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Abstract: In this paper, we studied the collection problem under Bernoulli’s trials and

derived a probability function of the multinomial geometric distribution by using the theory of

mixture lattice point sets. Further, we proposed a uniform multinomial geometric distribution

when the probabilities of each of the trial outcomes are assumed to be equal in Bernoulli’s trial.

Moreover, we obtained the probability functions, the expectation, and the variance of the two types

of distributions, and verified the differences between these two types of distributions and the normal

distribution by means of simulations. Finally, we developed a polynomial regression model on the

probability and the number of trials from the simulation results, which can be used to simplify the

calculation effectively.
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1 Introduction

Geometric distribution is an important kind of probability distribution, which has been

widely used in practice. According to the actual situation, geometric distribution has many

important generalizations. For example, Muwafi(1980) studied the k order geometric dis-

tribution by Fibonacci sequence, Philippou, et al(1980) further deduced the properties and

characteristic functions of this distribution. Miller(2008) introduced the properties and ap-

plications of geometric distribution.

In the past decade, geometric distribution has been widely used. Jayakumar(2018),

Ahmed, et al (2014) introduced the Weibull geometric distribution . The beta geometric

distribution studied by Kemp and Adrienne (2001), and some other applications can be seen

in Porwal (2018), Pedro, et al (2014)among others.

In many cases, we need to consider an important kind of problem, which we call�
collection problem � . The problem is described as: a Bernoulli experiment, one outcome

with m different results A1, A2, · · · , Am may observed in a trial. The probability of these m

results is pi = P (Ai), i = 1, 2, · · · ,m, respectively. There are two questions:
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• How many trials are needed until all the m results appear?

• The total number of the trials Y is subject to what distribution?

In the above problems, the experiment will continue until all of A1, A2, · · · , Am or the

r(r < m) results appeared, we are concerned about the probability distribution of Y (the

total number of the trials). Xiao, et al(2015) studied several special cases of this problem.

We further study the characteristics and properties of this kind of distribution basis on these

results. For the one hand, the distribution of Y is constructed by using the theory of mixture

lattice point set. For the other hand, using the mixexp package in R language to carry out

complex calculation in the case of high dimension. The probability distribution, expectation

and variance of Y are calculated and proved strictly.

In this paper, we first give the basic notations and their properties. In Section 3, we

give the probability distribution and the numerical characteristics of the random variable

Y which subject to Multinomial Geometric distribution (MGe). In Section 4, we mainly

introduce a special case, the Uniform Multinomial Geometric distribution(UMGe). We also

discuss the properties and asymptotic distribution of this kind of distribution. In Section

5, the asymptotic properties and estimation methods of MGe and UMGe are discussed by

data simulation. Finally, we put forward some problems that can be further studied.

2 Notations and Preliminaries

We use the notation ,defined in Li and Zhang (2017). For the positive integer n ∈ Z
+,

denote

L{m, n} =

{

nm = (n1, n2, · · · , nm) :

m
∑

i=1

ni = n, ni ≥ 0, ni ∈ Z
+, i = 1, 2, · · · , m

}

as the m components, n order lattice points set on a simplex. It can be decomposed into the

combination of interior point set and boundary point set L{m,n} = Nm(n)∪N 0
m(n), where

Nm(n) = {nm = (n1, n2, · · · , nm) : nm ∈ L{m, n}, ni > 0, i = 1, 2, · · · , m} (2.1)

is the interior point set of L{m,n}, N 0
m(n) = L{m, n}\Nm(n) is the boundary point set of

L{m,n}.

As (2.1) shows, Nm(n) 6= ∅ if and only if n ≥ m, L{m, n} has
(

n+m−1
m−1

)

elements, Nm(n)

has
(

n−1
m−1

)

elements.

We define the index set as

Im(j) =
{

ij = (i1, i2, · · · , ij) : 1 ≤ i1 < i2 < · · · < ij ≤ m, ik ∈ Z
+, k = 1, 2, · · · , j

}

. (2.2)

If Im(j) does not include an index i ∈ {1, 2, · · · ,m}, we denote it by

Im(j\i) = {ij = (i1, i2, · · · , ij) : ij ∈ Im(j), ik 6= i, k = 1, 2, · · · , j} .
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In this paper, we always use the form notation ij = (i1, i2, · · · , ij) to indicate the j

dimensional vector, nm\i = (n1, · · · , ni−1, ni+1 · · · , nm) to indicate the m − 1 dimensional

vector obtained by removing the i-th element from nm.

Let pm = (p1, p2, · · · , pm) be a nonnegative vector, denote

Sn(pm, j) =
∑

ij∈Im(j)

(

m
∑

i=1

pi −

j
∑

k=1

pik

)n
, j = 0, 1, · · · , m − 1. (2.3)

For example, Sn(pm, 0) =
(

m
∑

i=1

pi

)n
, Sn(pm, 1) =

m
∑

k=1

(

m
∑

i=1

pi − pk

)n
, · · · , Sn(pm,m − 1) =

m
∑

k=1

pn
k . The form of expansion of Sn(pm, j) is as follows

Sn(pm, j) = n!

m−j
∑

k=1

(

m − k

j

)

{

∑

ik∈Im(k)

∑

nk∈Nk(n)

k
∏

l=1

pnl

il

nl!

}

.

When 1 ≤ n ≤ m − 1, we have

m−1
∑

j=0

(−1)jSn(pm, j) = n!

m−n
∑

j=0

{

∑

ij∈Im(j)

∑

nj∈Nj(m)

j
∏

k=1

pnk

ik

nk!

[

m−j
∑

l=0

(

m − j

l

)

(−1)l
]}

= 0.

When n ≥ m, we have

m−1
∑

j=0

(−1)jSn(pm, j) = n!
∑

nm∈Nm(n)

m
∏

k=1

pnk

k

nk!
.

Property 2.1 For any nonnegative vector pm = (p1, p2, · · · , pm) and integer n ≥ 1,

bn(pm) =

m−1
∑

j=0

(−1)jSn(pm, j) = I(n ≥ m)
(

n!
∑

nm∈Nm(n)

m
∏

i=1

pni

i

ni!

)

,

where I(·) is indicator function.

To prove our conclusions, there three properties are proposed as follows.

Property 2.2 The sequence i1, i2, · · · , ij+1 is an arbitrary permutation of 1, 2, · · · , j+1,

if the function g(·) satisfies g(pi1 , pi2 , · · · , pij+1
) = g(p1, p2, · · · , pj+1), then we called the

g(p1, p2, · · · , pj) is symmetrical, and we have

m
∑

i=1

pi

∑

ij∈Im(j\i)

g(pi, pi1 , · · · , pij
)

(

pi + pi1 + · · · + pij

)r+1 =
∑

ij+1∈Im(j+1)

g(pi1 , · · · , pij
, pij+1

)
(

pi1 + · · · + pij
+ pij+1

)r .

Property 2.3 When n ≥ m, (p1 + p2 + · · · + pm)
n

= bn(pm)+n!
∑

nm∈N 0
m(n)

m
∏

k=1

p
nk
k

nk!
> 0,

so we have

bn(pm) < (p1 + p2 + · · · + pm)
n

. (2.4)
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Remark In the above discussion, only required pm to be a nonnegative vector. In

the following, we use pm to represent a probability vector, that is, to satisfy
m
∑

i=1

pi = 1, pi >

0, i = 1, 2, · · · , m.

Now,we discuss the case that pm is a parameter in a multinomial distribution.

Definition 2.1 Random variable X subject to geometric distribution, denote as

X ∼ Ge(p), 0 < p < 1, the probability function of X is P (X = n) = (1 − p)n−1p, n =

1, 2, · · · . Random variable vector (X1, X2, · · · , Xm) subject to multiple distribution, denote

as (X1, X2, · · · , Xm) ∼ M(n,pm),the joint probability function is

P (X1 = n1, X2 = n2, · · · , Xm = nm) = n!

m
∏

k=1

pnk

k

nk!
,

where
m
∑

i=1

pi = 1,
m
∑

k=1

nk = n.

Following the notations and assumption of Definition 2.1 and Property 2.1, for 1 ≤ n ≤

m − 1, we know that the following equation holds.

Sn(pm, 0) −
m−1
∑

j=1

(−1)j−1Sn(pm, j) = 0,

and Sn(pm, 0) =

(

m
∑

i=1

pi

)n

= 1, then we get the following property.

Property 2.4 When 1 ≤ n ≤ m − 1, we have

m−1
∑

j=1

(−1)j−1Sn(pm, j) =

m−1
∑

j=1

(−1)j−1
∑

ij∈Im(j)

(−1)j−1

(

1 −

j
∑

k=1

pik

)n

= 1,

m−1
∑

j=1

(−1)j−1Sn(pm, m − j) =

m−1
∑

j=1

(−1)j−1
∑

ij∈Im(j)

(−1)j−1

(

j
∑

k=1

pik

)n

= (−1)m.

3 Multinomial Geometric Distribution and Its Properties

Based on the Definition 2.1 and the notations given in Section 2, we discuss the proba-

bility distribution function of multiple geometric distribution (MGe) and its properties.

Theorem 3.1 Suppose that A1, A2, · · · , Am are the m different results in each

Bernoulli experiment, pi = P (Ai) > 0, i = 1, 2, · · · , m. When all m results appear, the

total number of the trials Y is subject to MGe distribution, denote it as Y ∼ MGe(pm), the

probability distribution function is

P (Y = n) =

m−1
∑

j=1

(−1)j−1
∑

ij∈Im(j)

(

j
∑

k=1

pik

)(

1 −

j
∑

k=1

pik

)n−1

, n = m, m + 1, · · · . (3.1)
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Proof Let X1, X2, · · · , Xm are the appeared times of A1, A2, · · · , Am in first n − 1

trials, so (X1, X2, · · · , Xm) ∼ M(n − 1,pm). According to the total probability formula,

there are

P (Y = n) =

m
∑

i=1

P (Ai)P (X1 ≥ 1, · · · , Xi−1 ≥ 1, Xi = 0, Xi+1 ≥ 1, · · · , Xm ≥ 1)

=

m
∑

i=1

pi







(n − 1)!
∑

nm−1∈Nm−1(n−1)

m
∏

k 6=i

(

pnk

k

nk!

)







=

m
∑

i=1

pib
n−1(pm\i)

=

m
∑

i=1

pi(1 − pi)
n−1 −

m
∑

i=1

pi

∑

i1∈Im(1\i)

(1 − pi − pi1)
n−1

+

m
∑

i=1

pi

∑

i2∈Im(2\i)

(1 − pi − pi1 − pi2)
n−1 + · · · + (−1)m−2

m
∑

i=1

pi

∑

i1∈Im(1\i)

pn−1
i1

=

m
∑

i=1

pi(1 − pi)
n−1 −

∑

i2∈Im(2)

(pi1 + pi2) (1 − pi1 − pi2)
n−1

+
∑

i3∈Im(3)

(pi1 + pi2 + pi3)(1 − pi1 − pi2 − pi3)
n−1

+ · · · + (−1)m−2
∑

i1∈Im(1)

(1 − pi1)p
n−1
i1

(Property 2.2)

=

m−1
∑

j=1

(−1)j−1
∑

ij∈Im(j)

(

j
∑

k=1

pik

)(

1 −

j
∑

k=1

pik

)n−1

.

Next, we verify its probability regularity.

∞
∑

n=m

P (Y = n) =

∞
∑

n=m

m
∑

i=1

pib
n−1(pm\i)

=

m
∑

i=1

pi

∞
∑

n=m







(1 − pi)
n−1 −

∑

i1∈Im(1\i)

(1 − pi − pi1)
n−1 +

∑

i2∈Im(2\i)

(1 − pi − pi1 − pi2)
n−1

+ · · · + (−1)m−2
∑

i1∈Im(1\i)

pn−1
i1







=

m
∑

i=1

pi







(1 − pi)
m−1

pi

−
∑

i1∈Im(1\i)

(1 − pi − pi1)
m−1

(pi + pi1)
+

∑

i2∈Im(2\i)

(1 − pi − pi1 − pi2)
m−1

(pi + pi1 + pi2)

+ · · · + (−1)m−2
∑

i1∈Im(1\i)

pm−1
i1

(1 − pi1)






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=

m
∑

i=1

(1 − pi)
m−1 −

∑

i2∈Im(2)

(1 − pi1 − pi2)
m−1 +

∑

i3∈Im(3)

(1 − pi1 − pi2 − pi3)
m−1

+ · · · + (−1)m−2

m
∑

i=1

pm−1
i

=

m−1
∑

j=1

(−1)j−1Sm−1(pm, j) (Property 2.4)

= 1.

This completes the proof.

If the stopping condition of the experiment is changed, we give the following two gen-

eralizations.

Corollary 3.1 Stopping the experiment until the specified r results A1, A2, · · · , Ar

appear, the total number of trails is Vr , denote it as Vr ∼ MGe(p1, p2, · · · , pr). The

probability distribution function of Vr is

P (Vr = n) =

r
∑

j=1

(−1)j−1
∑

ij∈Ir(j)

(

j
∑

k=1

pik

)(

1 −

j
∑

k=1

pik

)n−1

, n = r, r + 1, · · · .

Corollary 3.2 Stopping the experiment until the arbitrary r results appear, the

total number of trails is Wr , denote it as Wr ∼ MGe(pm, r). The probability distribution

function of Wr is

P (Wr = n) =
∑

kr∈Im(r)

r−1
∑

j=1

(−1)j−1
∑

ij∈Ir(j)

(

j
∑

l=1

pkil

)(

p0ki
−

j
∑

l=1

pkil

)n−1

, n = r, r + 1, · · · ,

where p0ki
=

r
∑

l=1

pkil
.

According to the Property 2.2, the probability distribution function of Y ∼ MGe(pm)

has upper bound. Let

um(n) =











m
∑

i=1

pi(1 − pi)
n−1 , m is even,

m
∑

i=1

(

pi(1 − pi)
n−1 − (1 − pi)p

n−1
i

)

, m is odd,
(3.2)

then,we have P (Y = n) < un hold, and P (Y = n) = un + o(p−n), 0 < p < 1.

Theorem 3.2 Suppose that Y ∼ MGe(pm), the expectation and second order moment

of Y are as follow:

E(Y ) =

m−1
∑

j=1

(−1)j−1
∑

ij∈Im(j)

(

j
∑

k=1

pik

)−1

+ (−1)m−1, (3.3)
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E(Y 2) =

m−1
∑

j=1

(−1)j−1
∑

ij∈Im(j)

(

j
∑

k=1

pik

)−2(

2 −

j
∑

k=1

pik

)

+ (−1)m−1. (3.4)

Proof Let us first calculate the expectation

E(Y ) =
∞
∑

n=m

nP (Y = n) =
∞
∑

n=m

m
∑

i=1

npib
n−1(pm\i)

=
m
∑

i=1

pi

∞
∑

n=m

{

n(1 − pi)
n−1

−

∑

i1∈Im(1\i)

n(1 − pi − pi1 )n−1 +
∑

i2∈Im(2\i)

n(1 − pi − pi1 − pi2)
n−1

+ · · · + (−1)m−2 ∑

i1∈Im(1\i)

npn−1
i1

}

=
m
∑

i=1

pi

{

m−2
∑

j=0

(−1)j
∑

ij∈Im(j\i)

(

pi +
j
∑

k=1

pik

)−2(

1 − pi −

j
∑

k=1

pik

)m−1 [

(m − 1)
j
∑

k=1

pik
+ 1

]

}

=
m−1
∑

j=1

(−1)j−1
∑

ij∈Im(j)

(

1 −

j
∑

k=1

pik

)m−1
[

(m − 1) +

(

j
∑

k=1

pik

)−1
]

= (m − 1)
m−1
∑

j=1

(−1)j−1 ∑

ij∈Im(j)

(

1 −

j
∑

k=1

pik

)m−1

+
m−1
∑

j=1

(−1)j−1 ∑

ij∈Im(j)

(

1 −

j
∑

k=1

pik

)m−1 ( j
∑

k=1

pik

)−1

= (m − 1) +
m−1
∑

j=1

(−1)j−1 ∑

ij∈Im(j)

(

j
∑

k=1

pik

)−1

+
m−1
∑

j=1

(−1)j−1 ∑

ij∈Im(j)

m−1
∑

l=1

(−1)l
(

m−1
l

)

(

j
∑

k=1

pik

)l−1

.

Let the third item in the above formula be

Q =

m−1
∑

j=1

(−1)j−1
∑

ij∈Im(j)

m−1
∑

l=1

(−1)l

(

m − 1

l

)

(

j
∑

k=1

pik

)l−1

=

(

m − 1

1

)m−1
∑

j=1

(−1)j

(

m

j

)

+

m−1
∑

l=2

(−1)l

(

m − 1

l

)m−1
∑

j=1

(−1)j−1Sl−1(pm, m − j)

= (m − 1) (−1 − (−1)m) + (−1)m

m−1
∑

l=2

(−1)l

(

m − 1

l

)

= − (m − 1) + (−1)m−1.

We can get the conclusion (3.3) by substituting Q into

E(Y ) = (m − 1) +

m−1
∑

j=1

(−1)j−1
∑

ij∈Im(j)

(

j
∑

k=1

pik

)−1

+ Q.

Next,we calculate the second moment. Let

c−h (pm) =

m−1
∑

j=1

(−1)j−1
∑

ij∈Im(j)

(

j
∑

k=1

pik

)−h

, h = 1, 2.
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It can be seen from the above expected calculation process, there is conclusion as

m−1
∑

j=1

(−1)j−1
∑

ij∈Im(j)

(

1 −

j
∑

k=1

pik

)m−1(
j
∑

k=1

pik

)−1

= c−1 (pm) − (m − 1) + (−1)m−1.

The second moment can be obtained by the following calculation.

E(Y 2) =
∞
∑

n=m

n(n + 1)P (Y = n) − E(Y )

=
m−1
∑

j=1

(−1)j−1
∑

ij∈Im(j)

{

m(m + 1)

(

1 −
j
∑

k=1

pik

)m−1

+ 2

(

1 −
j
∑

k=1

pik

)m(
j
∑

k=1

pik

)−2(

1 + m
j
∑

k=1

pik

)

}

−
m−1
∑

j=1

(−1)j−1
∑

ij∈Im(j)

(

1 −
j
∑

k=1

pik

)m−1
[

(m − 1) +

(

j
∑

k=1

pik

)−1
]

=
m−1
∑

j=1

(−1)j−1
∑

ij∈Im(j)

{

(

1 −
j
∑

k=1

pik

)m−1

(m − 1)2 +(2m − 3)

(

j
∑

k=1

pik

)−1

+ 2

(

j
∑

k=1

pik

)−2
}

= (m − 1)2
m−1
∑

j=1

(−1)j−1Sm−1(pm, j)

+ (2m − 3)
m−1
∑

j=1

(−1)j−1
∑

ij∈Im(j)

(

1 −
j
∑

k=1

pik

)m−1(
j
∑

k=1

pik

)−1

+ 2
m−1
∑

j=1

(−1)j−1
∑

ij∈Im(j)

m−1
∑

l=0

(−1)l
(

m−1
l

)

(

j
∑

k=1

pik

)l−2

= (m − 1)2 + (2m − 3) [c−1(pm) − (m − 1) + (−1)m]

+ 2
m−1
∑

j=1

(−1)j−1
∑

ij∈Im(j)

(

(

j
∑

k=1

pik

)−2

−
(

m−1
1

)

(

j
∑

k=1

pik

)−1

+
(

m−1
2

)

)

+ 2
m−1
∑

j=1

(−1)j−1
∑

ij∈Im(j)

m−1
∑

l=3

(−1)l
(

m−1
l

)

(

j
∑

k=1

pik

)l−2

= −(m − 1)(m − 2) + (2m − 3)c−1(pm) + (2m − 3)(−1)m

+ 2c−2(pm) − 2(m − 1)c−1(pm) +
(

m−1
2

)

m−1
∑

j=1

(−1)j−1
(

m

j

)

+ 2
m−1
∑

l=3

(−1)l
(

m−1
l

)

m−1
∑

j=1

(−1)j−1Sl−2(pm, m − j)



No. 2 The Multinomial geometric distribution 137

= 2c−2(pm) − c−1(pm) + 2(−1)m

{

m−1
∑

l=2

(−1)l
(

m−1
l

)

}

− (2m − 3)(−1)m

= 2c−2(pm) − c−1(pm) + (−1)m−1.

For example, suppose Y (m) ∼ MGe(pm), m = 2, 3, 4, there are some results:

P (Y (2) = n) = pn−1(1 − p) + (1 − p)n−1p, n = 2, 3, · · · ;

P (Y (3) = n) =

3
∑

i=1

(pi(1 − pi)
n−1 − (1 − pi)p

n−1
i ), n = 3, 4, · · · ;

P (Y (4) = n) =

4
∑

i=1

[

pi(1 − pi)
n−1 + pn−1

i (1 − pi)
]

−
∑

i2∈I2(4)

(pi1 + pi2)(1 − pi1 − pi2)
n−1, n = 4, 5, · · · ;

E(Y (2)) =
1

p(1 − p)
− 1.

E(Y (3)) = 1 +

3
∑

i=1

(
1

pi

−
1

1 − pi

).

E(Y (4)) =

4
∑

i=1

(
1

pi

+
1

1 − pi

) −
∑

i2∈I2(4)

1

pi1 + pi2

− 1.

4 Uniform Multiple Geometric Distribution

In this section, we mainly discuss a special case of MGe. When the parameter vector

pm = (p1, p2, · · · , pm) , pi =
1

m
, i = 1, 2, · · · , m, we denote MGe (pm) as MGe (m), named

it as Uniform Multiple Geometric distribution(UMGe).

Theorem 4.1 Suppose Y subject to UMGe distribution, we denote it as Y ∼

MGe (m), then the probability distribution function of Y is

P (Y = n) =

m−1
∑

j=1

(−1)j−1

(

m − 1

j − 1

)(

1 −
j

m

)n−1

, n = m,m + 1, · · · . (4.1)

Proof From the condition pi =
1

m
, i = 1, 2, · · · , m, we can get

∑

ij∈Im(j)

(−1)j−1

(

j
∑

k=1

pik

)(

1 −

j
∑

k=1

pik

)n−1

= (−1)j−1

(

m

j

)(

j

m

)(

1 −
j

m

)n−1

.

According to equation (3.1), we have

P (Y = n) =

m−1
∑

j=1

(−1)j−1

(

m − 1

j − 1

)(

1 −
j

m

)n−1

, n = m,m + 1, · · · .

To obtain the expectation and variance of the UMGe distribution, we first give the

following three combined formulas.
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Property 4.1 The following three combination formulas are always held for arbitrary

positive integers m ∈ Z
+.

r1(m) =

m
∑

j=1

(−1)j−1 1

j

(

m

j

)

=

m
∑

j=1

1

j
. (4.2)

r2(m) =

m
∑

j=0

(−1)j 1

(j + 1)
2

(

m

j

)

=
1

m + 1

m+1
∑

j=1

1

j
. (4.3)

m
∑

j=1

(−1)j−1

(

m

j

)(

m

j

)2

=
m2

2







(

m
∑

j=1

1

j

)2

+

m
∑

j=1

1

j2







. (4.4)

Proof For the formula (4.2), because r1(m − 1) =
m−1
∑

j=1

(−1)j−1 1
j

(

m−1
j

)

, where

r1(m) =

m−1
∑

j=1

(−1)j−1 1

j

(

m

j

)

+ (−1)m−1 1

m

=

m−1
∑

j=1

(−1)j−1 1

j

(

m − 1

j

)

+

m−1
∑

j=1

(−1)j−1 1

j

(

m − 1

j − 1

)

+ (−1)m−1 1

m

= r1(m − 1) +

m−1
∑

j=1

(−1)j−1 1

j

j

m

(

m

j

)

+ (−1)m−1 1

m

= r1(m − 1) +
1

m

{[

−1 +

m
∑

j=1

(−1)j−1

(

m

j

)

]

+ 1

}

= r1(m − 1) +
1

m
.

So we have r1(m) = r1(1) + 1
2

+ 1
3

+ · · · + 1
m

=
m
∑

j=1

1
j
.

For the formula (4.3), let R2(x) =
m
∑

j=0

(−1)j 1
(j+1)2

(

m

j

)

e(j+1)x, so the second derivative of

R2(x) is

R′′
2(x) =

m
∑

j=0

(−1)j

(

m

j

)

e(j+1)x = ex(1 − ex)m.

R2(x) =

∫
(
∫

ex(1 − ex)mdx

)

dx = −
1

m + 1

{

x +

m+1
∑

j=1

(−1)j 1

j

(

m + 1

j

)

ex

}

+ C1x + C2

where C1, C2 is the undetermined constant , then from R2(0) = r2(m), r2(1) = 1, and

equation (4.3), we have

r2(m) =
1

m + 1

m+1
∑

j=1

1

j
.
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Let us prove the equation (4.4) by mathematical induction. Let

f1(m) =

m
∑

j=1

(−1)j−1

(

m

j

)(

m

j

)2

, f2(m) =
m2

2







(

m
∑

j=1

1

j

)2

+

m
∑

j=1

1

j2







.

When m = 1, f1(1) = f2(1) = 1, the equation (4.4) held.

If for a given m ∈ Z
+, f1(m) = f2(m) holds, then we prove that the conclusion is also

true with m + 1.

f1(m + 1) =

m+1
∑

j=1

(−1)j−1

(

m + 1

j

)(

m + 1

j

)2

=

m
∑

j=1

(−1)j−1

(

m

j

)(

m + 1

j

)2

+

m
∑

j=1

(−1)j−1

(

m

j − 1

)(

m + 1

j

)2

+ (−1)m

=
(m + 1)

2

m2
f1(m) + (m + 1)

2

{

1

m + 1

m+1
∑

j=1

1

j
−

(−1)
m

(m + 1)2

}

+ (−1)m

=
(m + 1)

2

2







(

m
∑

j=1

1

j

)2

+

m
∑

j=1

1

j2







+ (m + 1)
2

{

1

m + 1

m
∑

j=1

1

j
+

1

(m + 1)2

}

=
(m + 1)

2

2







(

m
∑

j=1

1

j

)2

+
2

m + 1

m
∑

j=1

1

j
+

1

(m + 1)2
+

m
∑

j=1

1

j2
+

1

(m + 1)2







=
(m + 1)

2

2







(

m+1
∑

j=1

1

j

)2

+

m+1
∑

j=1

1

j2







= f2(m + 1).

So the equation hold for any m ∈ Z
+.

Theorem 4.2 Suppose Y ∼ MGe (m), the expectation and variance of Y are as

follows

E (Y ) =

m
∑

j=1

m

j
, (4.5)

Var(Y ) =

m
∑

j=1

(

m

j

)2(

1 −
j

m

)

. (4.6)

Proof According to Theorem 3.2 and the equation (4.2) and basic condition pm =
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(p1, p2, · · · , pm) , pi =
1

m
, i = 1, 2, · · · , m, we have

E(Y ) =

m−1
∑

j=1

(−1)j−1
∑

ij∈Ij(m)

(

j
∑

k=1

pik

)−1

+ (−1)m−1

=

m−1
∑

j=1

(−1)j−1 m

j

(

m

j

)

+ (−1)m−1

= m

m
∑

j=1

(−1)j−1 1

j

(

m

j

)

= m

m
∑

j=1

1

j
. (Property 4.1 (4.2))

The variance of Y ,

Var(Y ) = E(Y 2) − [E(Y )]
2

=

m−1
∑

j=1

(−1)j−1
∑

ij∈Im(j)

(

j
∑

k=1

pik

)−2(

2 −

j
∑

k=1

pik

)

+ (−1)m−1 −

(

m

m
∑

j=1

1

j

)2

= 2

m
∑

j=1

(−1)j−1

(

m

j

)(

m

j

)2

− m

m
∑

j=1

1

j
−

(

m

m
∑

j=1

1

j

)2

= m2







(

m
∑

j=1

1

j

)2

+

m
∑

j=1

1

j2







− m

m
∑

j=1

1

j
−

(

m

m
∑

j=1

1

j

)2

(Property 4.1 (4.3))

=

m
∑

j=1

(

m

j

)2(

1 −
j

m

)

. (Property 4.1 (4.4))

There is another explanation for the expectation and variance of the UMGe distribution:

let the random variable Xi, i = 1, 2, · · · , m represent the number of trails carried out when

the ”i-th new result” appears. So Xi ∼ Ge
(

1 − i−1
m

)

, i = 1, 2, · · · , m. The total number of

trails is Y =
m
∑

i=1

Xi, then it can be calculated as

E (Y ) =

m
∑

i=1

E (Xi) = 1 +
m

m − 1
+

m

m − 2
+ · · · + m,

Var (Y ) =

m
∑

i=1

Var (Xi) = 0 +
1

m

( m

m − 1

)2

+
2

m

( m

m − 2

)2

+ · · · +
m − 1

m

(m

1

)2

.

This is consistent with the formula we have deduced. According to this idea, we can

generate random numbers that obey UMGe distribution, i.e., by using the sum of random

numbers that subject to different geometric distribution.
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5 Simulation Example

In this section, we consider the probability distribution function(pdf) and cumulative

distribution function(cdf) of MGe distribution. Note Φ(y) represents the cumulative distri-

bution function of standard normal distribution.

Example 1 Suppose Y (m) ∼ MGe(pm), where pm = (p1, p2, · · · , pm). The parameters

are generated as follows

pi =
2i

m(m + 1)
, i = 1, 2, · · · , m.

Let µm = E
(

Y (m)
)

, σ2
m = Var

(

Y (m)
)

, discretization of normal distribution, let ϕ(y) =

Φ [(y − µm)/σm] − Φ [(y − µm − 1)/σm], p(y) = P (Y (m) = y), and F (y) = P (Y (m) ≤ y) is

the cdf of Y (m).

Consider four situations when m = 5, 10, 15, 20, respectively, the expectation and vari-

ance of the random variable are calculated as

µ5 = 18.67, µ10 = 68.98, µ15 = 150.61, µ20 = 263.58;

σ2
5 = 169.57, σ2

10 = 2420.43, σ2
15 = 11680.48, σ2

20 = 35959.53.

We draw the image of the pdf of Y (m), the upper bound un = um(n) of Y (m)’s pdf

according to formula (3.2), and the scatter plot of discretization of normal distribution

N(µm, σ2
m), respectively. The images in four situations are shown in Figure 1.

Figure 1 The pdf , cdf , upper bound and normal approximation of MGe distribution

in m = 5, 10, 15, 20 situations.

From the image point of view, the normal distribution is not a good approximation

of the MGe distribution, however, there are two intersections between the density curve of

normal distribution and the upper bound un of MGe’s pdf.
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The first intersection is near its expectation, so we can consider to calculate probability

by p(y) = P (Y (m) = y) when y < µm, using upper bound instead of probability when

y > µm, that is p(y) = um(n).

In addition, the pdf of MGe distribution is always a right-skewed distribution which can

not be fitted well by using normal distribution. Because of the complexity of the pdf form

of MGe distribution, how to obtain its approximate distribution is an important problem to

be studied.

Example 2 Suppose Ym ∼ MGe(m), we still use the notation of Example 1, under

conditions m = 10, 30, 50, 70, the expectation and variance are

µ10 = 29.29, µ30 = 119.85, µ50 = 224.96, µ70 = 338.29;

σ2
10 = 125.69, σ2

30 = 1331.09, σ2
50 = 3837.87, σ2

70 = 7652.38.

respectively.

We draw the image of the pdf of Ym, the upper bound of Y (m)’s pdf and the scatter

plot of discretization of normal distribution N(µm, σ2
m), respectively. The images in four

situations are shown in Figure 2.

Figure 2 The pdf, cdf, upper bound and normal approximation of UMGe distribution

in m = 10, 30, 50, 70 situations.

It can be seen that the effect of normal approach to UMGe is better than MGe. We

define the quantile of the UMGe distribution as qp(m) which satisfies

qp(m) = inf{y : P (Ym ≤ y) = p}.

We calculate the expectation of each Ym in the situation of m = 3, 4, · · · , 40 as shown

in columns 7 and 15 of Table 1 , the variance of each Ym shown in columns 8 and 16 of Table
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1, the quantiles of p = 0.25, 0.5, 0.75, 0.9, 0.95 are calculated and listed in the corresponding

columns in Table 1.

Table 1 The quantile, expectation and variance of UMGe

m 0.25 0.5 0.75 0.9 0.95 µ σ2 m 0.25 0.5 0.75 0.9 0.95 µ σ2

3 3 4 6 8 10 6 7 22 62 75 93 115 130 81 693

4 5 6 9 12 15 8 14 23 65 80 99 121 137 86 762

5 7 9 13 17 20 11 25 24 69 84 104 127 144 91 833

6 9 12 17 22 26 15 39 25 73 89 110 134 151 95 908

7 12 16 21 27 32 18 56 26 77 93 115 140 158 100 986

8 15 19 25 32 37 22 76 27 81 98 121 147 166 105 1068

9 17 22 29 37 43 25 99 28 85 103 126 153 173 110 1152

10 20 26 34 43 50 29 126 29 89 107 132 160 180 115 1240

11 23 30 38 49 56 33 155 30 93 112 137 167 188 120 1331

12 26 34 43 54 62 37 188 31 97 117 143 173 195 125 1425

13 30 37 48 60 69 41 224 32 101 122 149 180 202 130 1523

14 33 41 53 66 75 46 263 33 105 127 154 187 210 135 1624

15 36 45 57 72 82 50 306 34 110 132 160 193 217 140 1728

16 40 50 62 78 89 54 352 35 114 136 166 200 225 145 1835

17 43 54 67 84 95 58 400 36 118 141 172 207 232 150 1946

18 47 58 73 90 102 63 453 37 122 146 178 214 240 155 2060

19 50 62 78 96 109 67 508 38 127 151 183 221 247 161 2177

20 54 66 83 102 116 72 567 39 131 156 189 228 255 166 2298

21 58 71 88 108 123 77 628 40 135 161 195 234 263 171 2421

Let us calculate the quantile of Ym at p = 0.25, 0.5, 0.75, 0.9, 0.95 for m = 3, 4, · · · , 40.

The scatter plot of quantile and the fitting curve of the quadratic regression model drawn

with the horizontal axis of m and the vertical axis of qp(m) are shown in Figure 3 (a).

From the data in Table 1 and the trend of quantile qp(m) in Figure 3(a), we can suppose

the quadratic regression model of quantile qp(m) and m as

q̂p(m) = β̂(0)
p + β̂(1)

p m + β̂(2)
p m2 (5.1)

The regression model that establishes according to (5.1) is very significant in p =

0.25, 0.5, 0.75, 0.9, 0.95 by calculation, and the regression coefficients as shown in Table 2.

Furthermore, calculate all quantile values for m = 3, 4, · · · , 100, p = 0.05, 0.06, · · · , 0.97,

after regression analysis, the empirical regression equation is

q̂(p, m) = −13.42552 + 2.83025m + 0.01111m2 + 0.86067mp + 2.82063mp2. (5.2)

Draw the surface graph of (5.2) and the scatter graph of (m, p, q(p, m)) shown in Figure

3(b).
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Table 2 The quantile fitting curve coefficient of UMGe

p β̂
(0)
p β̂

(1)
p β̂

(2)
p

0.25 −14.43 3.302 0.01163

0.50 −15.55 3.976 0.01175

0.75 −16.23 4.832 0.01192

0.90 −17.11 5.837 0.01189

0.95 −17.52 6.548 0.01199

Figure 3 (a) Quantile qp(m) for p = 0.25, 0.5, 0.75, 0.9, 0.95; (b) Empirical regression surface

of q̂(p, m) and scatter of (m, p, q(p, m)).

For example, The 0.95 quantile of Y10 can be obtained from

q̂0.95(10) = β
(0)
0.95 + β

(1)
0.95 × 10 + β

(2)
0.95 × 102 ≈ 49.15.

Using (5.2) to estimate as

q̂(10, 0.95) ≈ 49.62044.

The quantile calculated by (5.1) is more accurate than (5.2), however, in many cases

(5.2) is more convenient to use. When m is larger, the estimated value is often smaller than

the real value, so it can be considered to build a nonparametric regression model based on

the calculated data, so the calculation is more accurate.

6 Discussion

In this paper, the multiple geometric distribution is discussed under the condition of

putting back, which means that the probability of occurrence of event Ai is constant for each

test. If the sampling conditions are changed, and the samples are taken one by one in a finite

population, the distribution of the total number of tests will be different if several specified

results occur. In many cases, upper bound approximation and normal approximation can

be considered.
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