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Abstract: The stability and convergence of two-step backward differentiation formula

(BDF2) with variable time steps still remain incomplete for solving the molecular beam epi-

taxial model without slope selection. In this paper, we first prove the proposed BDF2 scheme

to preserve a modified energy dissipation law under a new adjacent time-step ratio condition:

rk := τk/τk−1 ≤ 4.8645 − δ, where δ > 0 is a given arbitrarily small constant. After that, we

introduce the recently developed techniques of the discrete orthogonal convolution (DOC) and dis-

crete complementary convolution (DCC) kernels, and present the robust and sharp second-order

convergence of the BDF2 scheme with the new ratio condition: rk ≤ 4.8645 − δ. The robustness

means the convergence does not need other constrained condition on the time steps except for

rk ≤ 4.8645−δ. In addition, our analysis shows that the first-order BDF1 scheme for the start step

is enough to ensure the globally optimal convergence order. This is, the choice of BDF1 scheme for

the start step does not bring the loss of global second-order convergence. Numerical examples are

provided to demonstrate the theoretical analysis.
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1 Introduction

In this paper, we revisit the two-step backward differentiation formula (BDF2) with
variable time-steps for solving the molecular beam epitaxial (MBE) model [6, 9] without
slope selection

ut + ε∆2u +∇ · f(∇u) = 0, x ∈ Ω, t ∈ (0, T ],

u(x, 0) = u0(x), x ∈ Ω̄,
(1.1)
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with the periodic boundary conditions. Here the periodic solution u = u(x, t) represents
the scaled height function of a thin film in a co-moving frame, the fourth-order term models
surface diffusion with a surface diffusion constant ε > 0 and the nonlinear force vector
f(v) := v/(1 + |v|2) models the well-known Ehrlich-Schwoebel effect.

The MBE model (1.1) has been widely applied in various fields such as physics, biology,
ecology and chemistry [7, 22], and can be derived from the gradient flow with the following
energy functional in the L2(Ω) inner product

E(u) =
∫

Ω

(
ε

2
|∆u|2 − 1

2
ln(1 + |∇u|2)

)
dx. (1.2)

The logarithmic term − 1
2
ln(1 + |∇u|2) in the energy functional (1.2) can be bounded by

zero but unbounded blew, which means the logarithmic term has no relative minima. The
well-posedness of problem (1.1) is studied by Li and Liu [16] using the perturbation analysis
and Galerkin spectral approximations.

Recently, to investigate the evolution process of thin-film epitaxial growth, various nu-
merical schemes for MBE model (1.1) have been developed including the first and second
order convex splitting schemes [2, 24], the nonlinear Crank-Nicolson type scheme [21], the
stabilized semi-implicit scheme [28] and so on. However, the analysis in those mentioned
literatures was based on uniform time steps.

A feature of phase field models is that the solutions admit multiple time scales, namely,
the dynamics evolves on a fast time scale at the beginning and coarsening evolves slowly on
a time later. In this situation, the coarse-grained and refined time steps are useful to capture
the multi-scale dynamics according to the slow and fast change of the solution itself. Thus,
the BDF2 scheme with variable time steps is a good choice due to its strong stability for
solving stiff or differential-algebraic problems [5, 10, 11, 23, 25, 26].

The BDF2 scheme with variable time steps has been widely developed [1, 3, 5, 13,
20, 29] for the stability and convergence analysis, including linear diffusion problems [20,
29], semilinear parabolic problems [5, 13] and the Cahn-Hilliard (CH) equation [3]. More
specifically for the stability analysis of linear diffusion equations, twenty years ago Becker
[1] presented the bound under the adjacent time-step ratio condition 0 < rk := τk/τk−1 ≤
(2 +

√
13)/3 ≈ 1.868 that

‖un‖ ≤ C exp(CΓn)
( ‖u0‖+

n∑
j=1

τj

∥∥f j
∥∥ )

for n ≥ 1,

where Γn :=
∑n−2

k=2 max{0, rk − rk+2}. The result is also given in Thomée’s classical book
[25, Lemma 10.6]. As shown in [25] and [3], the magnitudes of Γn can be bounded [25, pp.
175] and unbounded [3, Remark 4.1] by choosing certain step-ratio sequence and vanishing
step sizes. Emmrich [5] extends the Becker’s condition to 0 < rk ≤ 1.91, but still keeps the
undesirable factor exp(CΓn). Recently, Liao and Zhang [20] introduce the technique of the
discrete orthogonal convolution (DOC) kernels, and improve Grigorieff’s stability condition
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[8] nearly forty years ago (one also refers to [4] and [11, Section III.5] a classical book by
Hairer et al.) from 0 ≤ rk ≤ 1 +

√
2 to 0 ≤ rk ≤ (3 +

√
17)/2 ≈ 3.561. However, the

second-order convergence in [20] suffers from an extra restriction condition |Rp| ≤ N0 ¿ N

with the index set
Rp =

{
k

∣∣∣ 1 +
√

2 ≤ rk ≤ (3 +
√

17)/2
}

. (1.3)

While the stability and convergence analysis of BDF2 with variable time steps has
brought the great challenge for linear problems, the analysis for nonlinear problems is even
hard and still has a great progress. For instance, Chen et al. [3] replace exp(CΓn) in
Becker’s estimate with a bounded factor exp(Ctn) with 0 < rk ≤ 1.53 for CH equations.
Liao et al. [19] consider MBE model (1.1) with variable-time-steps BDF2 scheme, and obtain
the second-order convergence under the ratio condition 0 < rk < 3.561, but they still require
an additional condition |Rp| ≤ N0 ¿ N .

The aim of this paper is to achieve the robust and sharp second-order error estimate for
the variable time-steps BDF2 scheme under a new ratio condition 0 < rk < rmax ≈ 4.8645.
Under this new ratio condition, we first prove the BDF2 scheme with BDF1 as starting
step to preserve a modified energy dissipation law. After that, we carefully analyze the
positive definiteness of discrete convolution kernels [20], and then introduce the discrete
complementary convolution (DCC) kernels (defined in (4.21)) and the error convolution
structure (ECS) with the BDF2 kernels (see Lemma 5.3), and finally obtain the sharp
second-order convergence given as

‖en
h‖ ≤2 exp(16Q2

δtn−1/ε)(‖e0
h‖+ 2Cutnh2 +

n∑
k=1

τ2
k

∫ tk

tk−1

‖uttt‖dt

+ 2tn max
1≤k≤n

τk

∫ tk

tk−1

‖uttt‖dt + 4τ

∫ t1

0

‖utt‖dt). (1.4)

For brevity, we list the adjacent time step ratio condition as

A1 : 0 < rk ≤ rmax − δ for any small constant 0 < δ < rmax and 2 ≤ k ≤ N ,

where the maximum ratio rmax = 1
6

(
3
√

1196−12
√

177 + 3
√

1196+12
√

177
)

+ 4
3
≈ 4.8645 is

the root of the cubic equation

r3
max = (2rmax + 1)2. (1.5)

The Qδ in (1.4) is a constant depending on the choice of adjacent time steps, and has a
upper bound of the form O(1/δ), where the parameter δ is given in A1 and generally taken
as a given small constant, for example δ = 0.1 or other any small constant.

Comparing with recent results in [19], our second-order convergence is sharp and robust
with the new ratio condition A1. The robustness means the convergence does not suffer from
other extra conditions on the time step sizes, like the constrained condition |Rp| ≤ N0 ¿ N in
[19], expect for A1. In addition, our analysis shows that the sharp second-order convergence
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is consistent to the first-order BDF1 scheme for the first step solution u1. It is the first time
to make clear that the BDF1 scheme as start step to compute u1 is enough to guarantee
the second-order convergence of BDF2 schemes with variable time steps for MBE models.
Numerical examples are provided to demonstrate our theoretical analysis.

The remainder is organized as follows. In section 2, we present the fully discrete scheme
with variable time steps by using the finite difference method in space and BDF2 scheme in
time. The solvability of the BDF2 scheme and the energy stability are presented in section
3. In section 4, we introduce the concepts of DOC and DCC kernels, and also present the
properties of DOC kernels and DCC kernels. In section 5, we give the stability and second-
order convergence analysis. Numerical simulations are carried out in section 6. We end the
paper with a conclusion.

2 Setting

2.1 Numerical scheme

We take the generally variable time grids 0 = t0 < t1 < t2 < · · · < tN = T and
denote the kth time-step size by τk := tk − tk−1 and the maximum time step size by τ :=
max1≤k≤N τk. The adjacent time-step ratio is defined by

rk =
τk

τk−1

, 2 ≤ k ≤ N.

Set uk = u(·, tk) and the difference operator ∇τuk = uk − uk−1 for 1 ≤ k ≤ N . The BDF1
and BDF2 formulas with variable time steps are defined respectively by

D1u
n =

1
τn

∇τun, D2u
n =

1 + 2rn

τn(1 + rn)
∇τun − r2

n

τn(1 + rn)
∇τun−1.

Set the discrete convolution kernels b
(n)
n−k as b

(1)
0 := 1/τ1 and

b
(n)
0 =

1 + 2rn

τn(1 + rn)
, b

(n)
1 = − r2

n

τn(1 + rn)
and b

(n)
j = 0 for n, j ≥ 2. (2.6)

Thus, we may reformulate the BDF1 and BDF2 into a unified discrete convolution form

D2u
n :=

n∑
k=1

b
(n)
n−k∇τuk, n ≥ 1. (2.7)

The spacial domain Ω = (0, L)2 considered here is approximated by a uniform grid
h = L/M for a positive integer M , and the discrete domains are denoted by

Ωh := {xh : (ih, jh), 1 ≤ i, j ≤ M − 1}, Ω̄h := {xh : (ih, jh), 0 ≤ i, j ≤ M}.

The partial derivatives ∂xw and ∂xxw are respectively approximated by the following oper-
ators

∆xwi,j := (wi+1,j − wi−1,j)/(2h), δ2
x := (wi+1,j − 2wi,j + wi−1,j)/h2.
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The operators ∆ywi,j and δ2
ywi,j can be defined similarly. Moreover, the discrete gradient

operator and the discrete Laplacian operator are accordingly defined by

∇hwi,j := (∆xwi,j ,∆ywi,j)T , ∆hwi,j := (δ2
x + δ2

y)wi,j .

For the vector ui,j = (u1
i,j , u

2
i,j)

T , the discrete divergence is defined by

∇h · ui,j := ∆xu1
i,j + ∆yu

2
i,j .

By using the finite difference method in space and BDF2 scheme in time, we have the fully
discrete scheme with variable time steps as

D2u
n
h + ε∆2

hun
h +∇h · f(∇hun

h) = 0, for 1 ≤ n ≤ N. (2.8)

3 Solvability and Energy Stability

Define the space of L-periodic grid functions as

Vh = {vh|vh is L-periodic for xh ∈ Ω̄h}.

For any v, w ∈ Vh, the discrete L2 inner product and norm are defined by

〈v, w〉 := h2
∑

xh∈Ωh

vhwh,
∥∥v

∥∥2
:= 〈v, v〉 .

The discrete norms
∥∥∇hv

∥∥ and
∥∥∆hv

∥∥ are defined by

‖∇hv‖ :=
√

h2
∑

xh∈Ωh

|∇hvh|2, ‖∆hv‖ :=
√

h2
∑

xh∈Ωh

|∆hvh|2.

For any v, w ∈ Vh, one has the discrete Green’s formula with periodic boundary conditions

〈−∇h · ∇hv, w〉 = 〈∇hv,∇hw〉. (3.9)

Lemma 3.1 ([21]) For any grid function v ∈ Vh and ε > 0, we have

‖∇hv‖2 ≤ 〈−∆hv, v〉 ≤ ‖∆hv‖‖v‖ ≤ ε‖∆hv‖2 +
1
4ε
‖v‖2. (3.10)

3.1 Unique Solvability

Theorem 3.2 If the time-step sizes τn ≤ 4ε, the BDF2 time-stepping scheme (2.8)
is convex and uniquely solvable.

The solvability of BDF2 scheme can be established by introducing a discrete energy
functional G on the space Vh:

G[z] =
1
2
b
(n)
0

∥∥z − un−1
h

∥∥2
+ b

(n)
1

〈∇τun−1, z
〉 ε

2

∥∥∆hz
∥∥2 − 1

2
〈ln(1 + |∇hz|2), 1〉.
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The detailed proof for the solvability of BDF2 scheme is given in [19] and the key technique
is referred to [27] .

3.2 Discrete Energy Dissipation Law

We now consider the energy stability of BDF2 scheme (2.8). To do so, we first present
the positive definiteness of discrete convolution kernels b

(n)
n−k in the following lemma.

Lemma 3.2 Assume the time-step ratio rk satisfies A1 . For any real sequence
{wk}n

k=1, it holds for ε∗ = 3
√

12
( 3
√√

177 + 9 − 3
√√

177− 9
)
/6 ≈ 0.4534 and for any small

constant 0 < δ < rmax (see A1 ) that

2wk

k∑
j=1

b
(k)
k−jwj ≥ rk+1

(1 + rk+1)
w2

k

ε∗τk

− rk

(1 + rk)
w2

k−1

ε∗τk−1

+
δw2

k

(1 + rmax)2ε∗τk

, k ≥ 2, (3.11)

2
n∑

k=1

wk

k∑
j=1

b
(k)
k−jwj ≥

n∑
k=1

δw2
k

(1 + rmax)2ε∗τk

≥ 0, for n ≥ 1. (3.12)

Proof Denote the multi-variable functions

F(x, y, ε) =
2ε + 4εx− ε2x2

(1 + x)
− y

(1 + y)
, for x, y, ε ≥ 0.

It follows from [29, Lemma 2.1] and the proof of [29, Lemma 2.2] that

2wk

k∑
j=1

b
(k)
k−jwj ≥ rk+1

(1 + rk+1)
w2

k

ε∗τk

− rk

(1 + rk)
w2

k−1

ε∗τk−1

+ F(rk, rk+1, ε∗)
w2

k

ε∗τk

, k ≥ 2, (3.13)

and
2ε∗ + 4ε∗rk − ε2

∗r
2
k

1 + rk

≥ rmax

1 + rmax

, ∀ 0 < rk ≤ rmax.

Hence, for any 0 < rk ≤ rmax − δ, one has

F(rk, rk+1, ε∗) ≥ rmax

1 + rmax

− rmax − δ

1 + rmax − δ
=

δ

(1 + rmax − δ)(1 + rmax)
≥ δ

(1 + rmax)2
, k ≥ 2

where the monotony of the function h(x) = x/(1 + x) is used. Inserting above inequality to
(3.13), one immediately has the inequality (3.11). Summing the inequality (3.11) from 1 to
n, one has

2
n∑

k=1

wk

k∑
j=1

b
(k)
k−jwj ≥ 2

τ1

w2
1 +

rn+1

(1 + rn+1)
w2

n

ε∗τn

− r2

(1 + r2)
w2

1

ε∗τ1

+
n∑

k=2

δw2
k

(1 + rmax)2ε∗τk

≥
(

2ε∗ − rmax − δ

1 + rmax − δ

)
w2

1

ε∗τ1

+
n∑

k=2

δw2
k

(1 + rmax)2ε∗τk

≥
(

2− rmax

(1 + rmax)ε∗

)
w2

1

τ1

+
n∑

k=1

δw2
k

(1 + rmax)2ε∗τk

≥
n∑

k=1

δw2
k

(1 + rmax)2ε∗τk

, n ≥ 1.
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The proof is complete.
We now consider the energy stability of BDF2 scheme (2.8) by defining the modified

discrete energy

En :=
rn+1

2(1 + rn+1)ε∗τn

‖∇τun‖2 +
ε

2
‖∆hun‖2 − 1

2
〈ln(1 + |∇hun|2), 1〉, n ≥ 1, (3.14)

and the initial energy E0 := ε
2
‖∆hu0‖2 − 1

2
〈ln(1 + |∇hu0|2), 1〉.

To establish the energy dissipation law, we need the time-step ratio rk to hold A1 and
the time step size τn to satisfy

τn ≤ 4ε min{2− rmax

(1 + rmax)ε∗
,

δ

(1 + rmax)2ε∗
}. (3.15)

Theorem 3.2 Assume the time-step ratio condition A1 holds with the time-step
condition (3.15), then the discrete energy En defined in (3.14) satisfies

En ≤ En−1 ≤ E0, n ≥ 1.

Proof Taking the inner product on both sides of (2.8) with ∇τun, one has

〈D2u
n,∇τun〉+ ε〈∆2

hun,∇τun〉+ 〈∇h · f(∇hun),∇τun〉 = 0, for 1 ≤ n ≤ N. (3.16)

Due to the periodic boundary conditions, the summation by parts argument holds, which
implies

ε〈∆2
hun,∇τun〉 = ε〈∆hun,∆h∇τun〉 =

ε

2
(‖∆hun‖2 − ‖∆hun−1‖2 + ‖∆h∇τun‖2). (3.17)

By using the inequality x
1+x

≤ ln(1 + x) with x = (∇τ |∇hun|2)/(1 + |∇hun−1|2), one has

∇τ |∇hun|2
1 + |∇hun|2 ≤ ln(

1 + |∇hun|2
1 + |∇hun−1|2 ),

which together with the discrete Green’s formula (3.9) and the inequality (3.10) with ε = ε

imply that

〈∇h · f(∇hun),∇τun〉 = −〈f(∇hun),∇h∇τun〉

=−〈 ∇τ |∇hun|2
2(1 + |∇hun|2) , 1〉 − 〈 |∇h∇τun|2

2(1 + |∇hun|2) , 1〉

≥ − 1
2
〈ln(1 + |∇hun|2), 1〉+

1
2
〈ln(1 + |∇hun−1|2), 1〉 − 1

2
‖∇h∇τun‖2

≥− 1
2
〈ln(1 + |∇hun|2), 1〉+

1
2
〈ln(1 + |∇hun−1|2), 1〉 − ε

2
‖∆h∇τun‖2 − 1

8ε
‖∇τun‖2. (3.18)

For n ≥ 2, it follows from Lemma 3.2 and the time-step condition (3.15) that

〈D2u
n,∇τun〉 ≥ rn+1

2(1 + rn+1)
‖∇τun‖2

ε∗τn

− rn

2(1 + rn)
‖∇τun−1‖2

ε∗τn−1

+
δ‖∇τun‖2

2(1 + rmax)2ε∗τn

≥ rn+1

2(1 + rn+1)
‖∇τun‖2

ε∗τn

− rn

2(1 + rn)
‖∇τun−1‖2

ε∗τn−1

+
1
8ε
‖∇τun‖2. (3.19)
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Hence, by inserting (3.17)-(3.19) into (3.16), we have

En ≤ En−1, n ≥ 2.

For n = 1, it follows from the condition A1 that

r2

(1 + r2)ε∗
≤ rmax

(1 + rmax)ε∗
≤ 2,

which together with the time step condition (3.15) imply that

〈D2u
1,∇τu1〉 =

1
τ1

‖∇τu1‖2 ≥ r2

2(1 + r2)ε∗τ1

‖∇τu1‖2 +
1
8ε
‖∇τu1‖2.

Thus, by inserting the above inequality and (3.17)-(3.18) into (3.16), we have

E1 ≤ E0.

The proof is complete.

4 The DOC and DCC Kernels and Their Properties

4.1 The DCC Kernels and DOC Kernels

To obtain stability analysis of BDF2 scheme (2.8), we introduce the discrete comple-
mentary convolution (DCC) kernels p

(n)
n−j such that

n∑
j=1

p
(n)
n−jD2u

j =
n∑

j=1

p
(n)
n−j

j∑
l=1

b
(j)
j−l∇τul =

n∑
l=1

∇τul

n∑
j=l

p
(n)
n−jb

(j)
j−l = un−u0, ∀n ≥ 1. (4.20)

As the identity (4.20) holds for all n ≥ 1, it only requires

n∑
j=k

p
(n)
n−jb

(j)
j−k ≡ 1, ∀1 ≤ k ≤ n, 1 ≤ n ≤ N. (4.21)

The idea of DCC kernels has been successfully applied to the stability analysis for subdiffu-
sion problems [14, 15, 17] and reaction-diffusion problem [29].

We now introduce the discrete orthogonal convolution (DOC) kernels by

n∑
j=k

θ
(n)
n−jb

(j)
j−k = δnk, for all 1 ≤ k ≤ n, (4.22)

where δnk is the Kronecker delta symbol with δnk = 1 if n = k and δnk = 0 if n 6= k. From
(4.22), it holds

k∑
j=1

θ
(k)
k−jD2u

j =
k∑

l=1

∇τul

k∑
j=l

θ
(k)
k−jb

(j)
j−l = uk − uk−1, 1 ≤ k ≤ N. (4.23)
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The DCC and DOC kernels have a close connection. In fact, summing from 1 to n with k

on both sides of (4.23), and then exchanging the order of summation, we have
n∑

j=1

D2u
j

n∑
k=j

θ
(k)
k−j = un − u0. (4.24)

One can compare the identity (4.24) with (4.20) to find that (also see [29])

p
(n)
n−j =

n∑
k=j

θ
(k)
k−j (1 ≤ j ≤ n). (4.25)

From (4.25), the direct calculation leads to another relation between DOC and DCC kernels

θ
(n)
0 = p

(n)
0 , θ

(n)
n−k = p

(n)
n−k − p

(n)
n−k−1 (1 ≤ k ≤ n− 1). (4.26)

4.2 Some Previous Properties

To establish the stability and error estimate, here we streamline the useful results in
[20, 29].

Lemma 4.1 [20, Lemma 2.2] Assume the BDF2 kernels b
(n)
n−k defined in (2.6) are

positive definite. Then the DOC kernels θ
(n)
n−k defined in (4.22) are also positive definite.

This is, for any real sequence {ωj}n
j=1, it holds that

n∑
k=1

ωk

k∑
j=1

θ
(k)
k−jωj ≥ 0, ∀n ≥ 1.

Lemma 4.2 [20, Corollary 2.1] The DOC kernels θ
(n)
n−j have the following properties:

θ
(n)
n−j > 0, for any 1 ≤ j ≤ n, 1 ≤ n ≤ N, (4.27)
n∑

j=1

θ
(n)
n−j = τn, for n ≥ 1. (4.28)

Proposition 4.1 [29, Proposition 2.2] Let τ be the maximum time step size and
r∗ be any given positive constant. If the time step ratio satisfies 0 < rk ≤ r∗, then the DCC
kernels p

(n)
n−k defined in (4.21) satisfy

p
(n)
n−j =

n∑
k=j

τk(1 + rj)
1 + 2rj

k∏
i=j+1

ri

1 + 2ri

, 2 ≤ j ≤ n, (4.29)

p
(n)
n−1 =

n∑
k=1

τk

k∏
i=2

ri

1 + 2ri

, (4.30)

n∑
j=1

p
(n)
n−j = tn, (4.31)

p
(n)
n−j ≤

n∑
k=j

τk

(
r∗

1 + 2r∗

)k−j

≤
n∑

k=j

τk

2k−j
≤ 2τ, (4.32)
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where
∏k

i=j+1 = 1 for j ≥ k is defined.

4.3 Some New Properties of DOC Kernels

The BDF2 kernels b
(n)
n−k and DOC kernels θ

(n)
n−k defined in (2.6) and (4.22) respectively

can be represented as the following matrix forms [18]

B2 :=




b
(1)
0

b
(2)
1 b

(2)
0

. . . . . .

b
(n)
1 b

(n)
0




n×n

and Θ2 :=




θ
(1)
0

θ
(2)
1 θ

(2)
0

...
. . . . . .

θ
(n)
n−1 · · · θ

(n)
1 θ

(n)
0




n×n

.

It follows from the definition of DOC kernels θ
(n)
n−k in (4.22) that

Θ2 = B−1
2 . (4.33)

Assume A1 holds, then Lemmas 3.2 and 4.1 imply the real symmetric matrices

B := B2 + BT
2 and Θ := Θ2 + ΘT

2

are positive definite.
Define the diagonal matrix Λτ := diag(

√
τ1, · · · ,

√
τn) and

B̃2 := ΛτB2Λτ =




b̃
(1)
0

b̃
(2)
1 b̃

(2)
0

. . . . . .

b̃
(n)
1 b̃

(n)
0




n×n,

(4.34)

with

b̃
(1)
0 = 1, b̃

(k)
0 =

1 + 2rk

1 + rk

, b̃
(k)
1 = − r

3/2
k

1 + rk

, 2 ≤ k ≤ n.

Moreover, we define the real symmetric matrix B̃ := B̃2 + B̃T
2 , which has the following

properties.

Lemma 4.3 Assume A1 holds, the minimum eigenvalue of B̃ can be bounded by

λmin(B̃) ≥ min
1≤k≤n

R̃(rk, rk+1) ≥ Cδ,

where

R̃(x, y) =
2 + 4x− x3/2

1 + x
− y3/2

1 + y
, 0 < x, y ≤ rmax, (4.35)

Cδ = min{R̃(0, rmax − δ), R̃(rmax − δ, rmax − δ)}. (4.36)

Thus B̃ is positive definite and there exists a non-singular upper triangular matrix L such
that

B̃ = ΛτBΛτ = LT L or B = (LΛ−1
τ )T LΛ−1

τ .
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For brevity, we leave the detailed proof in the Appendix.

Remark 1 It follows from the A1 and the monotony of R̃(x, y) for x > 1, y > 0 that

R̃(0, rmax − δ) ≥ R̃(0, rmax) = 2− r
3/2
max

1 + rmax

> 0

R̃(rmax − δ, rmax − δ) ≥ R̃(rmax, rmax − δ) =
r
3/2
max

1 + rmax

− (rmax − δ)3/2

1 + rmax − δ

=
√

rmax(rmax + r2
max − δrmax)−

√
rmax − δ(rmax + r2

max − δ − δrmax)
(1 + rmax)(1 + rmax − δ)

≥
√

rmax

(1 + rmax)2
δ, for 0 < δ < rmax − 1,

which implies the positive constant Cδ depends on δ. Moreover, if 0 < δ ≤ rmax− 4, one has

R̃(0, rmax − δ) ≥ R̃(rmax − δ, rmax − δ).

Then, for any 0 < δ ≤ rmax − 4, the constant Cδ can be estimated by

Cδ = R̃(rmax − δ, rmax − δ) ≥
√

rmax

(1 + rmax)2
δ.

Thus, the lower bound of Cδ is O(δ) for small δ.

The next Lemma gives an upper bound of the maximum singular value of B̃2.

Lemma 4.4 If A1 holds, then the maximum eigenvalue of the real symmetric matrix
B̃T

2 B̃2 can be bounded by

λmax(B̃T
2 B̃2) ≤ R̂(rmax − δ, rmax − δ) ≤ 4r3

max

(1 + rmax)2
< 14,

where B̃2 is defined by (4.34) and R̂(x, y) is defined by

R̂(x, y) :=
(1 + 2x)(1 + 2x + x3/2)

(1 + x)2
+

y3/2(1 + 2y + y3/2)
(1 + y)2

.

Again for brevity, we leave the detailed proof in the Appendix.
To deal with the nonlinear term ∇h ·f(∇hun), we now introduce the following matrices

B̂ := B ⊗ I2, Θ̂ := Θ⊗ I2, B̃2 := B̃2 ⊗ I2, B̃ := B̃ ⊗ I2, Λ̂τ = Λτ ⊗ I2, L̂ := L⊗ I2.

One can use Lemma 4.3 to derive that

‖L̂−1‖2
2 = λmax((L̂T L̂)−1) = λ−1

min((L
T L)⊗ I2) = λ−1

min(B̃).

For convenience, we define the vector norm ‖ · ‖2 by ‖u‖2 =
√

uT u and the associated
matrix norm by ‖A‖2 :=

√
λmax(AT A). We also define

Qδ := max
n≥1

‖B̃2‖2
2‖L̂−1‖4

2 = max
n≥1

λmax(B̃2

T
B̃2)

λ2
min(B̃)

. (4.37)
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Note that under the codition A1, Lemmas 4.3 and 4.4 imply the positive constant Qδ < 14
Cδ

,
where Cδ is defined by (4.36). By taking δ = 1.303, one can obtain that Qδ < 39, which is
consistent with the one in [19].

We now present several important Lemmas, which plays a key role in dealing with the
nonlinear term ∇h · f(∇hun), and leave the proofs in the Appendix for brevity due to their
similarity with [19].

Lemma 4.5 Assume A1 holds. For the positive definite matrix Θ̂ = B̂−1
2 B̂(B̂−1

2 )T ,
and any vector sequences {vk}n

k=1, {wk}n
k=1,v

k,wk ∈ R2, it holds

n∑
k=1

k∑
j=1

θ
(k)
k−j(v

k)T wj ≤ ε

2
vT Θ̂v +

1
2ε

wT B̂−1w, ∀ε > 0, (4.38)

where v = ((v1)T , · · · , (vn)T )T and w = ((w1)T , · · · , (wn)T )T .

Lemma 4.6 ([12, Lemma 3.5]) For any v,w ∈ R2, there exists a symmetric matrix
Qf ∈ R2×2 such that

f(v)− f(w) = Qf (v −w).

The eigenvalues λ1, λ2 of Qf satisfy − 1
8
≤ λ1, λ2 ≤ 1. Consequently, it holds that

|f(v)− f(w)| ≤ |v −w|. (4.39)

We now give another important lemma as follows.

Lemma 4.7 Assume A1 holds, then for any vector sequence vk = (vk
1 , vk

2 )T ,wk =
(wk

1 , wk
2)T ,zk = (zk

1 , zk
2 )T with 1 ≤ k ≤ n and any ε > 0, it holds that

n∑
k=1

k∑
j=1

θ
(k)
k−j(z

k)T [f(vj + wj)− f(vj)] ≤
n∑

k=1

k∑
j=1

θ
(k)
k−j

[
ε(zk)T zj +

Qδ

ε
(wk)T wj

]
,

where the positive constant Qδ is defined in (4.37). Moreover,

n∑
k=1

k∑
j=1

θ
(k)
k−j(z

k)T [f(vj + zj)− f(vj)] ≤ 2
√
Qδ

n∑
k=1

k∑
j=1

θ
(k)
k−j(z

j)T zk.

5 The Stability and Convergence Analysis for BDF2 Scheme

In this section, we consider the stability and convergence analysis for the BDF2 scheme
(2.8), which requires a discrete Grönwall inequality given as follows.

Lemma 5.1 Assume that λ > 0 and the sequences {vj}N
j=1 and {ηj}N

j=0 are nonnega-
tive. If

vn ≤ λ

n−1∑
j=1

τjvj +
n∑

j=0

ηj , for 1 ≤ n ≤ N,
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then it holds that

vn ≤ exp
(
λtn−1

) n∑
j=0

ηj , for 1 ≤ n ≤ N.

5.1 L2-norm Stability

We now consider the L2-norm stability analysis of BDF2 scheme (2.8) with variable
time steps. It is noted that the inequality (3.10) plays an important role in [21] to obtain
the L2-norm error estimate on uniform time steps. But the method developed in [21] fails
to prove the L2-norm estimate if the DOC technique is used in this paper. In other words,
the inequality (3.10) can not be used to have L2-norm estimate since the DOC technique
will lead to the cross inner product 〈φk, φj〉 for different time levels. Alternatively, we here
develop a new inequality to fill this gap as follows.

Lemma 5.2 Let the matrix β := β2 + βT
2 be positive definite with β2 := (βk,j), 1 ≤

j, k ≤ n, βk,j = 0 if j > k. Assume βk,j ≥ 0 for any 1 ≤ k, j ≤ n, then it holds

n∑
k=1

k∑
j=1

βk,j〈∇hφj
h,∇hφk

h〉 ≤
n∑

k=1

k∑
j=1

βk,j〈−∆hφj
h, φk

h〉. (5.40)

Proof For notation convenience, we denote the operator Lh := ∇h ·∇h−∆h. It follows
from the positive definiteness of the matrix β and the standard Cholesky decomposition that
there exists a non-singular upper triangular matrix A such that β = AT A. Denote the matrix
A = (a1, · · · ,an), where al = (a1,l, · · · , an,l)T , 1 ≤ l ≤ n and al,k = 0 if l > k. It is easy
to verify that βk,j = aT

k aj =
∑n

l=1 al,kal,j , k 6= j, βk,k = aT
k ak/2 =

∑n

l=1 a2
l,k/2, 1 ≤ k ≤ n.

The discrete Green’s formula and the identity 〈Lhv, w〉 = 〈v,Lhw〉 yield

1
2

n∑
l=1

〈Lh(
n∑

k=1

al,kφ
k
h),

n∑
k=1

al,kφ
k
h〉 =

1
2

n∑
k=1

(
n∑

l=1

a2
l,k)〈Lhφk

h, φk
h〉+

n∑
k=2

k−1∑
j=1

(
n∑

l=1

al,kal,j)〈Lhφk
h, φj

h〉

=
n∑

k=1

βk,k〈Lhφk
h, φk

h〉+
n∑

k=2

k−1∑
j=1

βk,j〈Lhφk
h, φj

h〉

=
n∑

k=1

k∑
j=1

βk,j〈Lhφk
h, φj

h〉.

It follows from the discrete Green’s formula and the inequality (3.10) that 〈Lhv, v〉 ≥ 0 for
any v ∈ Vh, which implies

n∑
k=1

k∑
j=1

βk,j〈Lhφk
h, φj

h〉 ≥ 0.

The proof is complete.
We now consider the L2-norm stability of BDF2 with variable time steps.
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Theorem 5.1 Assume A1 holds and the maximum time step τ ≤ 16Q2
δ/ε. Then the

BDF2 scheme (2.8) is stable in L2-norm, and has the estimate

‖ûn
h − un

h‖ ≤ 2 exp(16Qδtn−1/ε)‖û0
h − u0

h‖, (5.41)

where un
h and ûn

h are the solutions to (2.8) with the initial values u0
h and û0

h, respectively.
Proof Let φn

h := ûn
h − un

h (0 ≤ n ≤ N) be the solution perturbation for xh ∈ Ω̄h. The
BDF2 scheme (2.8) implies that φn

h solves

D2φ
j
h + ε∆2

hφj
h +∇h · (f(∇hûj

h)− f(∇huj
h)) = 0.

Multiplying both sides of the above identity by θ
(k)
k−j and summing j from 1 to k, one can

use the identity (4.23) to obtain

∇τφk
h + ε

k∑
j=1

θ
(k)
k−j∆

2
hφj

h +
k∑

j=1

θ
(k)
k−j∇h · (f(∇hûj

h)− f(∇huj
h)) = 0.

Taking the inner product of the above identity with 2φk and summing k from 1 to n, one
has

‖φn
h‖2 − ‖φ0

h‖2 + 2ε

n∑
k=1

k∑
j=1

θ
(k)
k−j〈∆hφj

h,∆hφk
h〉

≤ 2
n∑

k=1

k∑
j=1

θ
(k)
k−j〈f(∇hûj

h)− f(∇huj
h),∇hφk

h〉, (5.42)

where the discrete Green’s formula (3.9) and 2a2 − 2ab ≥ a2 − b2 are used. We now deal
with the rightmost term of (5.42). In view of ∇hûj

h = ∇huj
h +∇hφj

h, one can apply Lemmas
5.2 and 4.7 to obtain

2
n∑

k=1

k∑
j=1

θ
(k)
k−j〈(f(∇hûj

h)− f(∇huj
h)),∇hφk

h〉

≤ 4
√
Qδ

n∑
k=1

k∑
j=1

θ
(k)
k−j〈∇hφj

h,∇hφk
h〉

≤ 4
√
Qδ

n∑
k=1

k∑
j=1

θ
(k)
k−j〈−∆hφj

h, φk
h〉 (5.43)

≤ 2ε

n∑
k=1

k∑
j=1

θ
(k)
k−j〈∆hφj

h,∆hφk
h〉+

8Q2
δ

ε

n∑
k=1

k∑
j=1

θ
(k)
k−j〈φj

h, φk
h〉. (5.44)

The last inequality holds by taking ε = ε/(2
√Qδ) in Lemma 4.7 since Lemma 4.7 still holds

for the linear function f(v) := v. Inserting above inequality to (5.42), one can use the
discrete Cauchy-Schwartz inequality to obtain

‖φn
h‖2 − ‖φ0

h‖2 ≤ 8Q2
δ

ε

n∑
k=1

k∑
j=1

θ
(k)
k−j〈φj

h, φk
h〉 ≤

8Q2
δ

ε

n∑
k=1

k∑
j=1

θ
(k)
k−j‖φj

h‖φk
h‖.
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Select a n0 such that ‖φn0
h ‖ = max0≤k≤n ‖φk

h‖. Then for the time level n0, we have

‖φn0
h ‖2 ≤ ‖φ0

h‖‖φn0
h ‖+

8Q2
δ

ε
‖φn0

h ‖
n0∑

k=1

‖φk
h‖

k∑
j=1

θ
(k)
k−j ,

which together with Lemma 4.2 imply that

‖φn
h‖ ≤ ‖φn0

h ‖ ≤ ‖φ0
h‖+

8Q2
δ

ε
‖

n0∑
k=1

τk‖φk
h‖ ≤ ‖φ0

h‖+
8Q2

δ

ε
‖

n∑
k=1

τk‖φk
h‖.

With the help of the maximum time step τ ≤ 16Q2
δ/ε, we arrive at

‖φn
h‖‖ ≤ 2‖φ0

h‖+
16Q2

δ

ε

n∑
k=1

τk‖φk
h‖.

Thus, the proof is completed by using the Grönwall inequality in Lemma 5.1.

5.2 Consistency and Convergence

Let en
h := u(tn,xh) − un

h (n ≥ 0) be the error between the numerical solution un
h and

exact solution u(xh, tn) for xh ∈ Ω̄h. Then en
h solves the error function

D2e
j
h + ε∆2

hej
h +∇h · (f(∇h(ej

h + uj
h))− f(∇huj

h)) = ξj
h + ηj

h, for 1 ≤ j ≤ N, (5.45)

where ηn
h := D2u(xh, tj)− ut(xh, tj) (1 ≤ j ≤ N) denotes the temporal truncation error and

ξj
h := Cuh2 denotes the spatial truncation error. Here Cu is a constant depending on the

exact solution u, but independent of the mesh sizes h and τj .
The following Lemma implies that the temporal truncation error ηj

h can be divided into
a convolution part and a rest part, which plays a key role in simplifying the complicate
calculation for the estimate of convergence order when using the techniques of DOC and
DCC kernels.

Lemma 5.3 ([29, Lemma 3.2]) Denote the temporal truncation error by ηj
h := D2u(tj)−

ut(tj) (1 ≤ j ≤ N) and set

Gl := −1
2

∫ tl

tl−1

(t− tl−1)2uttt dt, 1 ≤ l ≤ N,

Rj := −1
2
b
(j)
1 τj−1

∫ tj

tj−1

(2(t− tj−1) + τj−1)uttt dt, 2 ≤ j ≤ n,

R1 :=
1

2τ1

∫ t1

0

t2uttt dt− 1
τ1

∫ t1

0

tutt dt.

(5.46)

Then it holds that

ηj
h =

j∑
l=1

b
(j)
j−lG

l + Rj , 1 ≤ j ≤ n. (5.47)
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Theorem 5.2 Let u(t, x) and un
h be the solutions to problem (1.1) and discrete problem

(2.8), respectively. Assume A1 holds and the maximum time step τ ≤ ε/16Qδ, then the
discrete solution un

h of BDF2 scheme (2.8) is convergent in L2-norm in the sense that

‖en
h‖ ≤2 exp(16Q2

δtn−1/ε)(‖e0
h‖+ 2Cutnh2 +

n∑
k=1

τ2
k

∫ tk

tk−1

‖uttt‖dt

+ 2tn max
1≤k≤n

τk

∫ tk

tk−1

‖uttt‖dt + 4τ

∫ t1

0

‖utt‖dt).

Proof Multiplying both sides of (5.45) by θ
(k)
k−j , and summing j from 1 to k, then

taking the inner product with ek
h on both sides and summing k from 1 to n, one has

‖en
h‖2−‖e0

h‖2 + 2ε

n∑
k=1

k∑
j=1

θ
(k)
k−j〈∆hej

h,∆hek
h〉

≤ 2
n∑

k=1

k∑
j=1

θ
(k)
k−j〈f(∇h(ej

h + uj
h))− f(∇huj

h),∇hek
h〉+ 2

n∑
k=1

k∑
j=1

θ
(k)
k−j〈ξj

h + ηj
h, ek

h〉

(5.48)

:= I1 + I2 + I3,

where the discrete Green’s formula (3.9) and 2a2− 2ab ≥ a2− b2 are used. The first term I1

has been estimated by (5.44). One can use Lemma 4.2 and the discrete Cauchy–Schwartz
inequality to obtain

I2 ≤ 2tn max
1≤k≤n

‖ξk
h‖‖ek

h‖ ≤ 2Cutnh2 max
1≤k≤n

‖ek
h‖. (5.49)

We now consider I3. By using Lemma 5.3 and exchanging the order of summation, we have

I3 = 2
n∑

k=1

〈
k∑

j=1

θ
(k)
k−j

j∑
l=1

b
(j)
j−lG

l, ek
h〉+ 2

n∑
k=1

〈
k∑

j=1

θ
(k)
k−jR

j , ek
h〉

= 2
n∑

k=1

〈
k∑

l=1

Gl

k∑
j=l

θ
(k)
k−jb

(j)
j−l, e

k
h〉+ 2

n∑
k=1

〈
k∑

j=1

θ
(k)
k−jR

j , ek
h〉

= 2
n∑

k=1

〈Gk, ek
h〉+ 2

n∑
k=1

〈
k∑

j=1

θ
(k)
k−jR

j , ek
h〉,

≤ 2
n∑

k=1

‖Gk‖‖ek
h‖+ 2

n∑
k=1

k∑
j=1

θ
(k)
k−j‖Rj‖‖ek

h‖.

Inserting (5.44), (5.49) and above inequality into (5.48), one has

‖en
h‖2 ≤‖e0

h‖2 +
8Q2

δ

ε

n∑
k=1

k∑
j=1

θ
(k)
k−j‖ej

h‖‖ek
h‖

+ 2Cutnh2 max
1≤k≤n

‖ek
h‖+ 2

n∑
k=1

‖Gk‖‖ek
h‖+ 2

n∑
k=1

k∑
j=1

θ
(k)
k−j‖Rj‖‖ek

h‖.
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Choose n0 such that ‖en0
h ‖ = max1≤k≤n ‖en

h‖. Then, we have

‖en0
h ‖2 ≤‖e0

h‖‖en0
h ‖+

8Q2
δ

ε
‖en0

h ‖
n0∑

k=1

k∑
j=1

θ
(k)
k−j‖ek

h‖

+ 2Cutnh2‖en0
h ‖+ 2‖en0

h ‖
n0∑

k=1

‖Gk‖+ 2‖en0
h ‖

n0∑
k=1

k∑
j=1

θ
(k)
k−j‖Rj‖.

Thus, by exchanging the order of summation, we arrive at

‖en
h‖ ≤ ‖en0

h ‖ ≤ ‖e0
h‖+

8Q2
δ

ε

n∑
k=1

τk‖ek
h‖

+ 2Cutnh2 + 2
n∑

k=1

‖Gk‖+ 2
n∑

j=1

p
(k)
n−j‖Rj‖.

One may use Lemma 4.2 and the assumption of the maximum time step τ ≤ ε/16Qδ to
obtain

‖en
h‖ ≤ 2‖e0

h‖+
16Q2

δ

ε

n−1∑
k=1

τk‖ek
h‖

+ 4Cutnh2 + 4
n∑

k=1

‖Gk‖+ 4
n∑

j=1

p
(k)
n−j‖Rj‖,

which together with Lemma 4.2 and the discrete Grönwall inequality in Lemma 5.1 derives

‖en
h‖ ≤ 2 exp(16Q2

δtn−1/ε)(‖e0
h‖+ 2Cutnh2 + 2

n∑
k=1

‖Gk‖+ 2
n∑

k=1

p
(n)
n−k‖Rk‖). (5.50)

Note that Gl, Rj defined in Lemma 5.3 satisfy

‖Gl‖ ≤ τ2
l

2

∫ tl

tl−1

‖uttt‖dt,

‖Rj‖ ≤ rj

2 + 2rj

(2τj + τj−1)
∫ tj

tj−1

‖uttt‖dt,

≤ τj

∫ tj

tj−1

‖uttt‖dt, 2 ≤ j ≤ n.

Then it follows from Proposition 4.1 that
n∑

k=1

p
(n)
n−k‖Rk‖ =

n∑
k=2

p
(n)
n−k‖Rk‖+ p

(n)
n−1‖ξ1‖

≤
n∑

k=1

p
(n)
n−kτj

∫ tj

tj−1

‖uttt‖dt + p
(n)
n−1

∫ t1

0

‖utt‖dt

≤ tn max
1≤k≤n

τk

∫ tk

tk−1

‖uttt‖dt + 2τ

∫ t1

0

‖utt‖dt.
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Thus, we derive that

‖en
h‖ ≤2 exp(16Q2

δtn−1/ε)(‖e0
h‖+ 2Cutnh2 +

n∑
k=1

τ2
k

∫ tk

tk−1

‖uttt‖dt

+ 2tn max
1≤k≤n

τk

∫ tk

tk−1

‖uttt‖dt + 4τ

∫ t1

0

‖utt‖dt). (5.51)

The proof is complete.

Remark 2 Recently, [19] gives a result for the error estimate of the molecular beam
epitaxial model (1.1) in form of

‖en
h‖ ≤Cu exp(16M2

rtn−1/ε)(‖e0
h‖+ tnτ1 + tn(τ2 + h2)). (5.52)

with 0 ≤ rk ≤ 3.561. One can see that the right-hand-side second term is the first-order
convergence for large tn. To obtain the second-order convergence in [19], it requires another
restriction condition |Rp| ≤ N0 ¿ N , where the index set |Rp| defined by (1.3). Our result
in Theorem 5.2 shows the robust second-order (optimal) convergence remains valid to a new
ratio condition 0 < rk ≤ rmax ≈ 4.8645− δ, where δ > 0 is a arbitrarily small constant. The
robustness means that the convergence does not need other conditions on the time step like
the constrained condition |Rp| ≤ N0 ¿ N .

6 Numerical Experiments

We now present numerical example to investigate the convergence order of BDF2 with
variable time steps, which is tested on random time meshes. To do so, we set the computa-
tional domain Ω = (0, S)2 with S a positive constant, the final time T = 1, and consider the
following exterior-forced MBE model

ut = −ε∆2u−∇ · f(∇u) + g(x, t). (6.53)

By choosing a suitable function g, the exact solution to (6.53) is constructed as follows

u = cos(t) sin(
2πx

S
) sin(

2πy

S
).

The random time meshes are given by τk = Tχk/C, where C =
∑N

k=1 χk with χk

randomly drawn from the uniform distribution on (0, 1) and the number of spatial meshes
is chosen by M = N . In each run, the error e(N) = ‖u(T )− uN‖ and the numerical rate of
convergence at the final time T = 1 are recorded in Tables 1 and 2, in which the maximum
time step τ and maximum adjacent time step ratio are also listed, where the convergence
rate is calculated by

Order = log2(e(N)/e(2N)).



No. 5 Sharp error estimate of BDF2 scheme with variable time steps for · · · · · · 395

Table 1 Numerical accuracy on random time mesh for S = 2π, ε = 1
N e(N) Order τ max rk

64 1.9293e-03 – 0.0280807 48.0321
128 4.8909e-04 1.980 0.0152735 98.0471
256 1.2007e-04 2.026 0.00745376 1584.01
512 3.0633e-05 1.971 0.00383547 430.559

Table 2 Numerical accuracy on random time mesh for S = 2, ε = 4
N e(N) Order τ max rk

64 8.6542e-04 – 0.0300289 191.022
128 2.1622e-04 2.001 0.0147087 418.406
256 5.4044e-05 2.000 0.0078714 395.573
512 1.3506e-05 2.001 0.00374001 604.021

As shown in Tables 1 and 2, even though the time step is randomly chosen beyond the
constrained condition A1, the BDF2 scheme with variable time steps is robustly stable and
convergent in the second order. In addition for the simulations, the first-step BDF1 does
not bring the loss of accuracy and is consistent with our theoretical analysis.

7 Conclusion

The BDF2 scheme with variable time steps is considered to solve the MBE model
without slope selection. Our proposed BDF2 scheme with BDF1 for the first step is proved to
preserve the discrete energy dissipation law under a new adjacent time-step ratio condition:
rk := τk/τk−1 ≤ 4.8645 − δ, where δ > 0 is a arbitrarily small constant. By using the
techniques of DOC and DCC kernels, we achieve the robust and sharp second-order error
estimate under the condition A1.

Our second-order convergence analysis shows two folds: (i) the variable time steps
under condition A1 will not influence on the convergence order; (ii) the BDF1 scheme
for the first step is consistent to the globally optimal convergence order. This conclusion
removes the doubt of the classical choice of the first level solution with first-order consistent
BDF1 scheme for the sharp second-order convergence. Numerical results demonstrate the
theoretical analysis.
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Appendix

The Proof of Lemma 4.3:

By using the inequality 2ab ≤ a2 + b2, one has

2wk

k∑
j=1

b̃
(k)
k−jwj = 2b̃

(k)
0 w2

k + 2b̃
(k)
1 wkwk−1 ≥ (2b̃

(k)
0 + b̃

(k)
1 )w2

k + b̃
(k)
1 w2

k−1

=
2 + 4rk − r

3/2
k

(1 + rk)
w2

k −
r
3/2
k

(1 + rk)
w2

k−1

=
2 + 4rk − r

3/2
k

(1 + rk)
w2

k −
r
3/2
k

(1 + rk)
w2

k−1

=
r
3/2
k+1

(1 + rk+1)
w2

k −
r
3/2
k

(1 + rk)
w2

k−1 + R̃(rk, rk+1)w2
k, k ≥ 2.

Note that ∂xR̃(x, y) = 1
2
(1+x)−2(1−√x)(x+

√
x+4). Hence, R̃(x, y) is increasing in (0, 1)

and decreasing in (1, rmax) with respect to x. And it is easy to verify that R̃(x, y) is decreasing
in (0, rmax) with respect to y. Thus, R̃(x, y) attains its minimum at (x, y) = (0, rmax − δ) or
(x, y) = (rmax, rmax − δ), namely,

min
0<x,y≤rmax−δ

R̃(x, y) = min{R̃(0, rmax − δ), R̃(rmax − δ, rmax − δ)} = Cδ > 0.

Due to the symmetry of matrix B̃, for any v ∈ Rn, we have

λmin(B̃) = min
v∈Rn

vT B̃v

vT v
= min

v∈Rn

2
vT v

n∑
k=1

wk

k∑
j=1

b̃
(k)
k−jwj ≥ min

1≤k≤n
R̃(rk, rk+1) ≥ Cδ,

which implies that the real symmetric matrix B̃ is positive definite. The last claim holds by
applying the standard Cholesky decomposition to B̃. The proof is complete.

The proof of Lemma 4.4:

The direct calculation from the definition of B̃2 (4.34) produces that

B̃T
2 B̃2 =




d
(1)
0 d

(2)
1

d
(2)
1 d

(2)
0 d

(3)
1

. . . . . . . . .

d
(n−1)
1 d

(n−1)
0 d

(n)
1

d
(n)
1 d

(n)
0




n×n

,

where the elements d
(k)
0 and d

(k)
1 are given by (set r1 ≡ 0)

d
(n)
0 = (

1 + 2rn

1 + rn

)2, d
(k)
0 = (

1 + 2rk

1 + rk

)2 +
r3

k+1

(1 + rk+1)2
, 1 ≤ k ≤ n− 1

d
(k)
1 = −r

3/2
k (1 + 2rk)
(1 + rk)2

, 1 ≤ k ≤ n.
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Using the Gerschgorin circle theorem, one can obtain the upper bound of the maximum
eigenvalue of matrix B̃T

2 B̃2 as

λmax(B̃T
2 B̃2) ≤ max

1≤k≤n−1
{d(k)

0 − d
(k)
1 − d

(k+1)
1 , d

(n)
0 − d

(n)
1 }

= max
1≤k≤n−1

{R̂(rk, rk+1), R̂(rn, 0)} ≤ max
1≤k≤n

R̂(rk, rk+1). (7.54)

It is easy to verify that R̂(x, y) is increasing with respect to x and y. Hence, by the time-step
ratio condition A1 , we have

λmax(B̃T
2 B̃2) ≤ max

1≤k≤n
R̂(rk, rk+1) ≤ R̂(rmax − δ, rmax − δ)

≤ R̂(rmax, rmax) =
4r3

max

(1 + rmax)2
≈ 13.3880 < 14.

The proof is complete

The Proof of Lemma 4.5:

The first claim holds by a simple calculation that

B̂−1
2 B̂(B̂−1

2 )T = B̂−1
2 (B̂T

2 + B̂2)(B̂−1
2 )T = (B̂−1

2 )T + (B̂−1
2 ) = Θ̂.

We now prove the second claim. It follows from Lemma 4.3 that

B̂ = (L̂Λ̂−1
τ )T L̂Λ̂−1

τ ,

together with the Young’s inequality, one has

n∑
k=1

k∑
j=1

θ
(k)
k−j(v

k)T wj = wT Θ̂T
2 v = wT (L̂Λ̂−1

τ )−1L̂Λ̂−1
τ Θ̂T

2 v

≤ ε

2
vT (L̂Λ̂−1

τ Θ̂T
2 )T L̂Λ̂−1

τ Θ̂T
2 v +

1
2ε

wT (L̂Λ̂−1
τ )−1(L̂Λ̂−1

τ )−T w

≤ ε

2
vT Θ̂v +

1
2ε

wT B̂−1w.

The proof is complete.

The Proof of Lemma 4.6:

Consider the gradient matrix of f with respect to v = (v1, v2), namely

∇f(v) =
1

1 + |v|2

(
1− v2

1 + v2
2 −2v1v2

−2v1v2 1− v2
1 + v2

2

)
.

By calculating the eigenvalues of ∇f , one has

µ1(v) =
1− |v|2

(1 + |v|2)2 , µ2(v) =
1

1 + |v|2 ,
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with − 1
8
≤ µ1(v) ≤ 1 and 0 < µ2(v) ≤ 1. The application of Taylor expansion yields

f(v) = f(w) +
∫ 1

0

∇f(θv + (1− θ)w) dθ(v −w).

From the symmetry of ∇f(v), there exists an orthogonal matrix

(
aθ bθ

cθ dθ

)
such that

(
λ1

λ2

)
=

∫ 1

0

(
aθ bθ

cθ dθ

)(
µ1(ξθ)

µ2(ξθ)

)(
aθ cθ

bθ dθ

)
dθ,

where ξθ = θv + (1 − θ)w, and λ1, λ2 are the eigenvalues of matrix
∫ 1

0
∇f(ξθ) dθ, and

µ1(ξθ), µ2(ξθ) are the eigenvalues of matrix ∇f(ξθ). Without loss of generality, here we
assume µ1(ξθ) ≤ µ2(ξθ). It is easy to verify

λ1 =
∫ 1

0

(a2
θµ1(ξθ) + b2

θµ2(ξθ)) dθ, λ2 =
∫ 1

0

(c2
θµ1(ξθ) + d2

θµ2(ξθ)) dθ.

The orthogonality of matrix

(
aθ bθ

cθ dθ

)
yields a2

θ + b2
θ = 1, c2

θ + d2
θ = 1, which implies

µ1(ξθ) ≤ λ1, λ2 ≤ µ2(ξθ). Hence, we have Qf =
∫ 1

0
∇f(θv +(1− θ)w) dθ and its eigenvalues

λ1, λ2 satisfy − 1
8
≤ λ1, λ2 ≤ 1, which implies ‖Qf‖2 ≤ 1. By using the property of matrix

norm that |Ax| ≤ ‖A‖2|x|, one has

|f(v)− f(w)| ≤ ‖∇f(θv + (1− θ)w)‖2|v −w| ≤ |v −w|.
The proof is complete.

The Proof of Lemma 4.7:

From Lemma 4.6, there exist symmetric matrix sequences Qj
f ∈ R2×2 such that

f(vj + wj)− f(vj) = Qj
fwj , 1 ≤ j ≤ n,

where the eigenvalues µj
1, µ

j
2 of Qj

f satisfy − 1
8
≤ µj

1, µ
j
2 ≤ 1.

Define the symmetric matrix

Q := diag(Q1
f , · · · , Qn

f ) ∈ R2n×2n.

The spectral radius of the symmetric matrix Q satisfies ρ(Q) ≤ 1, which implies that ‖Q‖2 ≤
1. According to Lemma 4.5, one has

n∑
k=1

k∑
j=1

θ
(k)
k−j(z

k)T [f(vj + wj)− f(vj)] =
n∑

k=1

k∑
j=1

θ
(k)
k−j(z

k)T Qj
fwj

≤ ε

2
zT Θ̂z +

1
2ε

wT QT B̂−1Qw

= ε

n∑
k=1

k∑
j=1

θ
(k)
k−j(z

k)T zj +
1
2ε

wT QT B̂−1Qw, (7.55)
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where z = ((z1)T , · · · , (zn)T )T and w = ((w1)T , · · · , (wn)T )T . It follows from Lemmas 4.3
and 4.5 that

Θ̂ = (B̂−1
2 )T B̂B̂−1

2 = (L̂Λ̂−1
τ B̂−1

2 )T L̂Λ̂−1
τ B̂−1

2 ,

which implies

wT Θ̂w = ‖L̂Λ̂−1
τ B̂−1

2 w‖2
2.

Then the right term of the last identity in (7.55) can be estimated by

wT Q̂T B̂−1Qw = ‖(L̂−1)T Λ̂τQ̂w‖2
2

= ‖(L̂−1)T Λ̂τQB̂2Λ̂τ L̂−1L̂Λ̂−1
τ B̂−1

2 w‖2
2

≤ ‖(L̂−1)T Λ̂τQB̂2Λ̂τ L̂−1‖2
2w

T Θ̂w

≤ ‖Q‖2
2‖B̃2‖2

2‖L̂−1‖4
2w

T Θ̂w ≤ 2Qδ

n∑
k=1

k∑
j=1

θ
(k)
k−j(w

j)T wk,

where the commutativity Λ̂τQ = QΛ̂τ is used and Qδ is defined in (4.37). Inserting the
above estimate to (7.55), one can obtain the first claim. The second claim can be proved by
taking ε =

√Qδ in the first claim. The proof is complete.
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无倾斜选择的分子束外延模型变步长BDF2格式的最优误差估计

张继伟1, 赵成超2

(1. 武汉大学数学与统计学院; 计算科学湖北省重点实验室, 湖北武汉430072)

(2. 北京计算科学研究中心应用与计算数学部, 北京100193)

摘要: 对于没有斜率选择的分子束外延模型，具有可变时间步长的两步向后微分公式（BDF2）的稳

定性和收敛性仍未被完全解决。在本文中，我们首先证明了该BDF2格式在新的相邻时间步长比条件下保持

修正的能量耗散定律：rk := τk/τk−1 ≤ 4.8645− δ，其中δ > 0是给定的任意小常数。然后，我们介绍了最近

发展的离散正交卷积（DOC）和离散互补卷积（DCC）核技巧，并在新的比率条件rk ≤ 4.8645 − δ下给出

了BDF2格式的鲁棒且最优的二阶收敛性。鲁棒性意味着，除了rk ≤ 4.8645 − δ以外，收敛性不需要其他时

间步长上的约束条件。此外，我们的分析表明，使用一阶BDF1格式计算第一步数值解足以确保全局最优收

敛阶。也就是说，选择BDF1格式计算起始步的数值解不会导致全局二阶收敛的损失。数值算例验证了我们

的理论分析。
关键词: 变步长BDF2; 离散正交卷积(DOC)核;离散互补卷积(DCC)核; 误差卷积结构(ECS); 最优误

差估计; 分子束外延(MBE)模型
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