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Abstract: The stability and convergence of two-step backward differentiation formula
(BDF2) with variable time steps still remain incomplete for solving the molecular beam epi-
taxial model without slope selection. In this paper, we first prove the proposed BDF2 scheme
to preserve a modified energy dissipation law under a new adjacent time-step ratio condition:
re = Ti/Tk—1 < 4.8645 — §, where § > 0 is a given arbitrarily small constant. After that, we
introduce the recently developed techniques of the discrete orthogonal convolution (DOC) and dis-
crete complementary convolution (DCC) kernels, and present the robust and sharp second-order
convergence of the BDF2 scheme with the new ratio condition: 7, < 4.8645 — §. The robustness
means the convergence does not need other constrained condition on the time steps except for
r < 4.8645 —§. In addition, our analysis shows that the first-order BDF1 scheme for the start step
is enough to ensure the globally optimal convergence order. This is, the choice of BDF1 scheme for
the start step does not bring the loss of global second-order convergence. Numerical examples are
provided to demonstrate the theoretical analysis.
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1 Introduction

In this paper, we revisit the two-step backward differentiation formula (BDF2) with
variable time-steps for solving the molecular beam epitaxial (MBE) model [6, 9] without
slope selection

uy +eA*u+ V- f(Vu) =0, x€Q,te (0,7,

u(w,O) = UO(w)v HAS Qv

(1.1)
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with the periodic boundary conditions. Here the periodic solution u = wu(x,t) represents
the scaled height function of a thin film in a co-moving frame, the fourth-order term models
surface diffusion with a surface diffusion constant € > 0 and the nonlinear force vector
F(v) :=v/(1+ |v|*) models the well-known Ehrlich-Schwoebel effect.

The MBE model (1.1) has been widely applied in various fields such as physics, biology,
ecology and chemistry [7, 22], and can be derived from the gradient flow with the following

energy functional in the L?(Q) inner product

Eu) —/Q<;|Au|2—;ln(1+wu|2)> dz. (1.2)

The logarithmic term —31In(1 + [Vu|?) in the energy functional (1.2) can be bounded by
zero but unbounded blew, which means the logarithmic term has no relative minima. The
well-posedness of problem (1.1)) is studied by Li and Liu [16] using the perturbation analysis
and Galerkin spectral approximations.

Recently, to investigate the evolution process of thin-film epitaxial growth, various nu-
merical schemes for MBE model (1.1) have been developed including the first and second
order convex splitting schemes [2, 24], the nonlinear Crank-Nicolson type scheme [21], the
stabilized semi-implicit scheme [28] and so on. However, the analysis in those mentioned
literatures was based on uniform time steps.

A feature of phase field models is that the solutions admit multiple time scales, namely,
the dynamics evolves on a fast time scale at the beginning and coarsening evolves slowly on
a time later. In this situation, the coarse-grained and refined time steps are useful to capture
the multi-scale dynamics according to the slow and fast change of the solution itself. Thus,
the BDF2 scheme with variable time steps is a good choice due to its strong stability for
solving stiff or differential-algebraic problems [5) 10, 11 23] 25] 26].

The BDF2 scheme with variable time steps has been widely developed [1}, 13, 5, 13}
20, 29] for the stability and convergence analysis, including linear diffusion problems [20,
29], semilinear parabolic problems [5, 13] and the Cahn-Hilliard (CH) equation [3]. More
specifically for the stability analysis of linear diffusion equations, twenty years ago Becker
[1] presented the bound under the adjacent time-step ratio condition 0 < 7y := 74 /Tr_1 <
(24 /13)/3 ~ 1.868 that

lu™]| < Cexp(CFn)( l|woll + ZTj Hf]H) for n>1,
=1

-2 . . . , .
where I',, := Z:z max{0, 7y — 7k42}. The result is also given in Thomée’s classical book

[25, Lemma 10.6]. As shown in [25] and [3], the magnitudes of I',, can be bounded [25, pp.
175] and unbounded [3, Remark 4.1] by choosing certain step-ratio sequence and vanishing
step sizes. Emmrich [5] extends the Becker’s condition to 0 < r, < 1.91, but still keeps the
undesirable factor exp(CT,,). Recently, Liao and Zhang [20] introduce the technique of the

discrete orthogonal convolution (DOC) kernels, and improve Grigorieff’s stability condition
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[8] nearly forty years ago (one also refers to [4] and [11, Section II1.5] a classical book by
Hairer et al.) from 0 < r, < 1+ V2t00 <1 < 3+ \/ﬁ)/2 ~ 3.561. However, the
second-order convergence in [20] suffers from an extra restriction condition |R,| < Ny < N
with the index set

%p:{k’1+\/§§rk§(3+\/ﬁ)/2}. (1.3)

While the stability and convergence analysis of BDF2 with variable time steps has
brought the great challenge for linear problems, the analysis for nonlinear problems is even
hard and still has a great progress. For instance, Chen et al. [3] replace exp(CT,,) in
Becker’s estimate with a bounded factor exp(Ct,) with 0 < r, < 1.53 for CH equations.
Liao et al. [19] consider MBE model (1.1)) with variable-time-steps BDF2 scheme, and obtain
the second-order convergence under the ratio condition 0 < r; < 3.561, but they still require
an additional condition |R,| < Ny < N.

The aim of this paper is to achieve the robust and sharp second-order error estimate for
the variable time-steps BDF2 scheme under a new ratio condition 0 < rp < rp.x ~ 4.8645.
Under this new ratio condition, we first prove the BDF2 scheme with BDF1 as starting
step to preserve a modified energy dissipation law. After that, we carefully analyze the
positive definiteness of discrete convolution kernels [20], and then introduce the discrete
complementary convolution (DCC) kernels (defined in (4.21)) and the error convolution
structure (ECS) with the BDF2 kernels (see Lemma 5.3), and finally obtain the sharp

second-order convergence given as

n te
llen ]l <2exp(16Q5ta—1/2)(llehll + 2Cutah® + Zﬁf/ [[ezae || At
k=1 th—1

tk t1
+ Qtn max Ty / ||uttt|| dt + 47/ ||utt|| dt) (14)
1<k<n tho1 0

For brevity, we list the adjacent time step ratio condition as

Al: 0<ry <rpax—0 for any small constant 0 < § < rpa.c and 2 < k < N,

where the maximum ratio ry. = % (3/1196712\/177 + €/1196+ 12\/177> + % ~ 4.8645 is
the root of the cubic equation

e = (2Mmax + 1)% (1.5)

The Qs in (1.4) is a constant depending on the choice of adjacent time steps, and has a
upper bound of the form O(1/4), where the parameter ¢ is given in A1 and generally taken
as a given small constant, for example § = 0.1 or other any small constant.

Comparing with recent results in [19], our second-order convergence is sharp and robust
with the new ratio condition A1. The robustness means the convergence does not suffer from
other extra conditions on the time step sizes, like the constrained condition |R,| < Ny < N in

[19], expect for A1. In addition, our analysis shows that the sharp second-order convergence
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is consistent to the first-order BDF1 scheme for the first step solution u!. It is the first time
to make clear that the BDF1 scheme as start step to compute u' is enough to guarantee
the second-order convergence of BDF2 schemes with variable time steps for MBE models.
Numerical examples are provided to demonstrate our theoretical analysis.

The remainder is organized as follows. In section 2, we present the fully discrete scheme
with variable time steps by using the finite difference method in space and BDF2 scheme in
time. The solvability of the BDF2 scheme and the energy stability are presented in section
3. In section 4, we introduce the concepts of DOC and DCC kernels, and also present the
properties of DOC kernels and DCC kernels. In section 5, we give the stability and second-
order convergence analysis. Numerical simulations are carried out in section 6. We end the

paper with a conclusion.

2 Setting

2.1 Numerical scheme

We take the generally variable time grids 0 = ¢y < t; < to < --- < ty = T and
denote the kth time-step size by 7, := tx — tx_1 and the maximum time step size by 7 :=
maxi<k<n Tx- Lhe adjacent time-step ratio is defined by

Tk

e = ——, 2<k<N.
Tk—1

Set u* = u(-, ;) and the difference operator V,u* = u* — u*~! for 1 < k < N. The BDF1
and BDF2 formulas with variable time steps are defined respectively by

1 1+ 2r, 2
Diu" = —V,u", Dyu" = LVTUH - rianu"_l.
Tn To(1+175) To(1+ 1)
Set the discrete convolution kernels bfﬁ) L 8s bél) =1/ and
) _ _L+2rn M Th and o —0forn,j 2 2.6
o - Tn(1+rn)’ 1 Tn(1+’rn) an i orn,j = 4. ( . )

Thus, we may reformulate the BDF1 and BDF2 into a unified discrete convolution form
Dou™ =Y b, Vouk,  n>1. (2.7)
k=1
The spacial domain = (0, L)? considered here is approximated by a uniform grid
h = L/M for a positive integer M, and the discrete domains are denoted by
Q= {xp : (ih,jh),1 <i,j < M — 1}, Q= {z), : (ih,jh),0 <i,j < M}.

The partial derivatives d,w and 0,,w are respectively approximated by the following oper-

ators

Agwij = (Wig1; — wim1,;)/(2h), 67 = (Wiy1,; — 2w;j; +wi_15)/h*.
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The operators Ayw; ; and §;w;; can be defined similarly. Moreover, the discrete gradient

operator and the discrete Laplacian operator are accordingly defined by

Vhwi,j = (Awwi,j, Aywm»)T, Ahwi,j = (592: + 5;)11)17]

For the vector u;; = (u} ;,u7;)", the discrete divergence is defined by
Vi - U = Aajul{j + Ayuij.

By using the finite difference method in space and BDF2 scheme in time, we have the fully

discrete scheme with variable time steps as

Dyuf + eA2ul +Vy, - F(Vyup) =0, for 1<n<N. (2.8)

3 Solvability and Energy Stability

Define the space of L-periodic grid functions as
Vi, = {vn|vy, is L-periodic for x;, € Q,}.
For any v,w € V,, the discrete L? inner product and norm are defined by

(v,w) := h? Z VpWh, HUH2 = (v,v).

Xp €N

The discrete norms HVhUH and HAhUH are defined by

IVholl s= (B2 D [Vawnl?, (Aol = (B2 D | Apvn]*.

xp €Qp ThLEQ

For any v, w € V,,, one has the discrete Green’s formula with periodic boundary conditions
(=Vh - Viyv,w) = (Vyv, Viw). (3.9)
Lemma 3.1 ([21]) For any grid function v € V), and € > 0, we have

1
IVaol* < (=Anv,v) < [[Anvll]lo]l < el Anv]® + [lv]*. (3.10)

3.1 Unique Solvability
Theorem 3.2 If the time-step sizes 7,, < 4¢, the BDF2 time-stepping scheme (2.8])
is convex and uniquely solvable.

The solvability of BDF2 scheme can be established by introducing a discrete energy
functional G on the space Vp:

1 1
Glz] = Qb(()n)Hz — ’U,Z_1H2 + bﬁ”) <V7u”71, z> gHAthQ — §<ln(1 +|Virz|?), 1).
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The detailed proof for the solvability of BDF2 scheme is given in [19] and the key technique
is referred to [27] .

3.2 Discrete Energy Dissipation Law

We now consider the energy stability of BDF2 scheme (2.8)). To do so, we first present
the positive definiteness of discrete convolution kernels bi@ . in the following lemma.

Lemma 3.2 Assume the time-step ratio r; satisfies A1 . For any real sequence
{wy}7_;, it holds for €, = \d/ﬁ(f/\/ﬁ—l— 9— Y/ VITT -9 )/6 ~ 0.4534 and for any small
constant 0 < 0 < rmax (see A1) that

2 2 2

Tk+1 Wi, Tk Wi _1 dwy
2 b - . k>2, (311
Wk Z k= Jw] T (T4 7re) €&t (L+7p) €miy + (1 + Tmax)2€.Tk - ( )

(k)
2;% z;b Jw; > Z . >0, forn>1. (3.12)
— p
Proof Denote the multi-variable functions
2¢ + dex — €222 Yy
T,Y,€) = - , forx,y,e>0.
Sy, ) (1 +2) 1+y) y

It follows from [29, Lemma 2.1] and the proof of [29, Lemma 2.2] that

2 w2 w2
9 b*) Thtt Wy Tk k-1 O—= k>2, (3.13
W Z k=i = 1 +7'k+1) €xTk (1 +7“k) €xTk—1 —|—S(m,rk+1,e )tfﬂlc7 22 )

and
2¢, + de,ry, — €2r S _ Tmax
147 T 1+ e
Hence, for any 0 < r, < 7.0 — 0, one has

, VO <rr < rmax

Tmax Tmax — 5 5 6

= > k>2
o 1 + Tmax 1 + Tmax — (5 (1 + Tmax — 6)(1 + Tmax) o (1 + rmax)27 B

8(7%7 Tk+1, 6*)

where the monotony of the function h(x) = z/(1 + x) is used. Inserting above inequality to

(3.13), one immediately has the inequality (3.11). Summing the inequality (3.11) from 1 to

n, one has
22 Zb( ) w0, > sz L Ten whr» wi zn: dwy
- V(4 re) 6 (T47)en (1 4+ 7max) €Tk

> (2. — Pmax — O w? N Z Sw?
Lt rmax =0/ €11 4= (1 + rmax) 6T
2 n 2
T w ow
> (92_ max Y1 + k
- < (1 + Tmux)€*> T1 ; (1 + TmaX) €xTk
n 2
> owj, n>1

(1 + Tmax)Ze*Tk ’
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The proof is complete.

We now consider the energy stability of BDF2 scheme (2.8) by defining the modified
discrete energy

Tral € 1
E'i=— " i ™|+ S| Apu]]? — = (n(1 + |Vau]?), 1 >1 3.14
ST S IV P S|P = (1 [Va),2), n2 1 (314)

and the initial energy E° := £[|A,u®||? — 1(In(1 + [V,u’]?), 1).

To establish the energy dissipation law, we need the time-step ratio r; to hold A1 and

the time step size 7, to satisfy

Tmax 6

< 4demin{2 — : :
™ < demin{ (1 4 Pmax)€x (1+7“max)26*}

(3.15)

Theorem 3.2 Assume the time-step ratio condition A1l holds with the time-step
condition (3.15), then the discrete energy E,, defined in (3.14) satisfies

Em S En—l S EO, n Z 1.
Proof Taking the inner product on both sides of (2.8) with V., u", one has
(Dyu™, V., u™) + e(AZu™, V,u™y + (V) - F(Vipu™),Vu™) =0, for 1<n<N. (3.16)

Due to the periodic boundary conditions, the summation by parts argument holds, which

implies
5
e(ATu", V,u™) = e(Apu™, AV, u™) = §(|\Ahu"\|2 —[[Apu™ 1+ ALV ")), (3.17)
By using the inequality ¥ < In(1+z) with = = (V,[V,4u"[*) /(1 + [Vau"""[?), one has

1+ |th”\2

v V n|2
[Viu| < In(
1+ [Vyur—1)?

1+ |th”|2 -

),

which together with the discrete Green’s formula (3.9) and the inequality (3.10) with e = ¢
imply that

(Vi - f(Vpu"),Vou") = =(f(Viu"), Vi Vou™)

VT|th”|2 |VhVTu"|2
:7<—712’ 1) - <—n2’ 1)
2(1 + [Vyun|?) 2(1 + [Vpun|?)
1 1 1
> — 5<1n(1 + | Vyu™?), 1) + 5<1n(1 + | Vpu" 1 ?), 1) — 5||v,szu"||2
1 1 _ € n 1 n
> — 5<1n(1 + | Vau™ ), 1) + 5<1n(1 + | Vau ), 1) — §||AhVTu ? — g\|v7u . (3.18)
For n > 2, it follows from Lemma 3.2 and the time-step condition (3.15) that
Tn+1 ”vTun”2 Tn ||v7'un71||2 6HVTU"||2
Dou™, V., u™) > _
(Dau”, Vru) 2 21+ The1)  €4Tn 2(1+7,)  €Tn_1 + 2(1 + Tmax)2€:Tn
Tn V., um|? T Va2 1

T 214 rpr1)  €Ta 21 4+7r,) €T 8¢
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Hence, by inserting (3.17)-(3.19) into (3.16), we have
E"<E"' n>2

For n =1, it follows from the condition A1 that

T2 < Tmax <9
(147r)e. = (14 Tmax)es —

which together with the time step condition (3.15) imply that

1 To
(Dyu',V,u') = 7_—1||V7u1||2 > WHV ~ut])? + EHVTU1||2~

Thus, by inserting the above inequality and (3.17)-(3.18)) into (3.16), we have
E' < E°.
The proof is complete.

4 The DOC and DCC Kernels and Their Properties

4.1 The DCC Kernels and DOC Kernels

To obtain stability analysis of BDF2 scheme (2.8)), we introduce the discrete comple-
mentary convolution (DCC) kernels p j such that

i:pﬁ,")jﬂ ul = an sz] Voul = ZV ulZp(") b9 ==, Vn > 1. (4.20)
=1

As the identity (4.20) holds for all n > 1, it only requires

Zp(n) b =1, ViI<k<n, 1<n<N. (4'21)

n—j j—k

The idea of DCC kernels has been successfully applied to the stability analysis for subdiffu-
sion problems [14, [15, [17] and reaction-diffusion problem [29].

We now introduce the discrete orthogonal convolution (DOC) kernels by
Z@f[”]bﬁj)k =6, foralll<k<n, (4.22)

where 4,5, is the Kronecker delta symbol with d,, = 1 if n = k and §,,, = 0 if n # k. From
(4.22), it holds

k k k
S0 Do = vl Y0 b, = uF —ul 1<k <N. (4.23)
li y—

j=1
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The DCC and DOC kernels have a close connection. In fact, summing from 1 to n with k

on both sides of (4.23)), and then exchanging the order of summation, we have

Z Dyu’ Z 0 = u" — . (4.24)

One can compare the identity (4.24) with (4.20) to find that (also see [29])
k .
W=, 1<j<n). (4.25)
—

From (4.25), the direct calculation leads to another relation between DOC and DCC kernels

o =pi, o = pt —p™ 1<k <n-1). (4.26)

4.2 Some Previous Properties

To establish the stability and error estimate, here we streamline the useful results in
[20, 29].

Lemma 4.1 [20, Lemma 2.2] Assume the BDF2 kernels bfl"_)k defined in (2.6) are
positive definite. Then the DOC kernels 97(1"_),C defined in (4.22) are also positive definite.
it holds that

- n
This is, for any real sequence {w;}7_;,

n k
ZwkZH,(ckjjwj >0, Vn>1.
k=1  j=1

Lemma 4.2 [20, Corollary 2.1] The DOC kernels Gr(zi)j have the following properties:

921)]» >0, forany 1<j<n,1<n<N, (4.27)
Zﬁfﬁ)j = Tn, forn > 1. (4.28)
j=1

Proposition 4.1 |29, Proposition 2.2] Let 7 be the maximum time step size and
r, be any given positive constant. If the time step ratio satisfies 0 < r; < r,, then the DCC
kernels p;"_) . defined in (4.21) satisfy

n k
m Tl Er) I 4.29
pn] Z 1+2TJ H 1+27"7;’ _j_n) ( )
k=j i=j+1
n k r
) _ i 4.30
pn—l o Tk?H2 1+2T‘l7 ( ° )

> P =tn, (4.31)
j=1

n k—j n
(n)
pn—j S ;Tk <1 +27’*> S £ Qk—j S 27—) (432)
=J =J
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where Hfsz =1 for j > k is defined.

4.3 Some New Properties of DOC Kernels

The BDF2 kernels bgl”_)  and DOC kernels Gfln_)k defined in (2.6) and (4.22) respectively

can be represented as the following matrix forms [1§]

bél) 9(()1)
D p@ 92 9@
By = ! 'O . and O, := ! 0
bgn) b(()n) . 95:21 95") 9(()71) o

It follows from the definition of DOC kernels 97(1”_)k in (4.22)) that
0, =By (4.33)
Assume A1 holds, then Lemmas 3.2 and 4.1 imply the real symmetric matrices
B:=B,+BI' and ©:=0,+07

are positive definite.
Define the diagonal matrix A, := diag(\/71, -+ ,/7) and

i
i i 5
BQ = ATBQAT = . . (434)
with
~ ~ 1+ 27"k 7 (k) 7“3/2
V=1, W= P =k o< k<.
0 ) 0 T+ry 1 1+ SRASN
Moreover, we define the real symmetric matrix B := By + BzT , which has the following
properties.

Lemma 4.3 Assume A1 holds, the minimum eigenvalue of B can be bounded by

Amin(BE) 2 mlil R(TkaTk-i-l) Z 057

1<k
where
- 24+ 4x —a3/2 /2
- - < maxs 4.
R(z,y) T2 — O<z,y<r (4.35)
Cs = min{R(O, Tmax — 0), R(Tmax — 0, Tmax — 0) }+ (4.36)

Thus B is positive definite and there exists a non-singular upper triangular matrix L such
that

B=A,BA,=LTL or B=(LA;HTLAL



No. 5 Sharp error estimate of BDF2 scheme with variable time steps for - - .- - 387

For brevity, we leave the detailed proof in the Appendix.
Remark 1 It follows from the A1 and the monotony of R(z,y) for £ > 1,y > 0 that

3/2
= 5 T'max
R(0,7max —90) > R(0,7pax) =2 — ———— >0
(0, s = 8) 2 R(O, ) = 2 = 777
5 5 3/2 _ 5)3/2
R(Tmax - 67 Tmax — 5) 2 R(Tma)n Tmax — 6) lmax <TmaX )

- 1+rmax a 1+7'max*5
\ Tmax(rmax + TIQnax - 6Tmax) — VTmax — 5(Tmax + r?nax - 5 - 6Tmax)
(1 + Tmax)(l + Tmax — 6)

V rmax 5

Z Tt o) for 0<6 < rmax — 1,

which implies the positive constant Cs5 depends on §. Moreover, if 0 < § < ry.c — 4, one has
R(Ov Tmax — 6) Z R(Trnax - 67 Tmax — 5)
Then, for any 0 < § < rpa — 4, the constant Cs can be estimated by

~ Vv T'max
= max 57 max ) > ———— .
Cs = R(r r ) 0+ rom)?

Thus, the lower bound of Cjs is O(J) for small 4.
The next Lemma gives an upper bound of the maximum singular value of Bs.

Lemma 4.4 If A1 holds, then the maximum eigenvalue of the real symmetric matrix
BT B, can be bounded by

~ o~ ~ 47,3
T max
Amax(BQ BQ) S R(Tmax - 67 Tmax — 5) S (1 + 'rmax)Q < 147

where By is defined by (4.34) and R(z,y) is defined by

(14 22)(1 + 22 4+ 23/2)  o3/2(1 + 2y +4*/2)
(1+2)2 (1+y)?

Again for brevity, we leave the detailed proof in the Appendix.

R($,y) =

To deal with the nonlinear term Vj, - f(V,u™), we now introduce the following matrices
ﬁ::B@IQ, é::®®12, ézI:BQ(@IQ, _EZ:B®IQ, KT:AT®IQ, i:L®IQ
One can use Lemma 4.3| to derive that

IZ7 B = Ama(ETD) ™) = Ak (E7L) @ 1) = Ak, (B).

For convenience, we define the vector norm || - [|2 by [Jull2 = VuTu and the associated
matrix norm by || A2 := \/Amax(ATA). We also define
T —
AmaX(BZ BZ)

o o 21T —-114
Qs = max | Byl | L™7l> = max A2

min

= 4.37
B) (4.37)



388 Journal of Mathematics Vol. 42

Note that under the codition A1, Lemmas 4.3l and 4.4/ imply the positive constant Qs < %
where Cj is defined by (4.36). By taking § = 1.303, one can obtain that Qs < 39, which is
consistent with the one in [19].

We now present several important Lemmas, which plays a key role in dealing with the
nonlinear term Vj, - f(V,u™), and leave the proofs in the Appendix for brevity due to their
similarity with [19].

Lemma 4.5 Assume Al holds. For the positive definite matrix e = ﬁ;lﬁ(ﬁgl)T,
and any vector sequences {v*}7_,, {wF}?_  v* w* € R? it holds

1 ~
ZZGW Tw’ < 2vT®v + 5 —w' B 'w, Ve>0, (4.38)
k=1 j=1 €
where v = ((’Ul)Ta T ('Un)T)T and w = ((wl)Ta T (wn)T)T.

Lemma 4.6 (12, Lemma 3.5]) For any v, w € R?, there exists a symmetric matrix
Qy € R?*? such that

fv) = fw) = Q¢(v —w).
The eigenvalues Aq, Ay of Q¢ satisfy —é < A1, A2 < 1. Consequently, it holds that
|f(v) = f(w)] < [v—wl (4.39)

We now give another important lemma as follows.

Lemma 4.7 Assume A1 holds, then for any vector sequence v* = (vf, v5)T wk =

(wh wh)T 2% = (2%, 25)T with 1 < k <n and any € > 0, it holds that
n k n k Q
. . . . i . s .
S e 4w 100] < 300, 7+ S,
k=1 j=1 k=1 j=1
where the positive constant Qs is defined in (4.37). Moreover,

n k n k
SN O ETI + 2) — F)] <20/ Q5 0D 0 (27) 2

k=1 j=1 k=1 j=1

5 The Stability and Convergence Analysis for BDF2 Scheme

In this section, we consider the stability and convergence analysis for the BDF2 scheme
(2.8)), which requires a discrete Gronwall inequality given as follows.

Lemma 5.1 Assume that A > 0 and the sequences {v;}}, and {n;})_, are nonnega-
tive. If

Up, S)‘ZTJW—'—Z%’ for 1<n<N\,
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then it holds that

v, < exp (/\tn_l) an, for 1<n<N.
§=0

5.1 L?-norm Stability

We now consider the L?-norm stability analysis of BDF2 scheme (2.8) with variable
time steps. It is noted that the inequality (3.10) plays an important role in [21] to obtain
the L2-norm error estimate on uniform time steps. But the method developed in [21] fails
to prove the L?-norm estimate if the DOC technique is used in this paper. In other words,
the inequality (3.10) can not be used to have L?-norm estimate since the DOC technique
will lead to the cross inner product (¢*, ¢/) for different time levels. Alternatively, we here
develop a new inequality to fill this gap as follows.

Lemma 5.2 Let the matrix 3 := B2 + 8% be positive definite with B; := (85 ;),1 <
Jk <n,Br; =0if j > k. Assume 5 ; > 0 for any 1 < k,j < n, then it holds

n k n k
SN B (Vadh, Vadk) <D0 Bri(—Audl, o). (5.40)

k=1 j=1 k=1 j=1

Proof For notation convenience, we denote the operator L, := V-V, — Ay, It follows
from the positive definiteness of the matrix 8 and the standard Cholesky decomposition that
there exists a non-singular upper triangular matrix A such that 3 = A7 A. Denote the matrix
A= (ay, -+ ,a,), where a; = (a1, - ,a,;)7,1 <l <mnand ay =0ifl > k. It is easy
to verify that 8 ; = ala; = >, aipar; k # J, Ber = afar/2 =3 af /2,1 <k < n.
The discrete Green’s formula and the identity (L,v, w) = (v, Lpw) yield

n n n n k— n
5 Z Ly Zal,k(bZ)vZal,k(bl;) = %Z(Z ay, k)<£h¢h7¢h Z Z@l kA1) £h¢h7¢h>
k=1 k=1 k=1 I=1 k=2 j=1 I=1
n k-1
= Zﬁk HLndh, 01+ > Brg(Lndk, o)
k=2 j=1
=> Zﬂk,jwhqs’z, éh)-
k=1 j=1

It follows from the discrete Green’s formula and the inequality (3.10) that (L,v,v) > 0 for
any v € Vp, which implies

n k

Bri (Lndh, 07,) >

k=1 j=1

The proof is complete.

We now consider the L?-norm stability of BDF2 with variable time steps.
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Theorem 5.1 Assume A1 holds and the maximum time step 7 < 16Q§/6. Then the
BDF2 scheme (2.8) is stable in L?-norm, and has the estimate

i — uhll < 2exp(16Qstn—1/e)lli — upll, (5.41)

where u} and 4} are the solutions to (2.8) with the initial values u$ and 49, respectively.
Proof Let ¢ := 4} —u} (0 <n < N) be the solution perturbation for x;, € Q. The
BDF?2 scheme (2.8) implies that ¢} solves

Dogpl + eA2] + Vi, - (F(Vaitd) — £(Vyui)) = 0.

Multiplying both sides of the above identity by 9,2’? ; and summing j from 1 to k, one can
use the identity (4.23) to obtain

V.of + 529““) ARl + Zek Vi (F(Vnit) = F(Vaug)) = 0.

j=1
Taking the inner product of the above identity with 2¢* and summing k from 1 to n, one
has

gl — ||¢°||2+28229 (AL, Ang)

k=1 j=1
< 2220““) (F (Vi) = F(Vnup), Vagh), (5.42)
k=1 j=1

where the discrete Green’s formula (3.9) and 2a? — 2ab > a® — b? are used. We now deal
with the rightmost term of (5.42). In view of Vhfﬂl = thfl + Vmbfl, one can apply Lemmas
5.2 and 4.7/ to obtain

2220(’“ i) = (V). Vidy)

k=1 j=1
n k
<4V ) Y 02 (Vadh, Vien)
k=1 j=1
n k '
<405 ) D 0 (—Aug), oh) (5.43)
k=1 j=1
n k SQ
D SN PR o) PN (5.44)
k=1 j=1 k=1 j=1
The last inequality holds by taking € = £/(24/Qs) in Lemma [4.7 since Lemma 4.7 still holds
for the linear function f(v) := v. Inserting above inequality to (5.42), one can use the

discrete Cauchy-Schwartz inequality to obtain

2 n
16217 — 1631 < 8Q5229<’“> ¢h,¢h_—5229 NPT

k=1 j=1 k=1 j=1
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Select a ng such that ||¢°]| = maxo<p<n ||#5]]. Then for the time level ng, we have

6712 < g2l +*||¢z°\|z||¢h||zek y
which together with Lemma 4.2 imply that
lohll < lopll < lldhll + 7||Z7—k|‘¢h | < llohll + 7|| ZTkIIfﬁhll

With the help of the maximum time step 7 < 1693 /e, we arrive at

1602 & .
lenlll < 2ll¢nll + — I;Tzclqﬁhl

Thus, the proof is completed by using the Gronwall inequality in Lemma 5.1.
5.2 Consistency and Convergence

Let e} := u(t,,xn) —u} (n > 0) be the error between the numerical solution u} and

exact solution u(xy,t,) for &), € Q. Then ey solves the error function
Doel +eAlel + V- (F(Vilel +u))) — F(Viu))) =& +nl, for 1<j<N, (545)

where 1) := Dyu(xp,t;) — ui(xh,t;) (1 < j < N) denotes the temporal truncation error and
§,§ := C,h? denotes the spatial truncation error. Here C, is a constant depending on the
exact solution u, but independent of the mesh sizes h and 7;.

The following Lemma implies that the temporal truncation error nfL can be divided into
a convolution part and a rest part, which plays a key role in simplifying the complicate
calculation for the estimate of convergence order when using the techniques of DOC and
DCC kernels.

Lemma 5.3 [29, Lemma 3.2]) Denote the temporal truncation error by 1) := Dau(t;)—
w(t;) (1 <j < N) and set

1"
G' .= —/ (t —ti_1)’updt, 1<I1<N,
2 ti—1
j L b ;
R’ = _ibl Tj—1 (2(t - tj—l) + Tj_l)um dt, 2 S ] S n, (546)
tj—1

1 MM 1 [
R' = — Py dt — — tug dt.
27’1 0 71 Jo

Then it holds that
J
=3 b0G R, 1<j<n. (5.47)

=1
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Theorem 5.2 Let u(t, ) and u}’ be the solutions to problem (1.1) and discrete problem
(2.8)), respectively. Assume A1 holds and the maximum time step 7 < £/16Q;, then the

discrete solution u}' of BDF2 scheme (2.8) is convergent in L?-norm in the sense that

n th
lenll <2exp(16Q3ta—1/e)(lepll + 2Cutnh* + Zﬂ?/ [[are ]| it

tk t1
+2tn max Tk/ ||uttt|| dt+4’7’/ ||Utt||dt>
1<k<n tho1 0

Proof Multiplying both sides of (5.45) by H,E’i) i and summing j from 1 to k, then

taking the inner product with e¥ on both sides and summing & from 1 to n, one has

llen 1] |€h||2+25229 (Ane),, Aner)

k=1 j=1
n k
< 22 Ze“” (F(Vnle) +up) = F(Vauh), Vief) +2 D01 (& + ) ef)
k=1 j=1 k=1 j=1
(5.48)
=10 + I+ I3,

where the discrete Green’s formula (3.9) and 2a® — 2ab > a® — b are used. The first term I;
has been estimated by (5.44]). One can use Lemma 4.2 and the discrete Cauchy—Schwartz

inequality to obtain
I < 2t max [[&llleh] < 2Cutah® max {les]. (5.49)

We now consider I3. By using Lemma 5.3 and exchanging the order of summation, we have

1 n k
Iy = 22 Za““) ijbg.jjlc;l,e,‘j) +2> ) 08 R ef)

k=1 j=1 =1 k=1 j=1
n k
k) k) i
B DO ID ST TR ui) o LRy
k=1 I=1 j=l k=1 j=1

n k
22 el —|—QZ Z R] ery,
k=1 k=1 j=1
<2Z|rak||||eh||+2ZZ@<’?j||Rj|r|\e’;||.

k=1 j=1

Inserting (5.44), (5.49) and above inequality into (5.48), one has

n Q k) g
llenll® <[lepll® + —==2 ZZQ( A

k=1 j=1

+2C, t,h* max ||eh|\+2Z||G’<||Heh||+2229k RzdliEAR
k=1

k=1 j=1
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Choose ng such that [[e}°|| = maxi<x<, ||€}||. Then, we have
lege 12 <lledlllege ] + =2 °||Zzek llenl
k=1 j=1
n n n k j
+2Cutnh? [l | + 2]l Z IG*] + 2] gl 229( IR

k=1 j=1

Thus, by exchanging the order of summation, we arrive at

802 &
lenll < llep°ll < llepll + ?‘5 Zmlle’éll

+20,t hz—I—QZHG’“H—l-QZp(k) IR’||.
k=1 Jj=1

One may use Lemma 4.2 and the assumption of the maximum time step 7 < £/16Q; to

obtain

n—1
. 16Q2
lexll < 2flep ]| + ——2 Z 7|l e |

+4C, t,h? +4Z [teddl +4Zp(k) IR,

k=1 Jj=1

which together with Lemma 4.2 and the discrete Gronwall inequality in Lemma 5.1 derives

e < 2exp(16Q2 /2 (el + 20t 423 14 + 23 p B, (5.50)

k=1 k=1

Note that G!, R/ defined in Lemma 5.3 satisfy

t
G! <T—l2 l d
|G| < 5 (|wsee || dt,

ti—1

t.
. ri J
R < s——(27; + T‘—l)/ l|weee|| dt,
242r; 7 .

j—1

tj
< Tj/ luee|| dt, 2 < j <.
ti—1

J—

Then it follows from Proposition 4.1] that

ZM |RF|| = ZW IRE| +p, (16l

t; t1
<Zp5f>m / et e + / o] dt
1 0

.7

tr t1
S tn max Tk/ HumH dt + 27'/ ||utt|| dt
1<k<n tho1 0
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Thus, we derive that

n th
leqll <2exp(16Q3ta—1/2) (b +2Cutah? + 3 72 / o
k=1 th—1

Tk t1
+ 2t,, max Ty / llwtee|| At + 47‘/ [luse]| dt). (5.51)
1<k<n [, 0

The proof is complete.

Remark 2  Recently, [19] gives a result for the error estimate of the molecular beam

epitaxial model (1.1) in form of
lep ]l <Cuexp(16Mt,_1/e)(epll + taT + tu (T2 + h?)). (5.52)

with 0 < 7, < 3.561. One can see that the right-hand-side second term is the first-order
convergence for large t,,. To obtain the second-order convergence in [19], it requires another
restriction condition |9R,| < Ny < N, where the index set |R,| defined by (1.3). Our result
in Theorem 5.2 shows the robust second-order (optimal) convergence remains valid to a new
ratio condition 0 < 1y, < Tpax & 4.8645 — §, where § > 0 is a arbitrarily small constant. The
robustness means that the convergence does not need other conditions on the time step like
the constrained condition |R,| < Ny < N.

6 Numerical Experiments

We now present numerical example to investigate the convergence order of BDF2 with
variable time steps, which is tested on random time meshes. To do so, we set the computa-
tional domain Q = (0,S)? with S a positive constant, the final time 7' = 1, and consider the

following exterior-forced MBE model
u; = —eA’u — V- f(Vu) + g(z, t). (6.53)

By choosing a suitable function g, the exact solution to (6.53)) is constructed as follows

2 21y

u = cos(t) sin( 5 )sin(T).

The random time meshes are given by 7, = Tx/C, where C' = z]kvzl Xt With xp
randomly drawn from the uniform distribution on (0,1) and the number of spatial meshes
is chosen by M = N. In each run, the error e(N) = ||u(T) — u”|| and the numerical rate of
convergence at the final time 7' = 1 are recorded in Tables 1l and 2, in which the maximum
time step 7 and maximum adjacent time step ratio are also listed, where the convergence
rate is calculated by

Order = log,(e(N)/e(2N)).
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Table 1  Numerical accuracy on random time mesh for S =27, =1
N e(N) Order T max 7

64  1.9293e-03 - 0.0280807  48.0321
128 4.8909e-04 1.980  0.0152735 98.0471
256  1.2007e-04 2.026  0.00745376 1584.01
012  3.0633e-05 1.971 0.00383547 430.559

Table 2 Numerical accuracy on random time mesh for S = 2,e =4
N e(N) Order T max 7y

64 8.6542e-04 - 0.0300289  191.022
128  2.1622¢-04 2.001  0.0147087  418.406
256 5.4044e-05 2.000 0.0078714  395.573
512  1.3506e-05 2.001 0.00374001 604.021

As shown in Tables 1l and 2, even though the time step is randomly chosen beyond the
constrained condition A1, the BDF2 scheme with variable time steps is robustly stable and
convergent in the second order. In addition for the simulations, the first-step BDF1 does

not bring the loss of accuracy and is consistent with our theoretical analysis.

7 Conclusion

The BDF2 scheme with variable time steps is considered to solve the MBE model
without slope selection. Our proposed BDF2 scheme with BDF1 for the first step is proved to
preserve the discrete energy dissipation law under a new adjacent time-step ratio condition:
Ty = Tk/Th—1 < 4.8645 — §, where § > 0 is a arbitrarily small constant. By using the
techniques of DOC and DCC kernels, we achieve the robust and sharp second-order error
estimate under the condition A1l.

Our second-order convergence analysis shows two folds: (i) the variable time steps
under condition A1l will not influence on the convergence order; (ii) the BDF1 scheme
for the first step is consistent to the globally optimal convergence order. This conclusion
removes the doubt of the classical choice of the first level solution with first-order consistent
BDF1 scheme for the sharp second-order convergence. Numerical results demonstrate the

theoretical analysis.
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Appendix

The Proof of Lemma 4.3:

By using the inequality 2ab < a? + b%, one has

k
2wy, Z l;,(c]?jwj = 258“11},% + 25§k)wkwk_1 > (QI;ék) + ng))wi + B§k)w§_1
j=1

2+4rk—r2/2 9 7"2/2 9
=0y W oo Wk
(1 +7‘k) (1 +T;€>

_2+47’k—r2/2w2_ 7'2/2 w2
(1—|—’I“k) k (1+Tk) k=1
3/2 3/2
Tk+1 2 Tk/

(1+ Tk+1)wk a (1+ rk)wiﬂ + R<Tkark+1)w}%, k> 2.

Note that 9, R(z,y) = 1(1+2)"2(1 — /z)(z + v/ +4). Hence, R(,y) is increasing in (0, 1)
and decreasing in (1, 7max) With respect to . And it is easy to verify that R(z,y) is decreasing
in (0, max) with respect to y. Thus, R(z,v) attains its minimum at (z,%) = (0, max — 0) Or

<$7 y) = (Tmaxa Tmax — 5), namely,

min R(x, y) = min{R(O, Tmax — 0), R(rmax — 0, "max — 0)} = Cs > 0.

0<z,y<rmax—9
Due to the symmetry of matrix B, for any v € R, we have
9 n k
— i 7 (k) P
= min —— Zwk Zbk_jwj > in R(rg,m341) 2 Cs,

vern vTo verr vl
k=1 j=1

which implies that the real symmetric matrix B is positive definite. The last claim holds by
applying the standard Cholesky decomposition to B. The proof is complete.

The proof of Lemma 4.4:
The direct calculation from the definition of B, (4.34) produces that
dél) d(12)

d§2) déz) d§3)

n—1 n—1 n
dy dg( ) dgz
dln) d(()n

nXxn
where the elements d{" and d'* are given by (set r; = 0)
1+2r, 142 3
a) = (R P = (e L i<k <n-]
147, 147 (14 rgpgq1)?
3/2
dgk):_w 1<k<n.

(1 + ’I“k)2
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Using the Gerschgorin circle theorem, one can obtain the upper bound of the maximum

eigenvalue of matrix BY B, as

/\maX(BgBQ) < max {d(()k) - dgk) - dngrl)a d(()n) - dgn)}

1<k<n—1
= max {R(r, mie), R(ra, 0)} < maxx R(re, misn)- (7.54)

It is easy to verify that R(m, y) is increasing with respect to x and y. Hence, by the time-step
ratio condition A1 , we have

)\max (BgBQ) < max R(Tk, Tk-&-l) S R(Tmax - 57 Tmax — 6)

T 1<k<n
: A ax
< R(Tmax;rmax) = m ~ 13.3880 < 14.
Tmax

The proof is complete
The Proof of Lemma 4.5:

The first claim holds by a simple calculation that

~

B;'B(B;")" = By (BI + B,)(B; )" = (B; )" + (B;') = ©.

We now prove the second claim. It follows from Lemma /4.3 that

B = (LAZYTLA!

T 9

together with the Young’s inequality, one has

n k
>0, W’ = w v = w(LA;') LA '©v
k=1 j=1

A~ o~ A~ o~

A 1
gvT(LA;162T)TLA;1®§v + 5w (LA LA ) Tw
€

IN

€ TH 1 15
—v O —w" B .
2v 'v—|—2€’w w

IN

The proof is complete.
The Proof of Lemma 4.6:

Consider the gradient matrix of f with respect to v = (v, v5), namely

1 1—vf 3 -2
VF(v) ( vy + U3 VU2 > '

1+ o2 —2v1vy 1 —v? + 032

By calculating the eigenvalues of V f, one has

1 — |v]? 1
[v] pa(v) =

pi(v) = ( S TP

1+ vf?)?’
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with —% < p1(v) <1 and 0 < pe(v) < 1. The application of Taylor expansion yields

fv) = f(w) —l—/o Vv + (1 - 0)w)df(v —w).

b
From the symmetry of V f(v), there exists an orthogonal matrix ( o de ) such that
Co dg

M [ as b 11(&o) ag
()= L) () ) (20 )

where & = 0v + (1 — f)w, and A, \y are the eigenvalues of matrix fol Vf(&)do, and
w1(€a), 12(&p) are the eigenvalues of matrix Vf(&y). Without loss of generality, here we
assume p1(&y) < p2(&p). It is easy to verify

1 1
AL = / (agur(€e) + bjua(€p))dl, Ao = / (chu1(&o) + dgp2(&e)) d6.
0 0

The orthogonality of matrix < o v ) yields af + b5 = 1,¢§ + dj = 1, which implies
Co do

11(€0) < A1, A2 < p1a(&p). Hence, we have Q¢ = fol Vf(Ov+(1—60)w)dh and its eigenvalues
A1, Ao satisfy —% < Ap, Ap < 1, which implies [|Qf]lz < 1. By using the property of matrix
norm that |Az| < ||A||2]x|, one has

[f(v) = f(w)| < [VF(0v+ (1 = Ow)2|]v — w]| < |v — w).
The proof is complete.
The Proof of Lemma 4.7:
From Lemma 4.6, there exist symmetric matrix sequences Qjc € R?*2 such that
Fvl +w') — f(v?) = ijj, 1<j<n,

where the eigenvalues p, i, of Q] satisfy —3 < il < 1.

Define the symmetric matrix

Q := diag(Qj},- - ,Q}) € R*",

The spectral radius of the symmetric matrix @ satisfies p(Q) < 1, which implies that [|Q]]2 <
1. According to Lemma 4.5 one has

n k
ZZHi@j(zk)T[ Ff(v? +w?) ZZ&k A wj
k=1 j=1 k=1 j=1

~

Tez +5 wTQTB LQw

IA

€.
2”

n

k
. 1 ~
Z O (2M)727 + Q—GwTQTB‘le, (7.55)
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where z = ((z)T,--- , (2")1)T and w = ((w!)?,--- | (w™)T)T. Tt follows from Lemmas 4.3

and /4.5 that

which implies
w'Ow = | LA 'B; 'w)|%.
Then the right term of the last identity in (7.55) can be estimated by

w'QTB'Qw = |(L")TA,Quw|?
= |(L~YTA,QBoA, L 'LA; ' By 'w|?
<L HTAQBA, L' 2w Ow
n k
< IQUBIBBI L 3w  Ow < 205 > > 6 (w!) wk,
k=1 j=1

where the commutativity KTQ = QKT is used and Qj is defined in (4.37). Inserting the
above estimate to (7.55)), one can obtain the first claim. The second claim can be proved by
taking € = 1/Os in the first claim. The proof is complete.
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