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Abstract: In this paper, we study the problem of boundary sampled-data feedback stabiliza-

tion for parabolic equations. By using modal decomposition, we show that there exists boundary

proportional sampled-data feedback locally exponentially stabilize a class of parabolic equations,

and the admissible sampling interval of this feedback is maximal among all feasible proportional

sampled-data feedbacks.
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1 Introduction

In this work, we study the following parabolic equation with boundary control





∂y

∂t
= ∆y + f(x, y), in (0,+∞) × Ω,

y = u on (0,+∞) × Γ1,
∂y

∂n
= 0 on (0,+∞) × Γ2,

y(0, x) = y0(x), in Ω,

(1.1)

where Ω is a bounded and open domain of R
d with a smooth boundary ∂Ω = Γ1 ∪ Γ2, Γ1,

Γ2 being connected parts of ∂Ω, and n stands for unit outward normal on the boundary

∂Ω. y0 ∈ L2(Ω) is the initial data, and f is a nonlinear function defined on Ω̄ × R. The

sampled-data controller u is applied on Γ1 while Γ2 is insulated. By sampled-data control,

we mean that the control is a piecewise constant function in time. More exactly, it is of the

form

u(t, x) =

∞∑

i=0

χ[ti,ti+1)(t)ui, ui ∈ L
2(Γ1). (1.2)
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Here χ[ti,ti+1) is the characteristic function of interval [ti, ti+1) for i = 0, 1, 2, ..., where 0 =

t0 < t1 < · · · < ti < ti+1 < · · · , with limi→∞ ti = ∞, are sampling time instants, the positive

numbers Ti = ti+1 − ti, (i = 0, 1, 2, · · · ) are called the sampling intervals.

Sampled-data feedback stabilization is a well-studied topic for finite dimensional systems

due to the fact that modern control systems employ digital technology for the implementation

of the controller. However, for sampled data feedback stabilization of infinite dimensional

systems, the research results are relatively few.

To stabilize the infinite dimensional systems by sampled-data feedback control, most of

existed works applied directly the feedback which works for the continuous-time case (see

[1–4]). It was shown that the continuous-time stabilizing feedback can stabilize the sampled-

data system when the sampling intervals are small enough. However, the requirement that

sampling intervals are sufficiently small is not reasonable from two perspectives: smaller

sampling intervals require faster, newer and more expensive hardware; performing all control

computations might not be feasible, when the sampling interval is too small (see Section 1.2 in

[5]). Recently, the second author and collaborators considered the stabilization of parabolic

equations with periodic sampled-data control, and developed methods to design feedback

laws for any known sampling period (see [6, 7]).

For the case when the sampling intervals are variable and uncertain, usually it is unable

to design a feedback to stabilize the system for arbitrary sampling intervals. What we can do

is try to find a feedback such that its admissible sampling interval is largest. By admissible

sampling interval of a sampled-data feedback, we mean that for all sampling instants whose

sampling intervals are less than or equal to it, the feedback stabilizes the equation (It’s

mathematical definition will be given in Definition 2.1). In general, it is very difficult and

almost impossible to find such an optimal one from all feedbacks. In this work, we consider

a class of special feedbacks, i.e. the proportional feedbacks. Such kind of feedback controls

are simple, and easy to be implemented, and they have been used by V.Barbu and later

on developed by I. Munteanu to stabilize various systems under continuous-time boundary

feedback control in [8–10]. Giving the decay rate and the lower bound of sampling intervals,

under the assumption proposed by V.Barbu, we shall construct an explicit sampled-data

feedback to exponentially stabilize the parabolic equations, and the admissible sampling

interval of the feedback is maximal among all feasible proportional feedbacks.

The main novelties of this work can be summarized as following: Firstly, compared with

[6] and [7], we consider in this work the case that the sampling intervals are variable and

uncertain, and the feedbacks do not depend on the sampling intervals but only the lower

bound of these intervals. Secondly, comparing with existed literatures, this work makes the

first attempt to achieve the largest admissible sampling interval.

The rest of this paper is organized as follows. In Section 2, we shall construct the

feedback control, and prove that it stabilizes the linearized equation and it maximizes the

admissible sampling interval. In Section 3, we will show the feedback control constructed in

Section 2 also locally exponentially stabilizes the semilinear parabolic equations.
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2 Stabilization of the Linearized Equation

2.1 The Linearization of Semilinear Parabolic Equation and Notations

The equilibrium solutions ye ∈ C
2(Ω̄) is any solution to the equation

4ye + f(x, ye) = 0 in Ω,
∂ye

∂n
= 0 on Γ2.

Translating ye into zero via substitution y − ye → y, we can rewrite (1.1) as




∂y

∂t
= 4y + f(x, y + ye) − f(x, ye), in (0,+∞) × Ω,

y = u− ye on (0,+∞) × Γ1,
∂y

∂n
= 0 on (0,+∞) × Γ2,

y(0, x) = y0(x) − ye(x), in Ω,

(2.1)

and the stabilization problem reduces to design a sampled-data controller u =
∑∞

i=0 χ[ti,ti+1)(t)ui

to stabilize the corresponding closed loop system.

The first step toward this goal is the stabilization of the linearized system associated

with (2.1), that is




∂y

∂t
= 4y + fy(x, ye)y, in (0,+∞) × Ω,

y = v on (0,+∞) × Γ1,
∂y

∂n
= 0 on (0,+∞) × Γ2,

y(0, x) = ỹ0(x), in Ω,

(2.2)

where fy(x, ye) = ∂f

∂y
(x, ye). The stabilizing feedback controller v =

∑∞

i=0 χ[ti,ti+1)(t)F (y(ti))

for (2.2) will be used afterwards to stabilize locally system (2.1), and implicitly the equilib-

rium solution ye.

Everywhere in the following, we shall assume that f, fy ∈ C(Ω̄,R).

In particular, this implies that x → fy(x, ye(x)) is continuous in Ω̄. We define the

linear operator A : D(A) → L2(Ω) by Ay = −4y − fy(x, ye(x))y, where D(A) = {y ∈

H2(Ω); y = 0 on Γ1,
∂y

∂n
= 0 on Γ2}. Since the resolvent of A is compact, it has countable set

of eigenvalues. We assume that the operator A has at least one negative eigenvalue. Given

ρ > 0, let {λj}
∞
j=1, with

λ1 ≤ λ2 ≤ · · · ≤ λN < ρ ≤ λN+1 ≤ · · · (2.3)

be the family of all eigenvalues of A and let {φj}
∞
j=1 be the family of the corresponding

eigenfunctions, which forms an orthonormal basis of L2(Ω). For each M ∈ N
+, let XM =

span{φj}
M
j=1, and let PM be the orthogonal projection from L2(Ω) onto XM . We denote

by QN : L2(Ω) → R
N the operator QN(y) = (〈y, φ1〉, · · · , 〈y, φN〉)

′

. Here B′ stands for the

transposition of the matrix of B. In the rest of the paper, we shall denote by ‖ · ‖, ‖ · ‖s, | · |0

and | · |N the norms of L2(Ω), Hs(Ω), L2(Γ1) and R
N respectively. The inner products in

L2(Ω), L2(Γ1) and Euclid space R
N will be denoted by 〈·, ·〉, 〈·, ·〉0 and 〈·, ·〉N .

The notion of the solution to the equation (2.2) with sampled-data Dirichlet boundary

condition was given in [6]. It is known that, for each v =
∑∞

i=0 χ[ti,ti+1)(t)vi with vi ∈ L2(Γ1),

there exists a unique solution y ∈ C([0,+∞);L2(Ω)) (see Theorem 2.1 in [6]).



208 Journal of Mathematics Vol. 42

2.2 The Stabilization of the Linearized Equation

To get the stabilization result, we give the following assumption on {
∂φj

∂n
}Nj=1, where

∂φj

∂n

is the normal derivative of φj to ∂Ω.

(Hn) The system {(
∂φj

∂n
), 1 ≤ j ≤ N} is linearly independent on Γ1.

It should be mentioned that (Hn) is a standard hypothesis in boundary stabilization

theory of parabolic-like equations (see e.g., [8, 9, 11]). We note that (Hn) holds if N = 1 for

d = 1. For the case d > 1, (Hn) usually holds.

In practice, the sampling intervals should not tend to zero. Hence, we make the following

assumption throughout this work:

(Hs) Ti = ti+1 − ti ≥ T , i = 0, 1, 2, · · · , where T > 0 is given.

We introduce firstly the proportional feedbacks we shall consider. Let

F ={F : L2(Ω) → L2(Γ1); F (w) = 1Γ1
〈B−1

0 ΛQN(w),
∂ΦN

∂n
〉N , Λ ∈ S}, (2.4)

where B0 = (〈∂φi

∂n
,
∂φj

∂n
〉0)1≤i,j≤N , ∂ΦN

∂n
= (∂φ1

∂n
, ∂φ2

∂n
, · · · , ∂φN

∂n
)
′

∈ (L2(∂Ω))N , S = {Λ ∈

R
N×N ; Λ = diag(γj)1≤j≤N , γj ∈ R}, and 1Γ1

: L2(∂Ω) → L2(Γ1) is the restriction operator.

According to the assumption (Hn), we know that matrix B0 is invertible. From (2.4), we see

that the feedback F ∈ F depends on the diagonal matrix Λ, and we need to get the feedback

F by designing Λ := diag(γj)1≤j≤N , where γj , 1 ≤ j ≤ N are N real numbles to be designed.

The equation (2.2) with sampled-data feedback control

v(t) =

∞∑

i=0

χ[ti,ti+1)(t)F (y(ti)), (2.5)

where F ∈ F , can be written as





∂y

∂t
= 4y + fy(x, ye)y in (0,+∞) × Ω,

y =
∑∞

i=0 χ[ti,ti+1)(t)F (y(ti)) on (0,+∞) × Γ1,
∂y

∂n
= 0 on (0,+∞) × Γ2, y(0, x) = ỹ0(x), in Ω.

(2.6)

Let ρ be given by (2.3) and T be given in (Hs). We give the notion of the admissible

sampling interval of a feedback.

Definition 2.1 (i) We call F ∈ F a feasible feedback if F ∈ Fρ, where Fρ is given by

Fρ ={F ∈ F | ∃{ti}
∞
i=0 satisfying Ti = ti+1 − ti ≥ T ,

equation (2.6) with F is exponentially stable with decay rate ρ}.
(2.7)

(ii) For each F ∈ Fρ, we define

TF =sup{ T̂ | ∀ {ti}
∞
i=0 satisfying T ≤ ti+1 − ti ≤ T̂ ,

equation (2.6) with F is exponentially stable with decay rate ρ},
(2.8)

and call TF the admissible sampling interval of F .
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Remark 2.2 Arbitrarily giving T < T F , from above definition, we see that, ∀ {ti}
∞
i=0

satisfying Ti = ti+1 − ti ∈ [T , T ], the system (2.6) can be exponentially stabilized by the

boundary sampled-data feedback F .

Then the problem we shall study in this section can be formulated as follows.

Problem (PT ,ρ) Find the optimal feedback F ∗ ∈ Fρ, such that the feedback F ∗

maximizes the admissible sampling interval, that is

TF∗ = T
∗

:= max
F∈Fρ

{TF}. (2.9)

The following theorem contains the main results of this section, which give the optimal

value and the optimal solution of the Problem (PT ,ρ).

Theorem 2.3 Assume ỹ0 ∈ L2(Ω), under the assumptions (Hn) and (Hs), the following

results are true:

(i) The maximal value T
∗

satisfies T
∗
< +∞, and it is given by

T
∗

= T (j0) = min{T (j), j = 1, 2, · · · , N}, (2.10)

where, for each j = 1, 2, · · · , N , T (j) is uniquely determined by the following equation

αj(T ) = βj(T
(j)). (2.11)

Here, αj(t) and βj(t) are real functions defined by

αj(t) =
−e−ρt + e−λjt

∫ t
0
e−λjsds

, βj(t) =
e−ρt + e−λjt

∫ t
0
e−λjsds

, t > 0, j = 1, 2, · · · , N. (2.12)

(ii) The optimal solution of (PT ,ρ) is given by

F ∗(w) = 1Γ1
〈B−1

0 Λ∗QN(w),
∂ΦN

∂n
〉N , (2.13)

where

Λ∗ = diag(γ∗j )1≤j≤N , γ
∗
j ∈ [αj(T ), βj(T

(j0))]. (2.14)

Moreover, ∀ {ti}
∞
i=0 satisfying Ti = ti+1 − ti ∈ [T , T

∗
], the system (2.6) can be exponentially

stabilized with decay rate ρ by the boundary sampled-data feedback F ∗.

Remark 2.4 (i) From the above results in Theorem 2.3, we know that γ∗
j0

= αj0(T ) =

βj0(T
∗
). For j ∈ {1, 2, · · · , N} \ {j0}, we have that γ∗

j ∈ [αj(T ), βj(T
∗
)]. It might happen

that βj(T
∗
) > αj(T ), so the optimal solution of (PT ,ρ) is not necessary unique.

(ii) We can see from (2.10) and (2.11) that T
∗

depends on T and ρ.

• When we fix the decay rate ρ, the larger T , the larger T
∗
, but the smaller the difference

between T
∗

and T . Moreover, we can see that T
∗
− T → 0 when T → ∞.

• When we fix the lower bound of sampling interval T , the smaller the decay rate ρ, the

larger T
∗
, and T

∗
→ ∞ when ρ→ 0.
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(iii) The key point to solve Problem (PT ,ρ) can be explained roughly as follows: We

firstly reduce the stabilization of system (2.6) to solve the following inequalities with respect

to γj , j = 1, 2, · · · , N ,

|e−λjTi −

∫ Ti

0

e−λjsdsγj | ≤ e−ρTi .

For each j, there is a largest T (j), which is exactly given by (2.11), such that for any

Ti ∈ [T , T (j)], the above inequality has solution. Then T
∗

is the minimum of {T (j)}Nj=1.

(iv) The above design applies as well to equation (2.6) with homogeneous Dirichlet

condition on Γ2 and Dirichlet actuation on Γ1, that is y = u on Γ1; y = 0 on Γ2, or to the

Neumann boundary control, but we omit the details.

To prove Theorem 2.3, we shall use the Dirichlet map to lift the boundary condition,

and transfer the nonhomogeneous problem to a homogeneous one. This preliminary result

will be presented in Lemma 2.5, and it will not only be used in the proof of Theorem 2.3,

but also useful for the proof of stabilization for the nonlinear equation (1.1).

To state Lemma 2.5, we need to introduce the so-called Dirichlet map. It is well-known

that for sufficiently large k > 0, the solution to the equation

{ ∑N

j=1(k − λj)〈ψ, φj〉φj −4ψ − fy(x, ye)ψ = 0, in Ω,

ψ = w on Γ1,
∂ψ

∂n
= 0 on Γ2,

(2.15)

exists for any given w ∈ L2(Γ1). We shall denote by D the map w → ψ, i.e., ψ = Dw. It is

known that ψ ∈ H
1
2
+s(Ω) and ‖ψ‖ 1

2
+s ≤ C‖w‖s, ∀s ≥ 0 (see [12]).

Lemma 2.5 For any given F ∈ Fρ, the solution to equation (2.6) is exponentially

stable with decay rate ρ, if and only if the solution to equation





dz
dt

+ Az(t) = R(h) in R
+ \ ∪∞

i=0{ti},

z(ti) = z(t−i ) + h(ti−1) − h(ti), i = 0, 1, 2, · · · ,

z(0) = y(0) − h(0),

(2.16)

is exponentially stable with decay rate ρ, where h is given by

h = D

(
∞∑

i=0

χ[ti,ti+1)(t)F (y(ti))

)
, (2.17)

and

R(h) =

N∑

j=1

(k − λj)〈h, φj〉φj . (2.18)

Proof We will divide the proof into two steps.

Step 1 We prove the relation of y and z. We will find the relationship between y and

z by lifting the boundary condition for equation (2.6).

Setting z̃(t, x) = y(t, x) − h(t, x), by (2.6), (2.15) and (2.17), it is not difficult to prove

that z̃ satisfies exactly equation (2.16) (The second identity of (2.16) holds because y is
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continuous). Hence, z̃(t, x) = z(t, x) and

z(t, x) = y(t, x) − h(t, x). (2.19)

Moreover, by the definition of h and the continuity of y(t), we know that h(ti) = DFy(t−i ) =

DF [z(t−i ) + h(ti−1)].

Step 2 We prove the equivalence of the stability. Suppose that ∃C1 > 0, s.t.

‖z(t)‖ ≤ C1e
−ρt‖z(0)‖,∀t > 0. (2.20)

Firstly, we rewrite the control v(t) =
∑∞

i=0 χ[ti,ti+1)(t)F (y(ti)) in a feedback form of z.

Denote by yN , zN and hN respectively the vectors QNy, QNz and QNh. Using equation

(2.15) and the definition of φj , by simple calculation, we can get that, for 1 ≤ j ≤ N ,

〈h(t), φj〉 = −
1

k
〈v(t),

∂φj

∂n
〉0. (2.21)

By the definition of v(t), it follows from the above identity that

hN(t) = −

∞∑

i=0

χ[ti,ti+1)(t)diag(
γj

k
)1≤j≤NyN(ti). (2.22)

By (2.22), and the relation between y and z, one can obtain that

yN(ti) = diag(
k

k + γj
)1≤j≤NzN(ti), (2.23)

and

hN = −

∞∑

i=0

χ[ti,ti+1)(t)diag(
γj

k + γj
)1≤j≤NzN(ti). (2.24)

Moreover, by the definition of v, we have

v(t) =

∞∑

i=0

χ[ti,ti+1)(t)F (y(ti)) =

∞∑

i=0

χ[ti,ti+1)(t)F̃ (z(ti)), (2.25)

where F̃ : L2(Ω) → L2(Γ1) is the operator given by

F̃ (w) = 1Γ1
〈B−1

0 Λdiag(
k

k + γj
)1≤j≤NQNw,

∂ΦN

∂n
〉N . (2.26)

By (2.17), (2.20) and (2.25), it follows that ‖h(t)‖ ≤ C2e
−ρt‖z(0)‖. From the relation of y,

h, and z, we can get

‖y(t)‖ ≤ ‖z(t)‖+ ‖h(t)‖ ≤ C3e
−ρt‖z(0)‖ ≤ C3e

−ρt(‖y(0)‖+ ‖h(0)‖).

Using (2.17), we have ‖h(0)‖ ≤ C4‖y(0)‖. In summary, one can obtain that, ∃C > 0, s.t.

‖y(t)‖ ≤ Ce−ρt‖y(0)‖.
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On the other hand, suppose that ∃C5 > 0, ρ > 0, s.t. ‖y(t)‖ ≤ C5e
−ρt‖y(0)‖. For the

same reason, one can obtain that ∃C > 0, s.t. ‖z(t)‖ ≤ Ce−ρt‖z(0)‖.

This completes the proof of Lemma 2.5.

Now, we give the proof of Theorem 2.3.

Proof of Theorem 2.3 We shall prove Theorem 2.3 by three steps: firstly, we

show that T F∗ ≥ T (j0) by proving that the feedback F ∗ can stabilize equation (2.6) for

all sampling intervals which are less than or equal to T (j0); secondly, we will prove that

T
∗

= T (j0) by contradiction; finally, we can see from above two steps and the fact T
∗
≥ TF∗

that T
∗

= TF∗ = T (j0). Hence, the optimality of F ∗ follows.

Step 1 We prove T F∗ ≥ T (j0). It suffices to prove the stability of equation (2.6) under

the feedback F ∗ for all sampling intervals which are less than or equal to T (j0). To this aim,

we show firstly the stability of equation (2.16), where F = F ∗, Ti ∈ [T , T (j0)], i = 0, 1, 2, · · · .

Multiplying equation (2.16) by φ1, φ2, · · · , φN respectively in L2(Ω), and using identity

(2.23) and (2.24), one can obtain the equation satisfied by zN as follows,




d
dt

zN(t) + ANzN(t) = −
∑∞

i=0 χ[ti,ti+1)(t)diag(
(k−λj )γ∗

j

k+γ∗

j

)1≤j≤NzN(ti),

t ∈ (0,∞) \ ∪∞
i=0{ti},

zN(ti) = diag(
k+γ∗

j

k
)1≤j≤NzN(t−i ) − diag(

γ∗

j

k
)1≤j≤NzN(ti−1), i = 1, 2, · · · ,

zN(0) = diag(
k+γ∗

j

k
)1≤j≤NyN (0),

(2.27)

where AN = diag{λj}1≤j≤N . Then, for each i ∈ N, by the first equation in (2.27) on the

interval [ti, ti+1), we can obtain by a direct calculation that

zN(t−i+1) = e−ANTizN(ti) −

∫ Ti

0

e−ANsdsdiag(
(k − λj)γ

∗
j

k + γ∗j
)1≤j≤NzN(ti). (2.28)

It follows from the above equation and the second equation in (2.27) that

zN(ti+1) = G(Ti)z
N(ti), (2.29)

where

G(Ti) = e−ANTi −

∫ Ti

0

e−ANsdsΛ∗, Ti ∈ [T , T (j0)]. (2.30)

Since the matrix G(Ti) is a diagonal matrix, its eigenvalues are

σj = e−λjTi −

∫ Ti

0

e−λjsdsγ∗j , j = 1, 2, · · · ,N. (2.31)

It is not difficult to prove that αj(t) and βj(t), which are defined in (2.12), are decreasing

with respect to t. Therefore, ∀Ti ∈ [T , T (j0)], j = 1, 2, · · · , N , we have

αj(Ti) ≤ αj(T ), βj(Ti) ≥ βj(T
(j0)). (2.32)

By (2.14) and (2.31), for each j = 1, 2, · · · , N , we have

e−λjTi −

∫ Ti

0

e−λjsdsβj(T
(j0)) ≤ σj ≤ e−λjTi −

∫ Ti

0

e−λjsdsαj(T ).
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It follows by the above inequalities and (2.32) that

e−λjTi −

∫ Ti

0

e−λjsdsβj(Ti) ≤ σj ≤ e−λjTi −

∫ Ti

0

e−λjsdsαj(Ti).

The above inequalities, together with (2.12), imply that

|σj | ≤ e−ρTi . (2.33)

Therefore, we have |λmax(G(Ti))| ≤ e−ρTi . It follows that

|zN(ti+1)|N ≤ e−ρTi |zN(ti)|N .

Hence, for i = 1, 2, · · · , it follows that

|zN(ti)|N ≤ e−ρTi−1 |zN(ti−1)|N ≤ e−ρ(Ti−1+Ti−2)|zN(ti−2)|N

≤ · · · ≤ e−ρ
∑i−1

0
Ti |zN(0)|N = e−ρti |zN(0)|N .

(2.34)

Now, for any t > 0, there exists i ∈ N, such that t ∈ [ti, ti+1), and by (2.27), we know that

|zN(t)|N =|e−AN (t−ti)zN(ti) −

∫ t

ti

e−AN (t−s)ds diag(
(k − λj)γ

∗
j

k + γ∗j
)1≤j≤NzN(ti)|N

≤C0|z
N(ti)|N ≤ C0e

−ρti |zN(0)|N ≤ Ce−ρt|zN(0)|N .

(2.35)

Hence, the first N modes of z are stable. It follows immediately by (2.17) and (2.25), that

‖h(t)‖ ≤ Ce−ρt|zN(0)|N , ∀t > 0. (2.36)

Now we consider the high frequency part zS(t) = (I−PN )z. Denote by AS = (I−PN)A.

Given t > 0, there exists i ∈ N, such that t ∈ [ti, ti+1), then, we can see from equation (2.27)

and the fact (I − PN)R = 0 that

zS(t) =e−AS(t−ti)zS(ti) +

∫ t

ti

e−AS(t−s)(I − PN)Rds

=e−AS(t−ti−1)zS(ti−1) + e−AS(t−ti)[(I − PN)(h(ti−1) − h(ti))].

(2.37)

Doing step by step as above, it follows that

zS(t) =e−AStzS(0) +

i∑

j=1

e−AS(t−tj)[(I − PN)(h(tj−1) − h(tj))]. (2.38)

Using (2.36), and notice that ρ < λN+1, we can obtain that

‖zS(t)‖ ≤e−λN+1t‖zS(0)‖ + Ce−ρt|zN(0)|N ≤ Ce−ρt‖z(0)‖, ∀t > 0. (2.39)

Now we can see from (2.35) and (2.39) that

‖z(t)‖ ≤ Ce−ρt‖z(0)‖, ∀t > 0. (2.40)
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Finally, by Lemma 2.5, we obtain that

‖y(t)‖ ≤ Ce−ρt‖ỹ0‖, ∀t > 0. (2.41)

This implies that T F∗ ≥ T (j0).

Step 2 We prove T
∗

= T (j0). We shall prove it by contradiction. Obviously, T
∗
≥

TF∗ ≥ T (j0). We suppose T
∗
6= T (j0), then T

∗
> T (j0). Moreover, there exists

F
′

= 1Γ1
〈B−1

0 Λ
′

QN (w),
∂ΦN

∂n
〉N ∈ Fρ,

where Λ
′

= {γ
′

j}
N
j=1, such that, T F ′ > T (j0). We choose T̃ ∈ (T (j0), TF ′ ). Then, ∀{ti}

∞
i=0

satisfying Ti = ti+1 − ti ∈ [T , T̃ ], equation (2.6) with F = F
′

is exponentially stable with

decay rate ρ. Take ỹ0 satisfying z(0) = ỹ0 − h(0) = ỹ0 −DFỹ0 = φj0 (such ỹ0 exists because

I −DF is invertible. See the proof of Theorem 3.1 in [13]). Then, by Lemma 2.5, for any

Ti ∈ [T , T̃ ], the solution to equation (2.16) with F = F
′

, z(0) = φj0 satisfies

|zj0(t)| ≤ ‖z(t)‖ ≤ Ce−ρt‖z(0)‖ = Ce−ρt‖φj0‖, ∀t > 0, (2.42)

where zj(t) = 〈z(t), φj〉, for j = 1, 2, · · · .

On the other hand, we claim that, at least one of the following two inequalities holds

|e−λj0
T −

∫ T

0

e−λj0
sdsγ

′

j0
| > e−ρT , (2.43)

|e−λj0
T̃ −

∫ T̃

0

e−λj0
sdsγ

′

j0
| > e−ρT̃ . (2.44)

Indeed, if (2.43) and (2.44) are both not correct, then by solving the opposite inequalities of

(2.43) and (2.44), we have that

αj0(T ) ≤ γ
′

j0
≤ βj0(T ), (2.45)

and

αj0(T̃ ) ≤ γ
′

j0
≤ βj0(T̃ ). (2.46)

By (2.45) and (2.46), we see that αj0(T ) ≤ βj0(T̃ ). By the definition of T (j0) (see (2.10) and

(2.11)) and the monotone decreasing of αj0(t) and βj0(t) with respect to t, we know that

αj0(T ) = βj0(T
(j0)) > βj0(T̃ ). This leads to contradiction, and our claim is proved.

Without loss of generality, we suppose (2.44) is valid. We take Ti = T̃ , i = 0, 1, 2, · · · .

By (2.44), we have |σ
′

j0
| > e−ρT̃ , where σ

′

j0
is the real number given by (2.31) with γ∗

j0
= γ

′

j0
.

Now, we can find 0 < ρ̃ < ρ, such that

|σ
′

j0
| > e−ρ̃T̃ > e−ρT̃ .

For any i = 1, 2, · · · , by (2.29), we have

|zj0(ti)| =|σ
′

j0
||zj0(ti−1)| > e−ρ̃T̃ |zj0(ti−1)| > · · · > e−ρ̃iT̃ |zj0(0)| = e−ρ̃iT̃ ‖φj0‖. (2.47)
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It follows by (2.42) and (2.47) that, for any i ∈ N,

e−ρ̃iT̃ ‖φj0‖ < |zj0(ti)| ≤ Ce−ρti‖φj0‖ = Ce−ρiT̃ ‖φj0‖.

Multiplying both sides of the above equation by eρiT̃ , we have that

e(ρ−ρ̃)iT̃‖φj0‖ < C‖φj0‖, ∀i ∈ N.

When i is large enough, this leads to contradiction. So we obtain that T
∗

= T (j0).

Step 3 We prove the optimality of F ∗. Obviously, T
∗
≥ TF∗ . By Step 1 and Step 2,

we see that T
∗

= TF∗ = T (j0). This implies the optimality of F ∗. Moveover, from Step 1,

∀ {ti}
∞
i=0 satisfying Ti = ti+1 − ti ∈ [T , T

∗
], the system (2.6) can be exponentially stabilized

with decay rate ρ by the boundary sampled-data feedback F ∗.

This completes the proof of Theorem 2.3.

3 Stabilization of Nonlinear Equation

Let ε ∈ (0, 1
2
) be an arbitrarily given number. Assume that

(Hf ) |f(x, y+ ye)− f(x, ye)− fy(x, ye)y| ≤ C
∑l

i=1 |y|
pi , where l is a positive integer,

p1 ≤ p2 ≤ · · · ≤ pl, and pi, i = 1, 2, · · · , l, satisfy that

0 < pi <
1

ε
, if n = 1; 0 < pi <

n+ 1 + 2ε

n− 1 + 2ε
, if n > 1.

For the stabilization of the semilinear parabolic equation (1.1), we have the following

result.

Theorem 3.1 Given 0 < µ < ρ, ρ was given by (2.3). Under assumptions (Hn), (Hs)

and (Hf ), when Ti ∈ [T , T
∗
], y0 ∈ H

1
2
−ε(Ω) and ‖y0−ye‖ 1

2
−ε small enough, the feedback F ∗,

given by (2.13), locally stabilizes equation (1.1). More exactly, there exist constants C > 0,

and δ > 0, such that for all {ti}
∞
i=0 satisfying Ti = ti+1 − ti ∈ [T , T

∗
], and all y0 ∈ H

1
2
−ε(Ω)

satisfying ‖y0 − ye‖ 1
2
−ε ≤ δ, the solution to the equation





∂y

∂t
= 4y + f(x, y), in (0,+∞) × Ω,

y =
∑∞

i=0 χ[ti,ti+1)(t)F
∗(y(ti) − ye) + ye on (0,+∞) × Γ1,

∂y

∂n
= 0 on (0,+∞) × Γ2, y(0, x) = y0(x), in Ω,

satisfies

‖y(t)− ye‖ 1
2
−ε ≤ Ce−µt‖y0 − ye‖ 1

2
−ε, ∀t > 0.

The proof of this theorem is similar to that of Theorem 3.1 in [6]. Therefore, we omit

the proof here.
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