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Abstract: This paper deals with the numerical dynamics for Mackey-Glass system. By using

the nonstandard finite difference method and bifurcation theory of discrete systems, we prove that

a series of Hopf bifurcation appear at the positive fixed point with the increase of time delay. At the

same time, the parameter conditions for the existence of Hopf bifurcations at positive equilibrium

point are given. Finally, we provide some numerical examples to illustrate the effectiveness of our

results. The nonstandard finite difference method is easy to construct and has less computation. It

is suitable for the bifurcation analysis of nonlinear systems and extends the results in the literature.
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1 Introduction

Delay differential equations are close to reality and reveal complex life phenomena. Due
to the increase of time delay, the topological structure of differential equations may change
qualitatively, and some properties of the system, such as equilibrium state, stability and
periodic phenomenon will change suddenly, that is the so-called bifurcation phenomenon. In
the past half century, many scholars began to pay attention to the research of bifurcation
theory of delay differential equations and obtained lots of meaningful achievements [1–5].

In practical application, it is very important to study the bifurcation problem by nu-
merical method that the continuous time model is usually discretized for the purpose of
experiment or calculation. If both the discrete-time model and the continuous model exhibit
similar dynamic behaviors, such as the steady-state stability behavior and persistence of the
solution, the boundedness, chaos and bifurcation, then we say it is dynamically consistent[6–
8]. In order to reproduce the dynamic behavior accurately, some dynamic consistent numer-
ical methods are needed. In 2015, Jiang et al.[9] studied the Hopf bifurcation for a kind
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of discrete Gause-type predator-prey system with time delay, which is obtained by Euler
method. They gave some parameter conditions for the existence of a unique positive fixed
point, and obtained the stability result of the positive fixed point. In 2020, Euler approxi-
mation is implemented to obtain discrete version of Schnakenberg model by Din and Haider
[10]. They also proved that discrete-time system via Euler approximation undergoes Hopf
bifurcation as well as period-doubling bifurcation was also examined at its unique positive
steady-state. Moreover, they proposed a nonstandard finite difference method (NSFDM)
for Schnakenberg model and proved that NSFDM could preserve the corresponding dynamic
behavior. Using time delay τ as a parameter, Ding et al.[11] studied the dynamics of Mackey-
Glass system by using trapezoidal method, and proved that with the increase of delay, the
positive equilibrium point lost stability and Hopf bifurcation occured.

Compared with the Euler method, the NSFDM becomes an effective tool for nonlinear
dynamic system based on its good dynamic consistency and good accuracy [12, 13]. Com-
pared with the trapezoidal method, the NSFDM is less of computation. In this paper, we
propose a NSFDM for Mackey-Glass system such that it can preserve its dynamic properties.

For the following nonlinear delay differential equations

ṗ(t) =
βθn

θn + pn(t− τ)
− γp(t), t ≥ 0 (1.1)

which was described by Mackey and Glass [14] as physiological control systems in 1977,
where β, θ, n and γ are all positive constants, p(t) is the density of mature cells in blood
circulation, τ is the time delay from immature cells in bone marrow to maturation and
release in circulating blood. For more information on this model, the interested reader can
refer to [15]. Throughout this paper, we suppose that

β

θ
> γ. (1.2)

If the condition
γnτkn

1 + kn
eγτ > 1/e (1.3)

is satisfied, then every positive solution of (1.1) oscillates about its positive equilibrium
point[16]. Whether (1.1) is sustained for oscillations and stability arouses our great interest.
Symptoms of chronic granulocytic leukemia (CGL) can be described by this model. For
normal adults, the circulating granulocyte density is either stable or there is a small vibration.
This vibration period is generally between 14 and 24 days. The vibration period is about 21
days, which is a change from health to sub-health. In the 30-70 days of the cycle, the density
of granulocytes will appear large vibration, that is unhealthy phenomenon, the disease of
CGL. In this paper, we focus on the stability and Hopf bifurcation of discrete scheme of
(1.1). The effect of time delay on the dynamic behavior of the system is studied, and the
conditions for the generation of Hopf bifurcation are also given.

2 The Stability of the Positive Equilibrium and Local Hopf Bifurcation
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Under transformation p(t) = θx(t), (1.1) changes into

ẋ(t) =
a

1 + xn(t− τ)
− γx(t), (2.1)

let u(t) = x(τt), then (2.1) becomes

u̇(t) =
τa

1 + un(t− 1)
− τγu(t), (2.2)

here a = β/θ. In classical FDM, the first derivative du/dt is replaced by (u(t+h)−u(t))/h,
where h is the step size, however, du/dt is replaced by (u(t + h) − u(t))/φ(h) in NSFDM,
where φ(h) called denominator function, is the continuous function of step size h, which
satisfies φ(h) = h + O (h2) , 0 < φ(h) < 1, h → 0.

In this paper, we select the denominator function of NSFDM which is φ(h) = (1 −
e−aτh)/(aτ), where h = 1/m is the step size. Using the NSFDM to (2.2), we obtain the
following difference scheme

uk+1 =
(
1−

(
1− e−aτh

)
γ

a

)
uk +

1− e−aτh

1 + un
k−m

, (2.3)

here uk and uk−m are the approximate values to u(tk) and u (tk − τ), respectively.
It is obvious that (2.2) and (2.3) have the same fixed point u∗, which satisfies γun+1 +

γu − a = 0. Let F (x) = γxn+1 + γx − a, then F ′(x) = (n + 1)γxn + γ > 0 for x ≥ 0.
Therefore, (2.2) has a unique positive fixed point u∗. At the same time, a/(1+un

∗ )−γu∗ = 0
implies that

u∗ <
a

γ
. (2.4)

Set yk = uk − u∗, then yk satisfies

yk+1 =
(
1−

(
1− e−aτh

)
γ

a

)
yk +

1− e−aτh

1 + (yk−m + u∗)
n −

1− e−aτh

1 + un∗
. (2.5)

Let Yn = (yn, yn−1, · · · , yn−m)T , we introduce a map Yn+1 = F (Yn, τ), where F =
(F0, F1, · · · , Fm)T and

Fk =

{
yk+1 =

(
1− (1−e−aτh)γ

a

)
yk + 1−e−aτh

1+(yk−m+u∗)n − 1−e−aτh

1+un∗
, k = 0,

yn−k+1, 1 ≤ k ≤ m.
(2.6)

Obviously, the origin is a fixed point of Yn+1 = F (Yn, τ), and its linear part is
Yk+1 = AYk, where

A =




am 0 · · · 0 0 a0

1 0 · · · 0 0 0
0 1 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · 1 0 0
0 0 · · · 0 1 0




, (2.7)
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and

am = 1− (1− e−aτh)γ
a

, a0 = −(1− e−aτh)(a− γu∗)nγ

a2
. (2.8)

Therefore, the characteristic equation of A is

λm+1 −
(

1− (1− e−aτh)γ
a

)
λm +

(1− e−aτh)(a− γu∗)nγ

a2
= 0. (2.9)

Lemma 2.1 For sufficiently small τ > 0, all roots of (2.9) are less than one.
Proof When τ = 0, (2.9) is equivalent to λm+1 − λm = 0. It has an m-fold root zero

and a single root λ = 1. Considering the root λ(τ) of (2.9) , making λ(0) = 1, this root
depends continuously on τ and (2.9) is differentiable about τ , then we have

dλ

dτ
= − e−aτhhγ (n(a− γu∗) + aλm)

λm−1 (mγ(1− e−aτh) + a(λ(m + 1)−m))
(2.10)

and
dλ̄

dτ
= − e−aτhhγ

(
n(a− γu∗) + aλ̄m

)

λ̄m−1
(
mγ(1− e−aτh) + a(λ̄(m + 1)−m)

) . (2.11)

Since
d|λ|2
dτ

= λ
dλ̄

dτ
+ λ̄

dλ

dτ
, (2.12)

from (2.4) and (2.12), we obtain that

d|λ|2
dτ

∣∣∣∣
τ=0,λ=1

= −2hγ (n(a− γu∗) + a)
a

< 0. (2.13)

So λ can not go through unit circle. Therefore, for sufficiently small τ > 0, all charac-
teristic roots of (2.9) are within the unit circle.

Suppose eiω is a root on the unit circle, when ω ∈ (0, π], eiω is the root of (2.9), so we
have

eiω +
(1− e−aτh)(a− γu∗)nγ

a2
e−imω = 1− (1− e−aτh)γ

a
. (2.14)

Separating the real part and the imaginary part from (2.14), we give

cos ω − (1− e−aτh)(a− γu∗)nγ

a2
cos mω = 1− (1− e−aτh)γ

a
(2.15)

and

sinω − (1− e−aτh)(a− γu∗)nγ

a2
sinmω = 0. (2.16)

So we obtain

cos ω = 1 +
γ2(1− e−aτh)2 (a + n(a− γu∗)) (a− n(a− γu∗))

2a3 (a− γ(1− e−aτh))
. (2.17)

If n(a− γu∗)/a < 1, then cos ω > 1, which is a conflict, so the lemma is proved.
Lemma 2.2 Supposing that n(a − γu∗)/a < 1, (2.9) has no modules of roots more

than one.



No. 1 Numerical dynamics of nonstandard finite difference method for mackey-glass system 67

From (2.16), we get that

(1− e−aτh)(a− γu∗)nγ

a2
=

sinω

sinmω
(2.18)

is positive, sin ω has the same symbol as sin mω. So there exists a real sequence ωi which
satisfies

ωi ∈
(

2iπ

m
,
(2i + 1)π

m

)
, i = 0, 1, 2, · · · ,

[
m− 1

2

]
, (2.19)

where [.] is the greatest integer function.
Let λi(τ) = ri(τ)eiωi(τ) is the root of (2.9), τ = τi satisfyies ri(τi) = 1 and ωi(τi) = ωi,

we have the following lemma.
Lemma 2.3 Suppose that n(a− γu∗)/a > 1, then

dr2
i (τ)
dτ

∣∣∣∣
τ=τi,ω=ωi

> 0. (2.20)

Proof From (2.8) and (2.9), we have

λ̄m =
λ− am

a0

= −a2(λ− 1) + a(1− e−aτh)γ
(1− e−aτh)(a− γu∗)nγ

. (2.21)

Then by (2.10) and (2.21), we obtain

λ̄
dλ

dτ

=− λ̄e−aτhhγ (n(a− γu∗) + aλm)
λm−1 (mγ(1− e−aτh) + a (λ(m + 1)−m))

= − λ̄mλλ̄e−aτhhγ (n(a− γu∗) + aλm)
λ̄mλm (mγ(1− e−aτh) + a (λ(m + 1)−m))

=− e−aτhhγ
(
n(a− γu∗)λ̄m + a

)

mγ(1− e−aτh) + a (λ(m + 1)−m)
= − e−aτhhγ

(
n(a− γu∗)λ̄m + a

)

mγ(1− e−aτh) + a (λ(m + 1)−m)

=−
e−aτhhγ

(
n(a− γu∗)(−a2(λ−1)+a(1−e−aτh)γ

(1−e−aτh)(a−γu∗)nγ
) + a

)

mγ(1− e−aτh) + a (λ(m + 1)−m)
=

e−aτhha2(λ−1)
1−e−aτh

mγ(1− e−aτh) + a (λ(m + 1)−m)
.

(2.22)
From (1.2) we get

dr2
i

dτ

=λ
dλ̄

dτ
+ λ̄

dλ

dτ

∣∣∣∣
τ=τi,ω=ωi

= 2 Re
(
λ̄

dλ

dτ

∣∣∣∣
τ=τi,ω=ωi

)
= 2 Re

( e−aτhha2(λ−1)
1−e−aτh

mγ(1− e−aτh) + a (λ(m + 1)−m)
)

=2Re
( e−aτhha2(λ− 1)(mγ(1− e−aτh) + a

(
λ̄(m + 1)−m

)
)

(1− e−aτh) (mγ(1− e−aτh) + a (λ(m + 1)−m))
(
mγ(1− e−aτh) + a

(
λ̄(m + 1)−m

)))

=
2e−aτhha2(1− cos ω)

(
2am + a−mγ(1− e−aτh)

)

(1− e−aτh) |mγ(1− e−aτh)− am + a(m + 1)eiω|2

=
2e−aτhha2(1− cos ω)

(
m

(
a− γ(1− e−aτh)

)
+ ma + a

)

(1− e−aτh) |mγ(1− e−aτh)− am + a(m + 1)eiω|2 > 0.

(2.23)
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Lemma 2.4
(i) If n(a− γu∗)/a < 1, then for any τ > 0, all roots of (2.9) are in the unit circle.
(ii) If n(a− γu∗)/a > 1, then (2.9) has a sequence of monotonically increasing numbers

column τi(i = 0, 1, 2, · · · , [(m − 1)/2]). When τ = τi, (2.9) has a pair of roots e±iωi . If
τ > τi, the roots of (2.9) are out of unit circle. If τ ∈ [0, τ0), the modules of roots in (2.9) are
all less than one. If τ ∈ [τi, τi+1), then the equation has 2(k + 1) roots that have modulus
more than one.

Proof By Lemma 2.1, Lemma 2.2 and Corollary 2.4 in [17], we can obtain (i).
If n(a− γu∗)/a > 1, let τi be the same as that in (2.20), then (2.9) has the root if and

only if τ = τi and ω = ωi. By Lemma 2.1 and Lemma 2.2, the modulus of the root of (2.9)
less than one if τ ∈ [0, τ0). If τ = τ0, then the modulus of roots are less than one except
e±iωi . When τ ≥ τi, (2.9) has roots passing through the unit circle from e±iωi . In addition,
according to Rouche theorem, the number of eigenvalues whose modulus are more than one
is obtained naturally.

From Lemma 2.4, the stability of the zero solution can be obtained in the following
theorem.

Theorem 2.5
(i) If n(a− γu∗)/a < 1, then u = u∗ is asymptotically stable for any τ ≥ 0.
(ii) If n(a−γu∗)/a > 1, then u = u∗ is asymptotically stable for τ ∈ [0, τ0), and unstable

for τ > τ0.
(iii) For n(a − γu∗)/a > 1, (2.5) undergoes a Hopf bifurcation at u∗ when τ = τi, for

i = 0, 1, 2, · · · , [(m− 1)/2].

3 Numerical Simulations

Let a = 2, γ = 1 and n = 4 in (2.2), it is easy to find that the positive equilibrium point
u∗ = 1, so the condition n(a− γu∗)/a > 1 holds.

In Table 1, we give the absolute errors (AE) and the relative errors (RE) at t = 10
of the NSFDM with initial value u(t) = 1.1 and τ = 1. From this table we know that the
NSFDM has good convergence.

In Table 2, we give the values of τk for different step size h = 1/2, 1/4, 1/8 and 1/16.
From Theorem 2.5 and Table 2 we can see that τk is the bifurcation points. Furthermore, in
Figures 1-4, we present the numerical solution and phase diagram of the system discretized
by the NSFDM. From Theorem 2.5 we can conclude that the equilibrium is asymptotically
stable for τ ∈ [0, τ0) (τ0 ≈ 1.0986 in Figure 1, τ0 ≈ 0.7643 in Figure 2, τ0 ≈ 0.6734 in Figure
3 and τ0 ≈ 0.6368 in Figure 4), unstable for τ > τ0 and an attracting bifurcating periodic
solution exists for τ > τ0. This is just what Figures 1-4 show intuitively.

It is not difficult to see that the given numerical results illustrate the correctness of the
theoretical analysis.
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Table 1 The errors of NSFDM
m 2 4 8 16

AE 7.26E-02 7.90E-03 3.80E-03 6.00E-04
RE 7.04E-02 7.66E-03 3.68E-03 5.18E-04

Table 2 The values of τk

τ0 τ1 τ2 τ3 τ4 ⋯

h=1/2 1.0986
h=1/4 0.7643 1.2452
h=1/8 0.6734 1.2254 7.0803 7.1979
h=1/16 0.6368 1.2171 5.5619 11.8342 11.9088 ⋯
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Figure 1 Numerical solution and phase diagram with step size h = 1/2. (a) numerical
solution; (b) phase diagram for τ = 1.0986; (c) phase diagram for τ = 1.5.
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Figure 2 Numerical solution and phase diagram with step size h = 1/4. (a) numerical
solution; (b) phase diagram for τ = 0.7643; (c) phase diagram for τ = 1.5.
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Figure 3 Numerical solution and phase diagram with step size h = 1/8. (a) numerical
solution; (b) phase diagram for τ = 0.6734; (c) phase diagram for τ = 1.5.
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Figure 4 Numerical solution and phase diagram with step size h = 1/16. (a) numerical
solution; (b) phase diagram for τ = 0.6368; (c) phase diagram for τ = 1.5.

4 Conclusion

Mackey-Glass system is discretized by NSFDM, the influence of time delay on blood
cell density is analyzed. If the time delay exceeds a certain critical value, Hopf bifurcation
will occur and result in the density of mature cells produce periodic oscillation. However, if
the delay is small enough, the equilibrium is stable.

From a biological point of view, if we can put off the production of immature cells
in bone marrow to the normal time of their release in the circulating blood, stabilize the
density of mature cells in the blood circulation, the disease will be brought under control.
Our analysis results can provide critical insights and guidance for the analysis and design of
control schemes from the perspective of dynamics and control theory.
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Mackey-Glass系统非标准有限差分方法的数值动力性

姚洁怡, 王 琦

(广东工业大学数学与统计学院, 广东 广州 510006)

摘要: 本文研究了Mackey-Glass系统的数值动力性问题. 利用非标准有限差分方法和离散系统的分支

理论, 证明了随着时间延迟的增加, 在正不动点处产生了一系列霍普夫分支. 同时给出了在正平衡点处霍普

夫分支存在的参数条件. 最后, 给出了一些检验文中结论有效性的数值例子. 非标准有限差分方法便于构造,

运算量小, 适用于非线性系统的分支分析, 推广了文献中的结果.
关键词: 非标准有限差分方法; Mackey-Glass系统; 霍普夫分支; 稳定性
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