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1 Introduction

An interesting notion that comes up in the study of surfaces in higher codimension is
that of the ellipse of curvature. This is the image in the normal space of the unit circle in
the tangent plane under the second fundamental form.

Using this concept, Guadalupe-Rodriguez(cf.[1]) obtained some inequalities relating the
area of compact surfaces in (real) space forms and the integral of the square of the norm of
the mean curvature vector with topological invariants. When the ellipse of curvature is a
circle, restrictions on the Gaussian and normal curvatures gave them some rigidity results.

Castro(cf.[2]) classified the Lagrangian orientable surfaces in complex space forms with
the property that the ellipse of curvature is always a circle. As a consequence, they ob-
tained new characterizations of the Clifford torus in the complex projective plane and of
the Whitney spheres in the complex projective, complex Euclidean and complex hyperbolic
planes.

Other works which use the ellipse of curvature as a tool in the study of surfaces in (real)
space forms can be found in these articles.(cf.[3–5])

In this article we attach the circular ellipse of curvature condition to symplectic surfaces
in two-dimensional complex space forms.
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Let M be a complex two-dimensional Kähler manifold with Kähler form ω. Let Σ be
a Riemann surface and we consider an isometric immersion f : Σ → M from Σ into M .
Chern-Wolfson(cf.[6]) defined the Kähler angle θ of Σ in M by

f∗ω = cos θdµΣ,

where dµΣ is the area element of Σ in the induced metric. It is said that Σ is a holomorphic
curve if cos θ = 1, Σ is a Lagrangian surface if cos θ = 0 and Σ is a symplectic surface if
cos θ > 0.

Let H be the mean curvature vector field of f , which is defined by

H =
∑
α,i

hα
iieα, (1.1)

where hα
ij ’s are the components of the second fundamental form of f , and ei and eα are

adapted frames along f .
A symplectic minimal surface is a critical point of the area of surfaces, which is sym-

plectic. Han-Li(cf.[7]) considered generally the critical point of the functional

L =
∫

Σ

1
cos θ

dµΣ, (1.2)

in the class of symplectic surfaces. The Euler-Lagrange equation of this functional is

cos3 θH = (J(J∇ cos θ)>)⊥, (1.3)

where ()> and ()⊥ mean tangential components and normal components of () respectively.
Such a surface is called a symplectic critical surface.

Many interesting results about symplectic critical surfaces have been obtained by Han et
al.(cf.[7–11]). In this paper we will focus on the explicit characterization of symplectic critical
surfaces from the viewpoint of differential geometry. It follows from Eq.(1.3) that a minimal
surface with constant Kähler angle that values in [0, π

2
) is a symplectic critical surface. There

are few examples of symplectic critical surfaces that is non-minimal. Han-Li-Sun(cf.[11]) gave
a two-parameters family of symplectic critical surfaces in two-dimensional complex plane C2,
which is rotationally symmetric. Later, He-Li(cf.[12]) showed the symplectic critical surfaces
with parallel normalized mean curvature vector in C2 must be the above examples, and
there does not exist any symplectic critical surface with parallel normalized mean curvature
vector in two-dimensional complex space forms of non-zero constant holomorphic sectional
curvature. So, it is natural to considering what kind of symplectic critical surface must be
minimal.

In Sec.2, we introduce the concept of ellipse of curvature. In Sec.3, we study the
fundamental equations of symplectic critical surfaces with circular ellipse of curvature in
two-dimensional complex space forms by using the method of moving frame(cf.[6]). In Sec.4,
we study the equations under the condition ρ = 0 and get all solutions of the equations
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explicitly in this case. In Sec.5, we give a geometric result. Concretely, we prove that the
symplectic critical surfaces with circular ellipse of curvature in two-dimensional complex
space forms are minimal(cf. Theorem 5.1).

2 The Ellipse of Curvature

Suppose that M is a 4-dimensional Riemannian manifold. Let Σ be a Riemann surface
and f : Σ → M be an isometric immersion. Let H be the mean curvature vector field of f .
We denote the metric of M as well as the induced metric in Σ by <,>. If A : TΣ×TΣ → T⊥Σ
is the second fundamental form of f , the ellipse of curvature is the subset of the normal plane
defined as {A(v, v) ∈ T⊥p Σ :< v, v >= 1, v ∈ TpΣ, p ∈ Σ}. To see that it is an ellipse, we
consider an arbitary orthogonal tangent frame {v1, v2}, denote hij = A(vi, vj), i, j = 1, 2,
and look at the following formula for v = cos τv1 + sin τv2:

A(v, v) =
H
2

+ cos 2τ
h11 − h22

2
+ sin 2τh12, (2.1)

where H = traceA is the mean curvature vector. As v goes once around the unit tangent
circle, A(v, v) goes twice around the ellipse.

From Eq.(2.1), it is not difficult to deduce that the ellipse of curvature is a circle if and
only if

|h11 − h22|2
4

= |h12|2, < h11 − h22, h12 >= 0. (2.2)

The property that the ellipse is a circle is a conformal invariant. Of course this ellipse
could degenerate into a line segment or a point. And the following properties are equivalent
at a point of the immersed surface: (i) the ellipse degenerates into a line segment or a
point, (ii) (h11 − h22)/2 and h12 are linearly dependent, (iii) the normal bundle is flat, and
(iv) if vα (α=3,4) is an orthonormal normal frame, the second fundamental forms Avα

are
simultaneously diagonalizable. Here, Avα

is the symmetric endomorphism of TΣ defined by
< A(X, Y ), vα >=< Avα

X, Y >, where X, Y ∈ TΣ.

3 The Fundamental Equations of the Surfaces

Suppose that M is a complex two-dimensional Kähler manifold of constant holomorphic
sectional curvature 4ρ. Let {ωi} be a local field of unitary coframes on M , so that the Kähler
metric is represented by

∑
ωiωi. Here and in what follows, we will agree on the following

range of indices: 1 ≤ i, j, k ≤ 2. We denote by ωij the unitary connection forms with respect
to {ωi}. So we have

dωi =
∑

ωij ∧ ωj , ωij + ωji = 0,

dωij =
∑

ωik ∧ ωkj + Ωij ,

Ωij = −ρ
(
ωi ∧ ωj + δij

∑
ωk ∧ ωk

)
.

(3.1)

Let Σ be a Riemann surface and f : Σ → M be an isometric immersion. Let H be the
mean curvature vector field of f . We assume H has no zeros on Σ. We can construct a unique
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system of global orthonormal vector fields {ẽ1, ẽ2, ẽ3, ẽ4} along Σ such that ẽ1 and ẽ2 are
tangent to Σ by the following: First we set the normal vector field ẽ3 of T⊥Σ arbitrarily, then
the normal vector field ẽ4 of T⊥Σ is uniquely determined by choosing it to be compatible
with the fixed orientations of Σ and M . The system of vectors {ẽ3, ẽ4,Jẽ3,Jẽ4} is linearly
independent, because f is neither holomorphic nor anti-holomorphic. Here the angle of Jẽ4

and ẽ3 is equal to the Kähler angle θ which is defined in Sec.1. In fact, set

ẽ1 = − Jẽ4 − 〈Jẽ4, ẽ3〉ẽ3

‖Jẽ4 − 〈Jẽ4, ẽ3〉ẽ3‖ , ẽ2 =
Jẽ3 − 〈Jẽ3, ẽ4〉ẽ4

‖Jẽ3 − 〈Jẽ3, ẽ4〉ẽ4‖ .

Then ẽ1 and ẽ2 are tangent to Σ. A straightforward calculation shows

〈Jẽ4, ẽ3〉 = 〈Jẽ1, ẽ2〉 = cos θ.

It is easy to see that {ẽ1, ẽ2, ẽ3, ẽ4} is an adapted frame on Σ in M , that is, ẽ1 and ẽ2 are
sections on TΣ and ẽ3 and ẽ4 are sections on T⊥Σ. The complex structure J is represented
under the frame {ẽ1, ẽ2, ẽ3, ẽ4} as follows:

Jẽ1 = cos θ · ẽ2 + sin θ · ẽ4,

Jẽ2 = − cos θ · ẽ1 − sin θ · ẽ3,

Jẽ3 = sin θ · ẽ2 − cos θ · ẽ4,

Jẽ4 = − sin θ · ẽ1 + cos θ · ẽ3.

Moreover, we define vector fields e1 and e3 as follows:

e1 =
ẽ1 − Jẽ2

‖ẽ1 − Jẽ2‖ = cos
θ

2
· ẽ1 + sin

θ

2
· ẽ3,

e3 =
ẽ1 + Jẽ2

‖ẽ1 + Jẽ2‖ = sin
θ

2
· ẽ1 − cos

θ

2
· ẽ3.

and put

e2 = Je1 = cos
θ

2
· ẽ2 + sin

θ

2
· ẽ4,

e4 = Je3 = − sin
θ

2
· ẽ2 + cos

θ

2
· ẽ4.

Then {e1, e2, e3, e4} is a J-canonical frame along f . We extend {ẽA} and {eA} to a neigh-
bourhood of Σ in M , where A, B and C run from 1 to 4.

Let {θ̃A} and {θA} be the dual coframes of {ẽA} and {eA} respectively. Let θ̃AB and
θAB be the Riemannian connection forms with respect to the canonical 1-forms {θ̃A} and
{θA} respectively and put

ωj = θ2j−1 + iθ2j ,

ωjk = θ2j−1,2k−1 + iθ2j,2k−1, where i =
√−1.
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Then we have the following relations

θ̃1 + iθ̃2 = cos
θ

2
ω1 + sin

θ

2
ω2,

θ̃3 + iθ̃4 = sin
θ

2
ω1 − cos

θ

2
ω2,

(3.2)

and

θ̃12 = i

(
cos2

θ

2
ω11 − sin2 θ

2
ω22

)
,

θ̃34 = i

(
sin2 θ

2
ω11 − cos2

θ

2
ω22

)
,

θ̃13 + iθ̃23 = −
{

ω12 +
1
2

[dθ − sin θ(ω11 + ω22)]
}

,

θ̃14 + iθ̃24 = i

{
ω12 − 1

2
[dθ − sin θ(ω11 + ω22)]

}
.

(3.3)

We denote the restriction of {θ̃A} to Σ by the same letters. Then we have θ̃3 = 0 = θ̃4

on Σ. Putting φ = θ̃1 + iθ̃2, the induced metric of Σ is written as ds2 = φφ. By taking the
exterior derivative of Eq.(3.2) restricted to Σ, we get

1
2

[dθ + sin θ(ω11 + ω22)] = aφ + bφ,

ω12 = bφ + cφ,
(3.4)

where a, b and c are complex-valued smooth functions defined locally on Σ. Let {hα
ij} be the

components of the second fundamental form so that θ̃iα =
∑

j hα
ij θ̃j . By using Eqs.(3.3) and

(3.4) , all hα
ij ’s can be expressed in terms of a, b and c. Indeed, we have

h3
11 = −1

2
[
a + ā + 2(b + b̄) + c + c̄

]
,

h3
12 =

i

2
(−a + ā + c− c̄) ,

h3
22 =

1
2

[
a + ā− 2(b + b̄) + c + c̄

]
,

h4
11 =

i

2
[
a− ā + 2(b− b̄) + c− c̄

]
,

h4
12 =

1
2

(−a− ā + c + c̄) ,

h4
22 =

i

2
[−a + ā + 2(b− b̄)− c + c̄

]
.

(3.5)

Put ẽ3 = − H
‖H‖ , then H = −‖H‖ẽ3 = (h3

11 + h3
22)ẽ3 + (h4

11 + h4
22)ẽ4, it follows from Eq.(3.5)

that b = b̄, and ‖H‖ = 4b.

Let K be the Gauss curvature of Σ, then

dθ̃12 = −Kθ̃1 ∧ θ̃2 = −i

2
Kφ ∧ φ.

By taking the exterior derivative of the first formula of Eq.(3.3), using Eq.(3.1) and Eq.(3.4),
we have

K = (1 + 3 cos2 θ)ρ− 2(|a|2 − 2b2 + |c|2). (3.6)
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Let KN be the normal curvature of f defined by dθ̃34 = −KN θ̃1 ∧ θ̃2 = − i
2
KNφ ∧ φ. By

taking the exterior derivative of the second formula of Eq.(3.3), using Eq.(3.1) and Eq.(3.4),
we have

KN = 2(|a|2 − |c|2)− (3 cos2 θ − 1)ρ. (3.7)

Since

(J∇ cos θ)> = (∇ẽ1 cos θ · Jẽ1 +∇ẽ2 cos θ · Jẽ2)
>

= ∇ẽ1 cos θ · cos θ · ẽ2 −∇ẽ2 cos θ · cos θ · ẽ1,

then

(J(J∇ cos θ)>)⊥ = ∇ẽ1 cos θ · cos θ · (Jẽ2)⊥ −∇ẽ2 cos θ · cos θ · (Jẽ1)⊥

= − sin θ cos θ∇ẽ1 cos θ · ẽ3 − sin θ cos θ∇ẽ2 cos θ · ẽ4.

Hence, in particular, sin θ 6= 0. From the symplectic critical surface equation Eq.(1.3),
we get

4b cos3 θ = sin θ cos θ∇ẽ1 cos θ, (3.8)

and

∇ẽ2 cos θ = 0. (3.9)

It follows from the first formula of Eq.(3.4) that

dθ = (a + b)φ + (a + b)φ = (a + a + 2b)θ̃1 + i(a− a)θ̃2. (3.10)

Combining Eqs.(3.9) and (3.10), we have

a = a, (3.11)

which implies

dθ = 2(a + b)θ̃1. (3.12)

Substituting Eqs.(3.12) into (3.8), we obtain

a = −(1 + 2 cot2 θ)b. (3.13)

Next, we study the fundamental equations of symplectic critical surfaces with circular
ellipse of curvature.

Using Eq.(2.2), we can obtain

h3
12(h

3
11 − h3

22) + h4
12(h

4
11 − h4

22) = 0,

(h3
11 − h3

22)
2 + (h4

11 − h4
22)

2 = 4((h3
12)

2 + (h4
12)

2).
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From Eq.(3.5), using the above two equations, we can get a = 0 or c = 0 at any point p ∈ Σ.
When a = 0, using Eq.(3.13), we can know that b = 0, so H = 0 at p, i.e. p is a minimal
point. When c = 0, we obtain the following proposition:

Proposition 3.1 If Σ is a symplectic critical surface with circular ellipse of curvature
in M , let U = {p ∈ Σ|θ(p) 6= 0}, then we have, on U ,

θ̃12 = i(2b cot3 θ − b cot θ +
3ρ

8b
sin3 θ cos θ)(φ− φ),

dθ = −2b cot2 θ(φ + φ),

db = −(4b2 cot3 θ + b2 cot θ +
3ρ

8
sin3 θ cos θ)(φ + φ), (3.14)

H = −4bẽ3.

Proof From the first formula of Eq.(3.4), we have

aφ + bφ =
1
2
[dθ + sin θ(ω11 + ω22)], (3.15)

where a,b,θ are all real. Taking the exterior derivative of Eq.(3.15), we get

da ∧ φ + db ∧ φ

=iaθ̃12 ∧ φ− ibθ̃12 ∧ φ +
1
2
[cos θdθ ∧ (ω11 + ω22) + sin θ(dω11 + dω22)].

(3.16)

From Eq.(3.15), using

a = −(1 + 2 cot2 θ)b, (3.17)

we get

dθ = −2 cot2 θ b(φ + φ),

sin θ(ω11 + ω22) = (a− b)(φ− φ) =
−2b

sin2 θ
(φ− φ),

which implies

ω11 + ω22 = − 2b

sin3 θ
(φ− φ). (3.18)

From Eq.(3.2), using θ̃3 = 0 = θ̃4, we have

cos
θ

2
ω1 + sin

θ

2
ω2 = φ, sin

θ

2
ω1 − cos

θ

2
ω2 = 0,

which implies

ω1 = cos
θ

2
φ, ω2 = sin

θ

2
φ. (3.19)

Then using Eq.(3.1), we get

dω11 + dω22 = −3ρ(ω1 ∧ ω1 + ω2 ∧ ω2) = −3ρ cos θφ ∧ φ.
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Hence,

1
2

cos θdθ ∧ (ω11 + ω22) = −4b2 cot3 θ

sin2 θ
φ ∧ φ,

1
2

sin θ(dω11 + dω22) = −3ρ

2
sin θ cos θφ ∧ φ.

(3.20)

Using Eqs.(3.16), (3.17) and (3.20), we have

− (1 + 2 cot2 θ)db ∧ φ + db ∧ φ + i(1 + 2 cot2 θ)bθ̃12 ∧ φ + ibθ̃12 ∧ φ

=(−12b2 cot3 θ

sin2 θ
− 3ρ

2
sin θ cos θ)φ ∧ φ.

(3.21)

From the second formula of Eq.(3.4), we have

ω12 = bφ + cφ. (3.22)

Taking the exterior derivative of Eq.(3.22), we get

db ∧ φ + dc ∧ φ = ibθ̃12 ∧ φ− icθ̃12 ∧ φ + dω12. (3.23)

Since c = 0, then we have

ω12 = bφ, db ∧ φ = ibθ̃12 ∧ φ + dω12. (3.24)

From the second formula of Eq.(3.1), we have

dω12 = (ω11 − ω22) ∧ ω12 − ρω1 ∧ ω2.

Using Eqs.(3.19) and (3.24), we get

db ∧ φ = ibθ̃12 ∧ φ + b(ω11 − ω22) ∧ φ. (3.25)

By the conjugate of the above equation, we have

db ∧ φ = −ibθ̃12 ∧ φ + b(ω11 − ω22) ∧ φ. (3.26)

Combining Eqs.(3.21), (3.25) and (3.26), we have

−(1 + 2 cot2 θ)b(ω11 − ω22) ∧ φ + b(ω11 − ω22) ∧ φ = (−12b2 cot3 θ

sin2 θ
− 3ρ

2
sin θ cos θ)φ ∧ φ.

Taking the conjugate of the above equation, we have

−(1 + 2 cot2 θ)b(ω11 − ω22) ∧ φ + b(ω11 − ω22) ∧ φ = (12b2 cot3 θ

sin2 θ
+

3ρ

2
sin θ cos θ)φ ∧ φ.

Using the above two equations, we get

ω11 − ω22 = (6b cot3 θ +
3ρ

4b
sin3 θ cos θ)(φ− φ). (3.27)
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Since ω11 + ω22 = − 2b
sin3 θ

(φ− φ), hence we have

ω11 = (3b cot3 θ +
3ρ

8b
sin3 θ cos θ − b

sin3 θ
)(φ− φ),

ω22 = (− b

sin3 θ
− 3b cot3 θ − 3ρ

8b
sin3 θ cos θ)(φ− φ),

ω11 − ω22 = (6b cot3 θ +
3ρ

4b
sin3 θ cos θ)(φ− φ).

(3.28)

Using Eq.(3.3), we get the first formula of Eq.(3.14). Then using Eqs.(3.25) and (3.28),
we have

db ∧ φ = ibθ̃12 ∧ φ + b(ω11 − ω22) ∧ φ

= (4b2 cot3 θ + b2 cot θ +
3ρ

8
sin3 θ cos θ)φ ∧ φ,

then we get the third formula of Eq.(3.14).
Thus, we finish our proofs.
Remark 3.2 Next, we discuss the case of U = ∅. In fact, if U = ∅, then θ ≡ 0 on Σ,

which implies Σ is a holomorphic curve in M . Of course it is a minimal surface.
Set φ = λdz, where λ is a non-zero complex-valued function on a simply connected

domain U1 ⊂ U with complex coordinate z. Then the set of the first three formulas of
Eq.(3.14) is rewritten as the following system of differential equations:

∂λ

∂z̄
= −|λ|2(2b cot3 θ − b cot θ +

3ρ

8b
sin3 θ cos θ),

∂θ

∂z̄
= −2λb cot2 θ,

∂b

∂z
= −λ(4b2 cot3 θ + b2 cot θ +

3ρ

8
sin3 θ cos θ).

(3.29)

In the following we give a lemma about the existence of isothermal coordinate.
Lemma 3.3 Suppose Σ is a symplectic critical surface with circular ellipse of curvature

in M . Then there exists a complex coordinate w on a neighborhood of a point of U ⊂ Σ
such that φ = µdw, where µ is real-valued.

Proof Since θ is not constant, we claim that b is a function of θ. In fact, canceling
out (φ + φ) in the second and third formula of Eq.(3.14), we get a differential equation in b

for θ. Using the claim, we write b = b(θ), and define a real-valued function

F (θ) = −2 tan θ + cot θ +
3ρ

8b2
tan θ sin4 θ.

Taking the partial derivative of the second formula of Eq.(3.29) with respect to z and using
Eq.(3.29), we have a second-order partial differential equation ∂2θ

∂z∂z̄
− F (θ)∂θ

∂z
∂θ
∂z̄

= 0. It
follows that ∂(θzexp(− ∫

F (θ)dθ))

∂z̄
= 0. Hence, there exists a holomorphic function G(z) on U

such that ∂θ
∂z

= G(z)exp
(∫

F (θ)dθ
)
. Setting

w =
∫

G(z)dz, µ = −exp
(∫

F (θ)dθ
)

2b cot2 θ
,
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the lemma is proved by the conjugate of the second formula of Eq.(3.29).
Hence, for a neighbourhood U of a point of Σ, there exists an isothermal coordinate

z = u + iv such that
ds2 = λ2dzdz̄,

where λ is a positive function defined on U , and we have

φ = λdz.

This implies that λ, θ and b are functions of single variable, and Eq.(3.29) is seen to be a
system of ordinary differential equations. Consequently, if Σ is a symplectic critical surface
with circular ellipse of curvature in M , then there exist real-valued smooth functions of
single variable λ, θ and b which are defined locally on Σ and satisfy the system of ordinary
differential equations (cf.Eq.(3.30)).

Theorem 3.4 Let M be a two-dimensional complex space form of constant holo-
morphic sectional curvature 4ρ. If Σ is a symplectic critical surface with circular ellipse of
curvature in M , then there exist a system of local coordinates (u, v) on Σ and real-valued
smooth functions λ(u), θ(u) and b(u) of single variable u which are defined on an interval I

of u, such that they satisfy a system of ordinary differential equations

dλ

du
= −2λ2(2b cot3 θ − b cot θ +

3ρ

8b
sin3 θ cos θ), λ(u) > 0,

dθ

du
= −4λ cot2 θ b,

db

du
= −2λ

{
(cot θ + 4 cot3 θ)b2 +

3
8
ρ sin3 θ cos θ

}
.

(3.30)

4 Analysis of the Overdetermined System: ρ = 0 Case

When ρ = 0, we get all solutions of the system Eq.(3.30) as follows.
Lemma 4.1 Assume that ρ = 0. Then all solutions of the system Eq.(3.30) are given

by

λ(θ) = c1 sin θ
√

cos θ, b(θ) = c2
sin2 θ√
cos θ

, (4.1)

for any positive constants c1 and c2.
Proof Since both θ(u) and b(u) are not constants, regarding θ as variable, we get

from Eq.(3.30) that

dλ

dθ
= λ(θ)(cot θ − 1

2 cot θ
+

3ρ sin5 θ

16b2(θ) cos θ
),

db

dθ
= (

tan θ

2
+ 2 cot θ)b(θ) +

3ρ tan θ sin4 θ

16b(θ)
.

(4.2)

Since ρ = 0, the equations above reduce to

dλ

dθ
= λ(θ)(cot θ − 1

2 cot θ
),

db

dθ
= (

tan θ

2
+ 2 cot θ)b(θ). (4.3)
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The integration of the above equations give us the solution of λ(θ) and b(θ) as follows:

λ(θ) = c1 sin θ
√

cos θ, b(θ) = c2
sin2 θ√
cos θ

, (4.4)

for any positive constants c1 and c2. Hence we finish our proof.

5 The Geometric Result

In this section, we show a geometric result.
Theorem 5.1 Let M be a two-dimensional complex space form of constant holo-

morphic sectional curvature 4ρ. If Σ is a symplectic critical surface with circular ellipse of
curvature in M , then Σ is a minimal surface in M .

Proof First, we prove our result in the case of ρ 6= 0:
We already know that

K = −∆log λ

λ2
= −

d2 log λ
du2

λ2
. (5.1)

and that

K = (1 + 3 cos2 θ)ρ− 2(|a|2 − 2b2 + |c|2). (5.2)

Using the first equation of Eq.(3.30) and Eq.(5.1), we can get

K = (−48 cot6 θ + 24 cot4 θ +
48 cos4 θ

sin6 θ
− 8 cos2 θ

sin4 θ
)b2 + (9 sin2 θ cos2 θ − 12 cos4 θ)ρ. (5.3)

Using Eqs.(3.13) and (5.2), since c = 0, we have

K = ρ + 3ρ cos2 θ − 8b2 cot4 θ − 8b2 cot2 θ + 2b2. (5.4)

Combining Eqs.(5.3) and (5.4), we get

(−48 cot6 θ + 32 cot4 θ +
48 cos4 θ

sin6 θ
− 8 cos2 θ

sin4 θ
+ 8 cot2 θ − 2)b2

+ (9 sin2 θ cos2 θ − 12 cos4 θ − 3 cos2 θ − 1)ρ = 0.

(5.5)

Regarding θ as variable, taking the derivative of Eq.(5.5) and using the second equation
of Eq.(4.2), we have

(−192 cot7 θ + 80 cot5 θ + 64 cot3 θ − 272 cos3 θ

sin5 θ
− 8 cos θ

sin3 θ
+

192 cos5 θ

sin7 θ
− 2 tan θ)b2+

(−18 cos5 θ

sin θ
+

18 cos3 θ

sin θ
− 3 sin5 θ

4 cos θ
+ 78 sin θ cos3 θ − 15 sin3 θ cos θ + 3 sin θ cos θ)ρ = 0.

(5.6)

Set x = sin θ. Using Eq.(5.5), we have

b2 =
ρx4(21x4 − 36x2 + 16)
2(35x4 − 72x2 + 36)

. (5.7)
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Taking Eq.(5.7) into Eq.(5.6), we get

ρx(6615x8 − 28224x6 + 43896x4 − 29632x2 + 7344)
4
√

1− x2(35x4 − 72x2 + 36)
= 0. (5.8)

Hence, x is constant, then θ is constant. So b = 0 by the second formula of Eq.(3.30),
i.e. H = 0. Thus, we finish the first part of our proofs.

Now, we prove our result in the case of ρ = 0:
When ρ = 0, using the second formula of Eq.(4.1) and Eq.(5.3), we have

K = −48c2
2

cos5 θ

sin2 θ
+ 48c2

2

cos3 θ

sin2 θ
+ 24c2

2 cos3 θ − 8c2
2 cos θ. (5.9)

Using the second formula of Eq.(4.1) and Eq.(5.4), we get

K = −8c2
2 cos3 θ − 8c2

2 sin2 θ cos θ + 2c2
2

sin4 θ

cos θ
. (5.10)

Combining Eq.(5.9) and Eq.(5.10), we can have

−48 cos5 θ

sin2 θ
+

48 cos3 θ

sin2 θ
− 2 sin4 θ

cos θ
+ 8 sin2 θ cos θ + 32 cos3 θ − 8 cos θ = 0.

Set x = sin θ, then we get

2(35x4 − 72x2 + 36)√
1− x2

= 0,

hence x is constant, then θ is constant. So b = 0 by the second formula of Eq.(3.30), i.e.
H = 0. We finish our proofs.

Remark 5.2 The coordinate of b2 in Eq.(5.5) doesn’t equal to 0. Setting x = sin θ,
from the calculation by Mathematica, we can know that

−48 cot6 θ + 32 cot4 θ +
48 cos4 θ

sin6 θ
− 8 cos2 θ

sin4 θ
+ 8 cot2 θ − 2 =

2(35x4 − 72x2 + 36)
x4

= 0,

hence, x =
√

6
7
.

If x =
√

6
7
, the above equation equals to zero, then from Eq.(5.5), we have

9 sin2 θ cos2 θ − 12 cos4 θ − 3 cos2 θ − 1 = −21x4 + 36x2 − 16 = 0,

and solve the equation by Mathematica, but we can’t have the solution in (0, 1). It’s a
contradiction. So the coordinate of b2 in Eq.(5.5) doesn’t equal to 0.

Remark 5.3 From the discussion in Remark 5.2, we can know that the denominator
in Eq.(5.8) doesn’t equal to 0.

As we already know that any closed symplectic minimal surface in a Kähler-Einstein
surface with non-negative scalar curvature is holomorphic, we have the following Liouville
theorem:
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Corollary 5.4 Any closed symplectic critical surfaces with circular ellipse of curvature
in two-dimensional complex space forms with non-negative holomorphic sectional curvature
must be holomorphic.
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复二维空间形式中曲率椭圆是圆的辛临界曲面

何 玲,田亭玉

(天津大学应用数学中心,天津 300072)

摘要: 本文研究了复二维空间形式中曲率椭圆是圆的辛临界曲面. 利用活动标架法, 获得了这类曲面

是极小曲面的结果, 丰富了辛临界曲面的内容.
关键词: 辛临界曲面; 曲率椭圆; 极小曲面; 复空间形式
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