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Abstract: In this work, we investigate the problem of sampling with Langevin diffusion in

non-convex setting. Compared with [6], we extend the result under 2-Wassertain distance, and we

find a better explicit positive constant c in the exponential convergency.
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1 Introduction

Langevin diffusion processes are often used to solve the problem of sampling from a

given probability distribution π, which has density with respect to the Lebesgue measure on

R
d with its density function satisfying p∗(x) = exp{−U(x)+C}, where C is the normalizing

constant and x ∈ R
d. Assuming that we are able to generate an arbitrary number of

independent standard Gaussian random variables ξ1, ξ2, ..., ξk, k ∈ N. For a given precision

level ε and a metric d on the space of probability measure, the goal is to devise a function Gε

such that the distribution νk of the random variable vk = Gε(vk−1, εk) is close to π step by

step. However, we hope that when k = K, the distribution νK of vK will satisfy d(νK, π) < ε.

One simple way sampling from π is to consider the first-order Langevin diffusion:

dxt = −∇U(xt)dt+
√

2dBt, t ≥ 0, (1.1)

where Bt is d-dimension Brownian motion. The stationary distribution of the process xt

about SDE(1.1) is π if

∫

e−U(x)dx < ∞. For a step size h, here we have to construct a

discrete process of xt defined as

dx̃t = −∇U(xkh)dt+
√

2dBt, t ∈ [kh, (k + 1)h), k ∈ N. (1.2)

For the first-order Langevin diffusion, the update rule associated to this process can be

obtained by using the Euler discretization given by the equation as vk+1 = vk − h∇U(vk) +√
2hξk, where ξk , (Bkh −B(k−1)h)/

√
h and ξk ∼ N (0, Id×d). In this case, we know vk+1 ∼

N (vk − h∇U(vk), 2hId×d) which has the same distribution as x̃(k+1)h.
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The approximate sampling algorithm with first-order Langevin diffusion is called over-

damped Langevin Monte Carlo (LMC). For the LMC algorithm, there are many results. The

first non-asymptotic analysis of the discrete Langevin diffusion (1.2) is due to Dalalyan in [1].

In that paper, the authors use the total variation distance as the metric between vK and π

and prove that the convergence rate of continuous-time process is emt, and then they get the

number of iteration K ∼ O(d/ε2). Durmus and Moulines also establish convergence under

2-Wasserstein distance in [2] and they get that the number of iteration K ∼ O(d/ε2), but

with the Lipschitz continuity of the Hessian matrix, the number of iteration can be ruduced

K ∼ O(d/ε). Then, Cheng, X. and Bartlett establish the first nonasymptotic convergence

with Kullback-Leibler divergence in [3]. Based on this, they also unify the proof of conver-

gence in total-variation and 2-Wasserstein distance as simple corollaries. In their research,

the number of iteration K ∼ O(d/ε2) under total-variation and 2-Wasserstein distance, but

better bound K ∼ O(d/ε) with KL-divergence.

The problem of sampling from non-logconcave distribution has been studied by Raginsky

et al(2017) in [4], and they get a worst-case convergence rate under weaker assumptions,

which is exponential in dimension d. Under non-convex situation, Eberle (2016) proves

that the convergence rate is exponential at rate c > 0 with 1-Waseertsein distance in [5].

Then, under the same assumptions as Eberle, Cheng et al (2019) get that the running

step K ∼ O( d
ε2 e

cMR2

) with overdamped Langevin MCMC and K ∼ O(
√

d
ε
ecMR2

) with

underdamped Langevin MCMC with 1-Waseertsein distance in [6], where c is a explicit

positive constant and MR2 is a measure of non-convexity.

The main purpose of our work is to pursue the investigation of overdamped Langevin

MCMC initiated in Cheng et al (2019) by addressing the following questions. Firstly, what

is the convergence rate of continuous-time process if replacing the metric 1-Waseertsein

distance by 2-Waseertsein distance? Secondly, After replacing the metric by 2-Waseertsein

distance, is it possible to reduce the running step? The rest of this paper is to answer the

two questions. For question 1, the answer is true, but we need to do some changes for the

auxiliary distance function. For question 2, we find that the convergence rate of continuous-

time process can be improved in Proposition 3.1. In Theorem 3.3, we show that the running

step is also O( d
ε2 e

cMR2

) but with smaller explicit positive constant c.

2 Notations, Definitions and Assumptions

Firstly, we set up the notations to continuous and discrete processes for the overdamped

Langevin diffusion. With an initial condition x0 ∼ p(0) for some distribution p(0) on R
d, we

let pt denote the distribution of xt and let Φt denote the operator that maps from p(0) to pt:

Φtp
(0) = pt, (2.1)

and we define Φ̃t similarly for the discrete process. When t = 0, Φ0 and Φ̃0 are unit operators.

Here we follow the same assumptions on the potential function U in Cheng et al (2019).
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(A1) The potential function U is continuously differentiable on R
d and has M -Lipschitz

continuous gradients; that is ‖∇U(x) −∇U(y)‖2
2 ≤M‖x− y‖2

2.

(A2) The potential function U has a stationary point at zero; that is ∇U(0) = 0.

(A3) The potential function U is m-strongly convex outside of a ball with radius R;

that is, there exists constants m,R > 0 such that for all x, y ∈ R
d with ‖x − y‖2 > R, we

have 〈∇U(x) −∇U(y), x− y〉 ≥ m‖x− y‖2
2.

We denote by B(Rd) the Borel σ-field of R
d. For given probability measures µ and ν on

(Rd,B(Rd)), we define a transference plan ζ between µ and ν on (Rd ×R
d,B(Rd ×R

d)) such

that for all sets A ∈ B(Rd), ζ(A × R
d) = µ(A) and ζ(Rd × A) = ν(A). We denote Γ(µ, ν)

as the set of all transference plans. A pair of random variables (X, Y ) is called coupling if

there exists a ζ ∈ Γ(µ, ν) such that (X, Y ) are distributed according to ζ.

Given a function f : R
+ 7→ R

+, we define the f -Wasserstein distance between a pair of

probability measures as follows:

Wf (µ, ν) ,

(

inf
ζ∈Γ(µ,ν)

∫

Rd×Rd

f(‖x− y‖2
2)dζ(x, y)

)
1
2

.

Finally we denote by Γopt(µ, ν) the set of transference plans that achieve the infimum in

the definition of the Wasserstein distance between µ and ν. For any q ∈ N we define the

q-Wasserstein distance as

Wq(µ, ν) ,

(

inf
ζ∈Γ(µ,ν)

∫

Rd×Rd

‖x− y‖q
2dζ(x, y)

)
1
q

.

We denote (Wf(·, ·))q by W q
f (·, ·) and (W2(·, ·))q by W q

2 (·, ·).
We begin by defining auxiliary functions ψ(r),Ψ(r) and g(r), all defined R

+ 7→ R
+:

ψ(r) , e−αf min(r,Rf ), Ψ(r) ,

∫ r

0

ψ(s)ds, g(r) , 1 − 1

2

∫ min(r,Rf )

0

Ψ(s)

s
ds

∫ Rf

0

Ψ(s)

s
ds

.

It is worth noting that the function g(r) has no derivative at 0 and Rf , but it has no

effect on our analysis. Finally, the distance function f is defined as

f(r) ,

∫ r

0

ψ(s)g(s)ds.

Lemma 2.1 The distance function f has the following important properties.

(F1) f(0) = 0, f ′(0) = 1.

(F2) 1
2
e−αf Rf ≤ 1

2
ψ(r) ≤ f ′(r) ≤ 1.

(F3) 1
2
re−αf Rf ≤ 1

2
Ψ(r) ≤ f(r) ≤ Ψ(r) ≤ r.

(F4) For 0 < r < Rf , rf
′′(r) + αfrf

′(r) ≤ − e−αf Rf

Rf
f(r).

(F5) For almost everywhere r > 0, f ′′(r) ≤ 0 and f ′′(r) = 0 when r > Rf .
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Proof of Lemma 2.1 We refer to the definitions of the functions ψ, Ψ, g, and f .

(F1) It is easily checked by the definition of f , ψ, Ψ and g.

(F2) Noticing that 1
2
≤ g(r) ≤ 1 and ψmax(r) = ψ(0) = 1, So (F2) can be easily checked.

(F3) According to the first mean value theorem for integrals, Ψ(r) = ψ(x)r, x ∈ [0, r],

and we know ψ(x) ≥ e−αf Rf , so the first inequality holds. The next three inequalities are

followed by the notes mentioned in (F2).

(F4) Here we know g′(r) = − 1
2

Ψ(r)

r

∫ Rf

0

Ψ(s)

s
ds

and ψ′(r) = −αfψ(r) if r ≤ Rf , thus

rf ′′(r) + αfrf
′(r) = rψ′(r)g(r) + rψ(r)g′(r) + αfrf

′(r) = rψ(r)g′(r)

= −1

2

Ψ(r)ψ(r)
∫ Rf

0

Ψ(s)

s
ds

(1)

≤ − f(r)ψ(r)
∫ Rf

0

Ψ(s)

s
ds

(2)

≤ −e
−αf Rf

Rf

f(r),

where (1) follows by f(r) ≤ Ψ(r), (2) is by e−αf Rf ≤ ψ(r) and Ψ(s) ≤ s.

(F5) It can be easily checked that ψ′(r) ≤ 0 and g′(r) ≤ 0 for almost everywhere

0 < r ≤ Rf , so we have f ′′(r) ≤ 0. For r > Rf , ψ
′(r) = g′(r) = 0, so in that case f ′′(r) = 0.

3 Main Result

The first concerned issue is the convergence rate of the first-order continuous-time pro-

cess to the invariant distribution. We define the second process as:

dyt = −∇U(yt)dt+
√

2(Id×d − 2γtγ
>
t )dBt, (3.1)

with y0 ∼ p∗, where γt ,
xt−yt

‖xt−yt‖2
I[xt 6= yt]. Here I[xt 6= yt] is the indicator function, which

is 1 if xt 6= yt and 0 otherwise and γ>
t is the transpose of γt. In this case, we couple the

processes such that the initial joint distribution of x0 and y0 correspond to the optimal

coupling between the processes under W2. To simplify notations, we define zt , xt − yt and

dzt = −[∇U(xt) −∇U(yt)]dt+ 2
√

2γtγ
>
t dBt. (3.2)

In (3.2), we define ∇t , ∇U(xt)−∇U(yt) and dB1
t , γ>t dBt, where dB1

t is a one-dimensional

Brownian motion by Lévy’s characterization.

Proposition 3.1 Let f and Wf be as defined in Section 2 with αf = M
8

and Rf =

R2.Then for any t > 0, and any probability measure p0, we have

Wf(Φtp0, p
∗) ≤ exp

{

−e−MR2/8 min

{

8

R2
,m

}

t

}

Wf (p0, p
∗).

Furthermore, we have

W2(Φtp0, p
∗) ≤

√
2 exp

{

MR2/16 − e−MR2/8 min

{

8

R2
,m

}

t

}

W2(p0, p
∗),
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where Φt is defined in (2.1) and p∗ is the invariant density of xt in (1.1).

Proof of Proposition 3.1 Firstly, we define vt , ‖zt‖2
2 and then by Itô’s Formula

we have

dvt = d‖zt‖2
2 = 2z>t dzt = −2z>t ∇tdt+ 4

√
2z>t γtdB

1
t .

Hence, vt is a continuous semi-martingale. Applying Itô’s formula to f(vt) again, we have

df(vt) = f ′(vt)dvt +
1

2
f ′′(vt)d[v, v]t = f ′(vt)(−2z>t ∇tdt+ 4

√
2z>t rtdB

1
t ) + 16vtf

′′(vt)dt,

where [v, v]t denotes the quadratic variation process of vt. After taking an expectation, then

dEf(vt) = −2E[z>t ∇tf
′(vt)]dt+ 16E[vtf

′′(vt)]dt. (3.3)

Here we have to consider two cases:

Case 1: vt < R2. In this case, with the smoothness assumption (A3) on U(x) and

combining with (3.3), we have

dEf(vt) ≤ 2ME[vtf
′(vt)]dt+ 16E[vtf

′′(vt)]dt = 16E

(

M

8
vtf

′(vt) + vtf
′′(vt)

)

dt.

By using (F4) of Lemma 2.1 and let αf = M
8

and Rf = R2, we can conclude that

dEf(vt) ≤ −16e−MR2/8

R2
Ef(vt)dt.

Case 2: vt ≥ R2. In this case, we know that for points that are outside of the ball, the

potential function satisfies the strongly convex condition. Also, by using (F2) and (F5) of

Lemma 2.1, f ′′(vt) = 0, f ′(vt) ≥ e−MR2/8 and f(vt) ≤ vt, we get

dEf(vt) = −2E(z>t ∇tf
′(vt))dt ≤ −2me−MR2/8

E(vt)dt ≤ −2me−MR2/8
Ef(vt)dt.

Combining the two cases we get that, for any vt > 0,

dEf(vt) ≤ −e−MR2/8 min

{

16

R2
, 2m

}

Ef(vt)dt.

So by using Grönwall’s inequality, we can get that

W 2
f (Φtp

(0), p∗) ≤ Ef(vt) ≤ exp

{

−e−MR2/8 min

{

16

R2
, 2m

}

t

}

Ef(v0).

The first claim is proved by assuming that the initial distributions are optimally coupled

under Wf as Ef(v0) = W 2
f (p(0), p∗). Then following by (F3) of Lemma 2.1 with the given

conditions, for any two measures p and q, we can get

1

2
e−MR2/8W 2

2 (p, q) ≤W 2
f (p, q) ≤W 2

2 (p, q)
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as 1
2
e−MR2/8r ≤ f(r) ≤ r. Here let r = vt,Thus,

W2(Φtp
(0), p∗) ≤

√
2 exp

{

MR2/16 − e−MR2/8 min

{

8

R2
,m

}

t

}

W2(p
(0), p∗).

So we can get the two desired claims.

Here we also need to control the discretization error between the continuous and discrete

processes. Luckily, this work has been done by Cheng et al (2019) in Proposition 2.3. Now,

we quote the conclusion from Cheng et al (2019) for the need of next subsection.

Proposition 3.2 Let the initial distribution p(0) be a Dirac-delta distribution at x(0)

with ‖x(0)‖2 ≤ R. Let p(k) be the distribution of x(k). Then, for all k ∈ N, and step size

h ∈ [0, m
512M2 ],

E(x̃,x)∼(Φ̃hp(k) ,Φhp(k))‖x̃− x‖2
2 ≤M 4h4

(

80R2 +
8d

m

)

+ 2M 2h3d.

The specific proof of Proposition 3.2 can be seen at appendix B in Cheng et al (2019). Based

on Proposition 3.1 and Proposition 3.2, we will present the main result as Theorem 3.3.

Theorem 3.3 Let p(0) be the Dirac delta distribution at x(0) with ‖x(0)‖2 ≤ R. Let

p(n) denote the distribution of nth iteration of the overdamped Langevin MCMC Algorithm.

Let the step size

h ≤ min







εe−3MR2/16

32max
{

R2

8
, 1

m

}

M 2

√

(

160R2 + 16d
m

)

,
ε2e−3MR2/8

128max
{

R2

8
, 1

m

}2
M 2d







and the number of iteration

n ≥
e

MR2

8 log(

√
320R2+ 32d

m

ε
e

MR2

16 )max
{

R2

8
, 1

m

}

min

{

εe−3MR2/16

32 max{R2

8 , 1
m}M2

√

(160R2+ 16d
m )

, ε2e−3MR2/8

128max{R2

8 , 1
m}2

M2d

} .

Then W2(p
(n), p∗) ≤ ε.

Proof of Theorem 3.3 From (F3) of Lemma 2.1, we know that for any measures p

and q, W 2
f (p, q) ≤ W 2

2 (p, q) as f(r) ≤ r. We have p(0)(S) = I(x(0) ∈ S), it is easy to show

that for any i ∈ N for h ∈ [0, m
512M2 ],

W 2
f (Φ̃hp

(i),Φhp
(i)) ≤W 2

2 (Φ̃hp
(i),Φhp

(i)) ≤M 4h4

(

80R2 +
8d

m

)

+ 2M 2h3d.

By the concavity of f , we have

√

f(‖x− z‖2
2) ≤

√

2f(‖x− y‖2
2) +

√

2f(‖y − z‖2
2) x, y, z ∈ R

d.

Thus, we know

Wf(Φ̃hp
(i), p∗) ≤

√
2Wf(Φ̃hp

(i),Φhp
(i)) +

√
2Wf (Φhp

(i), p∗).
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By using Proposition 3.1 and Proposition 3.2, we can get that

Wf (Φ̃hp
(i), p∗) ≤

√
2 exp

{

−e−MR2/8 min

{

8

R2
,m

}

h

}

Wf (p(i), p∗)

+

(

M 4h4

(

160R2 +
16d

m

)

+ 4M 2h3d

)
1
2

.

Noticing that the sum of geometric series 1+x+x2 + ... = 1
1−x

and x
2
≤ 1−e−x for x ∈ [0, 1]

, so by unrolling last inequality for k steps, we get

Wf ((Φ̃h)kp(0), p∗) ≤
√

2 exp

{

−e−MR2/8 min

{

8

R2
,m

}

kh

}

Wf (p(0), p∗)

+ 2eMR2/8 max

{

R2

8
,

1

m

}(

M 4h4

(

160R2 +
16d

m

)

+ 4M 2h3d

)
1
2

.

By (F3) of Lemma 2.1, we know

W2((Φ̃h)kp(0), p∗) ≤
√

2 exp

{

MR2

16
− e−MR2/8 min

{

8

R2
,m

}

kh

}

W2(p
(0), p∗) (3.4)

+ 2e3MR2/16 max

{

R2

8
,

1

m

}(

M 4h2

(

160R2 +
16d

m

)

+ 4M 2hd

)
1
2

.

Here we want the second term in (3.4) smaller than ε
2
, so we choose

h ≤ min







εe−3MR2/16

32max
{

R2

8
, 1

m

}

M 2

√

(

160R2 + 16d
m

)

,
ε2e−3MR2/8

128max
{

R2

8
, 1

m

}2
M 2d







,

Then we pick suitable

n ≥
e

MR2

8 log( 2
√

2W2(p
(0) ,p∗)

ε
e

MR2

16 ) max
{

R2

8
, 1

m

}

h
(3.5)

to make the first term in (3.4) is smaller than ε
2

and that is

√
2 exp

{

MR2

16
− e−MR2/8 min

{

8

R2
,m

}

nh

}

W2(p
(0), p∗) ≤ ε

2
.

Finally, we have to control the distance between p(0) and p∗. Here we can upper bound

W2(p
(0), p∗) by using triangle inequality, and that is

W 2
2 (p(0), p∗) = inf

ζ∈Γ(p(0),p∗)

∫

Rd×Rd

‖x− y‖2
2dζ(x, y) ≤ 2E[‖x‖2

2] + 2E[‖y‖2
2],

where x ∼ p(0) and y ∼ p∗. So Ep(0)‖x‖2
2 ≤ R2 and Ep∗ [‖y‖2

2] can be bounded by ( 2d
m

+18R2)

from Lemma E.3 in Cheng et al (2018), thus,

W2(p
(0), p∗) ≤

(

4d

m
+ 38R2

)
1
2

.

So plugging this into (3.5) can get the desired result.
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