u, v are UJ. Let u = 1 + j1, v = 1 + j2 where j1, j2 ∈ J(R).
Then (

u x

0 v

)
=

(
1 + j1 x

0 1 + j2

)
=

(
j1 x

0 j2

)
+

(
1 0

0 1

)
.

Since
(

j1 x

0 j2

)
∈ J(T2(R)) for any x ∈ R, we get

(
u x

0 v

)
is UJ in T2(R).

For the converse, since
(

u x

0 v

)
is UJ , we have

(
u x

0 v

)
=

(
1 0

0 1

)
+

(
u− 1 x

0 v − 1

)

where u− 1 and v − 1 are in J(R). Hence u, v are UJ .
(2) Suppose that u, v are UQ. Let u = 1 + q1, v = 1 + q2 where q1, q2 ∈ Rqnil. Then(

u x

0 v

)
−

(
1 0

0 1

)
=

(
q1 x

0 q2

)
∈ T2(R). Next we show that

(
q1 x

0 q2

)
∈ (T2(R))qnil. Let

(
a y

0 b

)
∈ T2(R) with

(
a y

0 b

) (
q1 x

0 q2

)
=

(
q1 x

0 q2

) (
a x

0 b

)
. Then aq1 = q1a, bq2 =

q2b. Since q1, q2 ∈ Rqnil, 1 + aq1 ∈ U(R) and 1 + bq2 ∈ U(R). So I2 +
(

aq1 ax + yq2

0 bq2

)
=

(
1 + aq1 ax + yq2

0 1 + bq2

)
∈ U(T2(R)). This proves

(
u x

0 v

)
is UQ in T2(R).
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Conversely, it suffices to prove that both u− 1 and v − 1 are quasinilpotents in R. We

may let x = 0. Since
(

u 0

0 v

)
is UQ in T2(R), we have

(
u− 1 0

0 v − 1

)
∈ (T2(R))qnil. By an

easy computation, one gets u− 1 ∈ Rqnil and v − 1 ∈ Rqnil, as required.
Proposition 2.4 Let R be a ring, and a, b ∈ R.

(1) If ab is UJ , then ba is UJ if and only if a, b ∈ U(R).
(2) If ab is UQ, then ba is UQ if and only if a, b ∈ U(R).
Proof The proof of (2) follows from [8, Theorem 2.11]. We give a new proof of (1).
(1) Suppose that a, b ∈ U(R). As ab is UJ , one has 1 − ab ∈ J(R) = ∩Mi where Mi

is all maximal right ideal of R. If ba is not UJ , then 1 − ba /∈ J(R). So, there exists a
maximal right ideal Mi0 such that 1 − ba /∈ Mi0 . It follows that R = Mi0 + (1 − ba)R =
Mi0 + a−1a(1− ba)R = Mi0 + a−1(1− ab)aR. Since 1− ab ∈ J(R), a−1(1− ab)aR ⊆ J(R).
So Mi0 + J(R) = R, which is a contradiction. Therefore, ba is UJ. The converse is trivial.

Jacobson’s Lemma states that for any a, b ∈ R, 1−ab ∈ U(R) if and only if 1−ba ∈ U(R).
Recall that a ring R is reversible if ab = 0 implies ba = 0 for any a, b ∈ R.

Proposition 2.5 Let R be a ring.
(1) For any a, b ∈ R with 1 − ab is UJ , then 1 − ba is UJ if and only if R/J(R) is

reversible.
(2) 1− ab is UQ if and only if 1− ba is UQ.
Proof By a direct computation, we can prove (1).
For (2), we can deduce from [9, Lemma 2.1]. Here, we give a simple proof for a con-

venience. Note that (2) is equivalent to the comment “ab is quasinilpotent if and only if so
is ba”. Now we assume that ab ∈ Rqnil but ba /∈ Rqnil. Then there exists y ∈ R such that
(ba)y = y(ba) and 1 + bay /∈ U(R). From bay = yba, we obtain ab(ay2b) = (ay2b)ab. Since
ab ∈ Rqnil, 1− ab(ay2b) ∈ U(R). By Jacobson’s Lemma, we have 1− babay2 = 1− (bay)2 ∈
U(R), which implies 1 + bay ∈ U(R), a contradiction. So ba ∈ Rqnil.

3 UQ-rings

This section is devoted to the study of UQ-rings.
Proposition 3.1 Let R be a UQ-ring.
(1) For any q1, q2 ∈ Rqnil, q1 + q2 + q1q2 ∈ Rqnil.
(2) If q1, q2 ∈ Rqnil and q1q2 = q2q1, then q1 + q2 ∈ Rqnil.

Proof (1) Note that (1+q1)(1+q2) ∈ U(R). Since R is a UQ-ring, 1+q1+q2+q1q2 ∈
1 + Rqnil, and so q1 + q2 + q1q2 ∈ Rqnil.

(2) Let q1, q2 ∈ Rqnil and q1q2 = q2q1. Then

1 + q1 + q2 = (1 + q1)(1 + (1 + q1)−1q2) ∈ U(R) = 1 + Rqnil.

So q1 + q2 ∈ Rqnil.
Proposition 3.2 Let R be a UQ-ring. Then:
(1) 2 ∈ J(R).
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(2) eRe is UQ-ring.
Proof (1) Let −1 = 1 + x with x ∈ Rqnil. Then x = −2. Note that x is central.

Hence, 2 ∈ J(R).
(2) Let x ∈ U(eRe). Then there exists y ∈ eRe such that xy = e = yx. So we have

[x + (1− e)][y + (1− e)] = e + 0 + 0 + 1− e = 1 = [y + (1− e)][x + (1− e)], which implies
[x + (1 − e)] ∈ U(R). Since R is a UQ-ring, x + (1 − e) = 1 + q for some q ∈ Rqnil. Then
x− e = q ∈ (Rqnil) ∩ eRe = (eRe)qnil by [10, Lemma 3.5(2)]. So eRe is UQ-ring.

Proposition 3.3 Let R be a UQ-ring. Then Mn(R) is not UQ for any n ≥ 2.

Proof By Proposition 3.2(2), it suffices to prove M2(R) is not UQ. Let A1 =

(
0 1

0 0

)
,

A2 =

(
0 0

1 0

)
. Then A1, A2 ∈ M2(R)qnil. But A1 + A2 + A1A2 =

(
1 1

1 0

)
/∈ M2(R)qnil.

By Proposition 3.1(1), M2(R) is not UQ.
We next determine when a single matrix over a field is UQ. For a matrix A over a filed,

we write tr(A) and detA for the trace and the determinate of A, respectively.
Example 3.4 Let F be a field, U ∈ U(M2(F )). Then U is UQ if and only if U = I2

or there exists an invertible matrix P ∈ M2(F ) such that P−1UP =
(

0 −1

1 2

)
.

Proof By [8, Example 2.2], (M2(F ))qnil equals the set of all nilpotents in M2(F ).
Suppose that U is UQ. By Hamilton-Cayley Theorem, we have U2 = tr(U) · U −

detU · I2. Since U is UQ, we have U − I2 is nilpotent, and so (U − I2)2 = 0. It follows
that tr(U) · U − detU · I2 = 2U − I2, and then (tr(U) − 2)U = (detU − 1)I2. Notice that
0 = det(U − I2) = detU − tr(U) + 1. Thus, detU = tr(U) − 1. Combing this equation
with (tr(U)− 2)U = (detU − 1)I2, we have (tr(U)− 2)U = (trU − 2)I2. If tr(U) 6= 2, then
U = I2 and detU = tr(U) − 1 6= 1, which is a contradiction. So tr(U) = 2, and detU = 1.
Assume that U 6= I2. Then there exists an invertible matrix P ∈ M2(F ) such that P−1UP =(

0 a1

1 a2

)
where a1, a2 ∈ F . Since det(P−1UP ) = detU and tr(P−1UP ) = tr(U), one gets

a1 = −1 and a2 = 2. Therefore, P−1UP =
(

0 −1

1 2

)
. The converse is clear.

Proposition 3.5 Let R be a ring.
(1) R is UJ-ring if and only if J(R) = {x ∈ R : 1 + x ∈ U(R)}.
(2) R is UQ-ring if and only if Rqnil = {q ∈ R : 1 + q ∈ U(R)}.
Proof We only need to prove (1). The proof of (2) is similar to that of (1).
(1) Assume that R is a UJ-ring. Clearly, J(R) ⊆ {x ∈ R : 1 + x ∈ U(R)}. Let x ∈ R

be such that 1+x ∈ U(R). Since R is UJ, 1+x = 1+ j for some j ∈ J(R). So x = j ∈ J(R).
Thus, J(R) ⊇ {x ∈ R : 1 + x ∈ U(R)}, and then J(R) = {x ∈ R : 1 + x ∈ U(R)}.

Conversely, let u ∈ U(R). Then u = 1 + (u− 1). As J(R) = {x : 1 + x ∈ U(R)}, we get
u− 1 ∈ J(R), which implies that u is UJ , and hence R is a UJ-ring.

Recall that a ring R is abelian if every idempotent of R is central.
Theorem 3.6 Let R be a ring. Then the following are equivalent:
(1) R is a regular UQ-ring.
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(2) R is an abelian regular UQ-ring.
(3) R has the identity x2 = x (i.e., R is Boolean).
Proof (1) ⇒ (2). Since R is regular, J(R) = 0 and every nonzero right ideal contains

a nonzero idempotent. Let a ∈ R, if a 6= 0, a2 = 0. By [11, Theorem 2.1], there is an
idempotent e ∈ RaR such that eRe ∼= M2(T ) for some non-trivial ring T. As R is a UQ-ring,
eRe is UQ. So M2(T ) is a UQ-ring, which is a contradiction. So a = 0, and this proves that
R is reduced. As is well known, reduced rings are abelian.

(2) ⇒ (3). Let q ∈ Q(R). Since R is strongly regular, there exist e2 = e and u ∈ U(R)
such that q = eu = ue. So 1 − e = 1 − qu−1 ∈ U(R), and whence e = 0, which implies
q = 0. Thus Q(R) = 0, and so U(R) = 1+Q(R) = 1. Clearly, a strongly regular ring R with
U(R) = 1 is Boolean.

(3) ⇒ (1). Clearly, R is regular. Let u ∈ U(R). Then u2 = u, which implies that u = 1,
and thus, R is a UQ-ring.

Corollary 3.7 Let R be a ring with J(R) = 0. Then the followings are equivalent:
(1) R is an exchange UQ-ring.
(2) R is a clean UQ-ring.
Proof (2) ⇒ (1) is clear.
(1) ⇒ (2). Since R is an exchange ring with J(R) = 0, by Theorem 3.6, every nonzero

right ideal contains a nonzero idempotent. In view of the proof (1) ⇒ (2) of Theorem 3.6,
we have R is abelian. By [1, Propsition 1.8(2)], abelian exchange rings are clean.

Theorem 3.8 Let R be a ring. Then the followings are equivalent:
(1) R is a strongly clean UQ-ring.
(2) For any a ∈ R, there exist e2 = e ∈ R and q ∈ Rqnil such that a = e+q and ae = ea.
Proof (2) ⇒ (1). By (2), a = e + q = (1 − e) + (2e − 1 + q) where e2 = e ∈ R and

q ∈ Rqnil. Note that 2e− 1− q = (2e− 1)− q = (2e− 1)[1− (2e− 1)q] ∈ U(R) as eq = qe.
Hence, R is a strongly clean ring. Further, for any v ∈ U(R), we have v = e + q. Then
e = v−q = v(1−v−1)q ∈ U(R), which yields e = 1 and v = 1+q. Thus R is also a UQ-ring.

(1) ⇒ (2). Let a ∈ R. As R is a strongly clean ring, we have 1 + a = e + u where
e2 = e ∈ R, u ∈ U(R) and ae = ea. Since R is a UQ-ring, u = 1 + q for some q ∈ Rqnil.
Thus, 1 + a = e + u = e + 1 + q, and so a = e + q and ae = ea.

Recall that a ring R is Dedekind finite if ab = 1 implies ba = 1 for any a, b ∈ R.

Theorem 3.9 Every UQ-ring is Dedekind finite.
Proof We first show the following claim:
Claim If a ring R contains a set of matrix units {eij}i,j≤2 such that eii 6= 0 for i = 1, 2,

then R is not a UQ-ring.
Proof of Claim. Let f = e11 + e22 and u = e12 + e21 + e22. Then it is easy to know that f

is an idempotent, u(u − f) = (u − f)u = f and fuf = u. Hence u, u − f ∈ U(fRf). As
(fRf)qnil ∩ U(fRf) = ∅, we obtain u − f /∈ (fRf)qnil, that is to say fRf is not UQ-ring.
By Proposition 3.2(2), R is not a UQ-ring. So the Claim follows.

Let R be a UQ-ring, and assume that R is not Dedekind finite. Let a, b ∈ R be such
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that ab = 1 and e = ba 6= 1. Clearly, e is a nontrivial idempotent. In view of [12, Example
21.26], there exists a set of nonzero matrix units of the form eij = bi(1−e)aj . Then applying
the above Claim, we get that R is not a UQ-ring, a contradiction.

4 Strong UJII-rings

We call a ring R a strong UJII-ring if for each u ∈ U(R), u = j +e+f where j ∈ J(R),
e, f ∈ idem(R) and j, e, f commute with one another. UJ-rings are strong UJII-rings.

Proposition 4.1 Let R be a strong UJII-ring.
(1) Rqnil = J(R).
(2) J(R) =

√
J(R) where

√
J(R) = {x ∈ R | xk ∈ J(R) for some integer k ≥ 1}.

Proof (1) Let b ∈ Rqnil. Then 1 + b ∈ U(R). Write 1 + b = j + e + f where
j ∈ J(R), e, f ∈ idem(R) and b, j, e, f all commute. So (1 − e) − f = j − b. Note that
(1− e)− f = [(1− e)− f ]3. Then (b− j)3 = b− j. It follows that b− b3 = b(1− b2) ∈ J(R).
Since 1− b2 ∈ U(R), we obtain b ∈ J(R). Thus, Rqnil ⊆ J(R), and whence Rqnil = J(R).

(2) It suffices to show that
√

J(R) ⊆ J(R). Let x ∈
√

J(R). Then xk ∈ J(R) with
k ≥ 1 and 1−x ∈ U(R). By hypothesis, 1−x = j +e+f for some j ∈ J(R), e, f ∈ idem(R),
and j, e, f all commute. Clearly, (1−e)−f = j +x. Note that (1−e)−f = ((1−e)−f)2m+1

for any positive integer m. Since xk ∈ J(R) and jx = xj, we obtain

(1− e)− f = ((1− e)− f)2k+1 = (j + x)2k+1 ∈ J(R) + x2k+1 = J(R).

So 1 − [(1 − e) − f ]2k ∈ U(R). It follows from [(1 − e) − f ][1 − ((1 − e) − f)2k] = 0 that
(1− e)− f = 0. Thus 1− e = f , and whence x = −j ∈ J(R). Hence

√
J(R) = J(R).

Corollary 4.2 Let R be a ring. Then Mn(R) is not strong UJII for any n ≥ 2.
Proof Note that any matrix unit Eij is quasinilpotent when i 6= j. However, Eij /∈

J(Mn(R)). By Proposition 4.1(1), Mn(R) is not strong UJII.
Proposition 4.3 If R is a strong UJII-ring, then 6 ∈ J(R).
Proof Write −1 = j + e + f , where j ∈ J(R), e, f ∈ idem(R) and j, e, f all commute.

Then

1+2j+j2 = (−1−j)2 = (e+f)2 = e+f +2ef = (−1−j)+2e(−1−j−e) = −1−j−4e−2ej.

We get 2+4e = −3j− j2−2ej, and then 6e = (2+4e)e = (−3j− j2−2ej)e = −(5e+ je)j ∈
J(R). Similarly, 6f ∈ J(R). Then −6 = 6j + 6e + 6f ∈ J(R), so 6 ∈ J(R).

Clearly, a direct product of rings is strong UJII if and only if each ring is strong UJII.
Corollary 4.4 Let R be a ring with J(R) = 0. Then R is a strong UJII-ring if and

only if R = A⊕B where A,B are strong UJII-rings, and 2 = 0 in A and 3 = 0 in B.
Proof Suppose that R is a strong UJII-ring. Since J(R) = 0, by Proposition 4.3,

6 = 0. By Chinese Remainder Theorem, R ∼= R/2R⊕R/3R. Let A = R/2R, B = R/3R.
So A,B are strong UJII-rings, and 2 = 0 in A, 3 = 0 in B. The other direction is obvious.
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A ring R is 2-UJ [13] if for any u ∈ U(R), u2 = 1 + j for some j ∈ J(R). Recall that
a ring R is called reduced if R contains no nonzero nilpotent elements (equivalently, a2 = 0
implies a = 0 for any a ∈ R).

Proposition 4.5 If R is a strong UJII-ring, then R is 2-UJ and R/J(R) is reduced.
Proof Let u ∈ U(R). Write u = j + e + f where j ∈ J(R), e, f ∈ idem(R) and j, e, f

all commute. Then u− j = e+f ∈ U(R). Set u
′
= u− j = e−f +2f . Then u

′−2f = e−f ,
and we get (u

′ − 2f)3 = u
′3 − 6u

′2
f + 12u

′
f − 8f = u

′3 − 2f + 6(u
′2

f + 2u
′
f) = u

′ − 2f .
By Proposition 4.3, u

′3 − u
′
= 6(u

′2
f + 2u

′
f) ∈ J(R), and thus u

′2 − 1 ∈ J(R). It follows
that u2 − 1 = (u

′2 − 1) + 2u
′
j + j2 ∈ J(R). Hence R is a 2-UJ ring. Next we show that

R/J(R) is reduced. Let x ∈ R with x2 ∈ J(R). It is easy to see that x ∈ Rqnil. In view of
Proposition 4.1(2), we get x ∈ J(R), which implies that R/J(R) is reduced.

Theorem 4.6 Let R be a strong UJII-ring. Then the followings are equivalent:
(1) For any u ∈ U(R), there exists a unique j ∈ J(R) such that u = e + f + j where

e, f ∈ idem(R).
(2) R is abelian.
Proof (1) ⇒ (2). For any e2 = e ∈ R and r ∈ R, we have er(1 − e) ∈ N(R). By

Proposition 4.1(1), er(1 − e) ∈ J(R). So 1 + er(1 − e) ∈ U(R). Write t = 1 + er(1 − e).
Then t = 1 + 0 + er(1− e) = [e + er(1− e)] + (1− e) + 0 are two UJII expressions of t. By
assumption, er(1− e) = 0, and thus, er = ere. Similarly, we can deduce that re = ere, and
so er = re. Therefore, R is abelian.

(2) ⇒ (1). Let u ∈ U(R). We may assume that

u = e1 + f1 + j1 (1)

and
u = e2 + f2 + j2, (2)

where ei, fi ∈ idem(R), ji ∈ J(R) and i = 1, 2. Multiplying the above two equations by 1−e1,

we get u(1− e1) = f1(1− e1)+ j1(1− e1) and u(1− e1) = e2(1− e1)+ f2(1− e1)+ j2(1− e1).
Note that f1(1−e1) ∈ U((1−e1)R(1−e1))∩idem((1−e1)R(1−e1)). Thus, f1(1−e1) = 1−e1.
It follows that

0 = [f1(1− e1) + j1(1− e1)]− [e2(1− e1) + f2(1− e1) + j2(1− e1)]

= [(1− e1) + j1(1− e1)]− [e2(1− e1) + f2(1− e1) + j2(1− e1)]

= (1− e1)(1− e2 − f2) + j1(1− e1)− j2(1− e1).

So one has (1−e1)(1−e2−f2) ∈ J(R). Since 1−e1 ∈ idem(R), (1−e2−f2)3 = 1−e2−f2 and
(1− e1)(1− e2− f2) are a tripotent. A direct check will reveal that (1− e1)(1− e2− f2) = 0.

Similarly, multiplying equations (1) and (2) by 1− e2, we obtain (1− e2)(1− e1 − f1) = 0.

Thus, (1− e1)f2 = (1− e2)f1, and whence f1 − f2 = e2f1 − e1f2. One may note that e1, e2

and f1, f2 are parallel. So we can also get e1− e2 = f2e1−f1e2. Therefore, e1 +f1 = e2 +f2.
This shows that j1 = j2, and we are done.
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Theorem 4.7 Let R be a ring. Then the followings are equivalent:
(1) R is a strong UJII-ring and 2 ∈ J(R).
(2) R is a UJ ring.
Proof (1) ⇒ (2). Let u ∈ U(R). Then u = j + e + f where j ∈ J(R), e, f ∈ idem(R)

and j, e, f all commute. Write g := e + f − 2ef and c := j + 2ef . Then g2 = g and c ∈ J(R)
as 2 ∈ J(R). So u = g + c and ug = gu. It follows that g = u− c ∈ U(R). Thus g = 1, and
therefore, u = 1 + c, which implies that R is a UJ ring.

(2) ⇒ (1). By hypothesis, −1 = 1 + j. So 2 ∈ J(R). It is clear that R is a strong
UJII-ring.

We finish this short paper with following problems:
Problem (1) If R is a strong UJII-ring, is eRe strong UJII for any e2 = e ∈ R?

(2) Characterize when a group ring is strong UJII.
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UQ-环和强UJII-环

崔 建, 沙玲玉

(安徽师范大学数学与统计学院, 安徽 芜湖, 241002)

摘要: 本文引入了UQ-环和UJII-环的概念, 推广了UJ-环. 利用环论中元素的技巧, 研究了UQ-环

和UJII-环的性质和结构, 相关结果丰富了环中关于元素分解的理论.
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