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Abstract: We study the symplectic critical surfaces in two-dimensional complex space forms
with the property that the ellipse of curvature is always a circle. By using the method of moving
frame, we prove that such surfaces are minimal. The results enrich the contents of symplectic
critical surface.
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1 Introduction

An interesting notion that comes up in the study of surfaces in higher codimension is
that of the ellipse of curvature. This is the image in the normal space of the unit circle in
the tangent plane under the second fundamental form.

Using this concept, Guadalupe-Rodriguez(cf.[1]) obtained some inequalities relating the
area of compact surfaces in (real) space forms and the integral of the square of the norm of
the mean curvature vector with topological invariants. When the ellipse of curvature is a
circle, restrictions on the Gaussian and normal curvatures gave them some rigidity results.

Castro(cf.[2]) classified the Lagrangian orientable surfaces in complex space forms with
the property that the ellipse of curvature is always a circle. As a consequence, they ob-
tained new characterizations of the Clifford torus in the complex projective plane and of
the Whitney spheres in the complex projective, complex Euclidean and complex hyperbolic
planes.

Other works which use the ellipse of curvature as a tool in the study of surfaces in (real)
space forms can be found in these articles.(cf.[3-5])

In this article we attach the circular ellipse of curvature condition to symplectic surfaces

in two-dimensional complex space forms.
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Let M be a complex two-dimensional Kéhler manifold with Kéahler form w. Let ¥ be
a Riemann surface and we consider an isometric immersion f : ¥ — M from ¥ into M.
Chern-Wolfson(cf.[6]) defined the Kéhler angle 6 of ¥ in M by

ffw = cosfldus,

where dusy, is the area element of 3 in the induced metric. It is said that ¥ is a holomorphic
curve if cosf = 1, ¥ is a Lagrangian surface if cos@ = 0 and ¥ is a symplectic surface if
cosf > 0.

Let H be the mean curvature vector field of f, which is defined by

H =) hiea, (1.1)

where hg;’s are the components of the second fundamental form of f, and e; and e, are
adapted frames along f.
A symplectic minimal surface is a critical point of the area of surfaces, which is sym-

plectic. Han-Li(cf.[7]) considered generally the critical point of the functional

1
L= 1.2
/2 s, (1.2)

in the class of symplectic surfaces. The Euler-Lagrange equation of this functional is

cos® 0H = (J(JV cosf) ")+, (1.3)

where ()7 and () mean tangential components and normal components of () respectively.
Such a surface is called a symplectic critical surface.

Many interesting results about symplectic critical surfaces have been obtained by Han et
al.(cf.[7-11]). In this paper we will focus on the explicit characterization of symplectic critical
surfaces from the viewpoint of differential geometry. It follows from Eq.(1.3) that a minimal
surface with constant Kahler angle that values in [0, 7) is a symplectic critical surface. There
are few examples of symplectic critical surfaces that is non-minimal. Han-Li-Sun(cf.[11]) gave
a two-parameters family of symplectic critical surfaces in two-dimensional complex plane C2,
which is rotationally symmetric. Later, He-Li(cf.[12]) showed the symplectic critical surfaces
with parallel normalized mean curvature vector in C? must be the above examples, and
there does not exist any symplectic critical surface with parallel normalized mean curvature
vector in two-dimensional complex space forms of non-zero constant holomorphic sectional
curvature. So, it is natural to considering what kind of symplectic critical surface must be
minimal.

In Sec.2, we introduce the concept of ellipse of curvature. In Sec.3, we study the
fundamental equations of symplectic critical surfaces with circular ellipse of curvature in
two-dimensional complex space forms by using the method of moving frame(cf.[6]). In Sec.4,

we study the equations under the condition p = 0 and get all solutions of the equations
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explicitly in this case. In Sec.5, we give a geometric result. Concretely, we prove that the
symplectic critical surfaces with circular ellipse of curvature in two-dimensional complex

space forms are minimal(cf. Theorem 5.1).

2 The Ellipse of Curvature

Suppose that M is a 4-dimensional Riemannian manifold. Let X be a Riemann surface
and f: X — M be an isometric immersion. Let H be the mean curvature vector field of f.
We denote the metric of M as well as the induced metricin X by <, >. If A : TYXTY — T+%
is the second fundamental form of f, the ellipse of curvature is the subset of the normal plane
defined as {A(v,v) € Ty :< v,v >=1,v € T,5,p € £}. To see that it is an ellipse, we
consider an arbitary orthogonal tangent frame {vi,v,}, denote h;; = A(v;,v;),4,j = 1,2,

and look at the following formula for v = cos Tv; + sin Tvs:
H hiin—h
A(v,v) = 0} + cos 27% + sin 27hy2, (2.1)

where H = traceA is the mean curvature vector. As v goes once around the unit tangent
circle, A(v,v) goes twice around the ellipse.
From Eq.(2.1), it is not difficult to deduce that the ellipse of curvature is a circle if and
only if
|h11 — hoo?
4
The property that the ellipse is a circle is a conformal invariant. Of course this ellipse

= |h12|2, < h11 — hgg, h12 >= 0. (22)

could degenerate into a line segment or a point. And the following properties are equivalent
at a point of the immersed surface: (i) the ellipse degenerates into a line segment or a
point, (ii) (h11 — ha)/2 and his are linearly dependent, (iii) the normal bundle is flat, and
(iv) if v, (@=3,4) is an orthonormal normal frame, the second fundamental forms A4,  are
simultaneously diagonalizable. Here, A, is the symmetric endomorphism of 7Y defined by
<AX)Y), v, >=< A, X, Y >, where X|Y € TY.

3 The Fundamental Equations of the Surfaces

Suppose that M is a complex two-dimensional Kahler manifold of constant holomorphic
sectional curvature 4p. Let {w;} be a local field of unitary coframes on M, so that the Kéhler
metric is represented by > w;w;. Here and in what follows, we will agree on the following
range of indices: 1 <4, j,k < 2. We denote by w;; the unitary connection forms with respect

to {w;}. So we have
dw; = Zwij Nwj, wij +wj; =0,
dwij = Zwik Nwij + iy, (3.1)
Q= —p (wi NG+ 0 Y w Awk> .
Let ¥ be a Riemann surface and f : ¥ — M be an isometric immersion. Let H be the

mean curvature vector field of f. We assume H has no zeros on 3. We can construct a unique
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system of global orthonormal vector fields {€é1, é;,é3,é4} along ¥ such that é; and é; are
tangent to ¥ by the following: First we set the normal vector field é; of T+ ¥ arbitrarily, then
the normal vector field é, of T+¥ is uniquely determined by choosing it to be compatible
with the fixed orientations of 3 and M. The system of vectors {€s, €4, Jé3,Jé4} is linearly
independent, because f is neither holomorphic nor anti-holomorphic. Here the angle of Jé,

and €3 is equal to the Kéhler angle # which is defined in Sec.1. In fact, set

Jey, — <Jé4, é3>ég B Jeées — <Jég,é4>é4
— — = , €9 = — PR .
|1 Jés — (Jéu,Es)es]” 2 (| Tés — (Jés, éa)éa]|

€1 =

Then €; and é, are tangent to X. A straightforward calculation shows
<Jé4, é3> = <Jél, é2> = cosf.

It is easy to see that {€1,é2,€3,€4} is an adapted frame on ¥ in M, that is, é; and é, are
sections on TY and é3 and é, are sections on T+¥. The complex structure J is represented

under the frame {é;, €2, €3, €4} as follows:

Jéy =cosf-é; +sinb - éy,
Jéy = —cosf-é; —sinf - és,
Jés =sinf - e5 — cosl - ey,

Jéy, = —sinf - ¢e; + cosb - €s.

Moreover, we define vector fields e; and e3 as follows:

e _@—COSQ € —I—Sing é
e —de 2 2
e+ Jés o0 0
€3 = ————— =Sl —- €1 — COS < ' €3.
T e + Jés 2 ! 5 7B

and put

es = Je —cosg €y +sin—-é€
2 — 1 — 2 2 2 4,
3 . 54 0
pr— = -— ln— . _— . .
e4 es3 S 5 €9 co:s2 €4

Then {ey, ez, e3,€4} is a J-canonical frame along f. We extend {€4} and {e4} to a neigh-
bourhood of ¥ in M, where A, B and C' run from 1 to 4.

Let {04} and {04} be the dual coframes of {¢4} and {e} respectively. Let 0,45 and
04 be the Riemannian connection forms with respect to the canonical 1-forms {é 4} and
{04} respectively and put

wj = 251 + 1bs;,

Wik = 92j71,2k71 + iegj’gkfl, where i = % —1.
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Then we have the following relations

51 + iég = cos le + sin —w,,
5 (3.2)

03 + if, = sin §w1 — €OS —Wa,

2
and
n . 2 9 .2
015 = 1| cos® —wy1 —sin” —was |,
2 2
é _— .92 2 9
34 = 1| SIn 5(,()11 — COS 5(4}22 s

e 1 (3.3)

- ~ 1
014+ 16y =1 {W12 D) [df — sin 0(w1 + w22)]} :

We denote the restriction of {9~ 4} to 3 by the same letters. Then we have 0; =0=10,
on Y. Putting ¢ = 0, + iég, the induced metric of ¥ is written as ds?> = ¢¢. By taking the

exterior derivative of Eq.(3.2) restricted to X, we get

1 _
5 [d9 + sin 0((4)11 + WQQ)] = (1(25 + b¢,

- (3.4)
W12 = b¢ + C¢,

where a,b and ¢ are complex-valued smooth functions defined locally on 3. Let {Ag;} be the
components of the second fundamental form so that 6;, = Zj h;’jéj. By using Egs.(3.3) and
(3.4) , all hg;’s can be expressed in terms of a,b and c. Indeed, we have

1 _
hi{’lz—5 l[a+a+20b+b)+c+el,

hi'zz%(—a+a+c—é),
hi,=—=la+a—2(b+b)+c+el,
- g[ i ) (3.5)
h;‘lz%[a—a+2(b—b)+c—c],
héll2:§(_a_a+c+5)7
W= [ma+a+2b-b)—c+q.
Put é3 = —ﬁ, then H = —||H||é3 = (h3; + h3,)és + (hi; + h3y)és, it follows from Eq.(3.5)

that b = b, and ||H|| = 4b.
Let K be the Gauss curvature of X, then

dlys = — K0, A By = —%Kd) AG.

By taking the exterior derivative of the first formula of Eq.(3.3), using Eq.(3.1) and Eq.(3.4),

we have

K = (14 3cos®0)p — 2(|al]* — 2b* + |c|?). (3.6)
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Let Ky be the normal curvature of f defined by d§34 = fKNél A 52 = f%KN(b A ¢. By
taking the exterior derivative of the second formula of Eq.(3.3), using Eq.(3.1) and Eq.(3.4),

we have
Kn =2(|a]* = |c[*) — (3cos® 6 — 1)p. (3.7)
Since
(IVcosh)T = (Vs cos-Jé + Vs, cosb-Jéy) '
= Vg cosb-cosf-éy — Vg, cos-cosl - éy,
then

(J(IVcosh) ") = Ve cos-cos-(Jéy)" — Vs, cosh-cosh - (J&p)*-

= —sinfcosfV;, cosf - és —sinfhcosOVz, cos - éy.

Hence, in particular, sinf # 0. From the symplectic critical surface equation Eq.(1.3),

we get
4bcos® ) = sin @ cos OV, cos 0, (3.8)
and
Ve, cosf = 0. (3.9)
It follows from the first formula of Eq.(3.4) that
dd = (a+b)p+ @+b)d=(a+a+20)0;, +i(a—a)bs. (3.10)
Combining Eqs.(3.9) and (3.10), we have
a=a, (3.11)
which implies
df = 2(a + b)b;. (3.12)
Substituting Eqs.(3.12) into (3.8), we obtain
a = —(1+ 2cot?0)b. (3.13)

Next, we study the fundamental equations of symplectic critical surfaces with circular
ellipse of curvature.
Using Eq.(2.2), we can obtain

0,

h?2(h?1 - hgz) + hz1l2(h4111 - héz) =
4((h35)% + (hi)?).

(hi)l - h§2)2 + (h;ll - h%z)Q = (
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From Eq.(3.5), using the above two equations, we can get a = 0 or ¢ = 0 at any point p € 3.

When a = 0, using Eq.(3.13), we can know that b = 0, so H = 0 at p, i.e. p is a minimal

point. When ¢ = 0, we obtain the following proposition:

Proposition 3.1 If ¥ is a symplectic critical surface with circular ellipse of curvature

in M, let U= {p € X|6(p) # 0}, then we have, on U,

012 = i(2bcot® 6 — beot 6 + z—z sin® 0 cos 0)(¢ — ),
df = —2bcot? 0(¢ + ¢),

db = —(4b* cot® 0 + b* cot 6 + 3§p sin® @ cos 0) (¢ + @),
H = —4bes.

Proof From the first formula of Eq.(3.4), we have

- 1
ag + bep = §[d0 + sin f(wy1 + war)],
where a,b,0 are all real. Taking the exterior derivative of Eq.(3.15), we get

daNg+dbA¢

=iafis A ¢ — ibbia A G + %

From Eq.(3.15), using
a=—(1+2cot®0)b,

we get

df = —2cot?0 b(¢p + ¢),

. — —2b _
sinf(wi1 + wa) = (a = b)(¢ — @) = —5-(¢ — ),
sin“ 6
which implies
2b —
w11 + woo = _sin39( — ).

From Eq.(3.2), using 03 = 0 = 0, we have
cos iwl + sin 552 = ¢, sin §w1 — cos 552 =0,
which implies
0 0
w1 = COS 5(]5, Wy = sin §¢.
Then using Eq.(3.1), we get

d(.du + d(.UQQ = —3[)((.4)1 AN El + Wwo N wg) = —3p COS 9¢ VAN 5

[COS 0do A (wn + wgz) + sin 9<dW11 + du)22)}.

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)
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Hence,

t30
S CONG,
2 sin” 0 B (3.20)
5 sin 0(dwqy + dwag) = _?p sinf cos 8¢ A ¢.

1
5 c08 0dO A (wiy + woy) = —4b*

Using Eqgs.(3.16), (3.17) and (3.20), we have

—(1+2cot?0)db A+ db A G+ i(1 4 2cot? 0)bbiy A ¢+ ibbis A b

:(121)2(;?;22 — %sin@cos@)qﬁ/\a (32
From the second formula of Eq.(3.4), we have
w1z = b + cg. (3.22)
Taking the exterior derivative of Eq.(3.22), we get
dbA ¢+ de A p=ibbio A — ichia A ¢ + dwis. (3.23)
Since ¢ = 0, then we have
wiz = bd, dbA ¢ = ibbis A ¢ + dwro. (3.24)
From the second formula of Eq.(3.1), we have
dwis = (w11 — w22) A wiz — pwi A Wa.
Using Eqgs.(3.19) and (3.24), we get
db A ¢ = ibbig A ¢ + b(wiy — was) A . (3.25)
By the conjugate of the above equation, we have
db A = —iblyy A ¢+ b(@1, — Waz) A . (3.26)

Combining Egs.(3.21), (3.25) and (3.26), we have

— t20 3 —
—(1 4 2cot? 0)b(wiy — waz) A b+ b(@1y — Do) A = (—1202 ;- 5’) sin 0 cos 0) A §.
sin
Taking the conjugate of the above equation, we have
— t20 3 —
_(1 + 2C0t2 9)()(511 — wgg) AN d) + b(wll — OJQQ) A (;5 = (12b2 C? 5 7 + ?p sin 6 cos 9)¢ A ¢
sin

Using the above two equations, we get

Wiy — wae = (6bcot® O + i—z sin® @ cos 0) (¢ — ). (3.27)
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Since wyy + way = (¢ @), hence we have

sm

b _
w1 = (3bcot39+ % sin® @ cos  — ‘n39)(¢_¢)’

wag = (—— b3 i 3bcot§ — ?8)—5 sin® @ cos ) (¢ — @), (3.28)

Sin 3
w11 — way = (6bcot” § + 4—2 sin® 0 cos 0)(¢ — ).

Using Eq.(3.3), we get the first formula of Eq.(3.14). Then using Egs.(3.25) and (3.28),

we have
db N ¢ = i6912 VAN ¢ + b(w11 — (.UQQ) A ¢

= (4b* cot® § + b* cot O + 38 sin® @ cos 0)p A ¢,

then we get the third formula of Eq.(3.14).

Thus, we finish our proofs.

Remark 3.2 Next, we discuss the case of U = (). In fact, if U = ), then § = 0 on X,
which implies X is a holomorphic curve in M. Of course it is a minimal surface.

Set ¢ = Adz, where A is a non-zero complex-valued function on a simply connected
domain U; C U with complex coordinate z. Then the set of the first three formulas of
Eq.(3.14) is rewritten as the following system of differential equations:

= —|A[*(2bcot® @ — beot O + %Sln %0 cos0),

% = —2\b cot? 0, (3.29)
3%

—\(4b% cot® 0 + b* cot 0 —|— A P sin® 0 cos 6).

In the following we give a lemma about the existence of isothermal coordinate.

Lemma 3.3 Suppose ¥ is a symplectic critical surface with circular ellipse of curvature
in M. Then there exists a complex coordinate w on a neighborhood of a point of U C %
such that ¢ = pudw, where p is real-valued.

Proof Since 6 is not constant, we claim that b is a function of #. In fact, canceling
out (¢ + @) in the second and third formula of Eq.(3.14), we get a differential equation in b

for 6. Using the claim, we write b = b(¢), and define a real-valued function

F(0) = —2tan6 + cot 6 + %tan@sm 6.

Taking the partial derivative of the second formula of Eq.(3.29) with respect to z and using
; ; ; ; 920 00 00 _

Eq.(3.29), we have a second-order partial differential equation z75= — (0)%:%z = 0. It

follows that a(ezc)(p(_aé F(9)d49) — 0. Hence, there exists a holomorphic function G(z) on U

such that 9% = G(z)exp (f F(G)dQ). Setting

- /G(z)dz, . _exp ([ F(6)do) 7

2bcot? 6
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the lemma is proved by the conjugate of the second formula of Eq.(3.29).
Hence, for a neighbourhood U of a point of ¥, there exists an isothermal coordinate
2z = u + tv such that
ds® = N?dzdz,
where A is a positive function defined on U, and we have

¢ = Mdz.

This implies that \,0 and b are functions of single variable, and Eq.(3.29) is seen to be a
system of ordinary differential equations. Consequently, if ¥ is a symplectic critical surface
with circular ellipse of curvature in M, then there exist real-valued smooth functions of
single variable A, 6 and b which are defined locally on ¥ and satisfy the system of ordinary
differential equations (cf.Eq.(3.30)).

Theorem 3.4 Let M be a two-dimensional complex space form of constant holo-
morphic sectional curvature 4p. If ¥ is a symplectic critical surface with circular ellipse of
curvature in M, then there exist a system of local coordinates (u,v) on ¥ and real-valued
smooth functions \(u),0(u) and b(u) of single variable v which are defined on an interval I
of u, such that they satisfy a system of ordinary differential equations

2)\ = —2X\*(2bcot® § — beot O + Z—g sin® 0 cos ), A(u) > 0,
5
= —4Xcot? 0 b, (3.30)
db B2 4 S 3
T —2X < (cot 8 + 4 cot” 0)b” + gPsin Ocosb ;.
u

4 Analysis of the Overdetermined System: p = (0 Case

When p = 0, we get all solutions of the system Eq.(3.30) as follows.

Lemma 4.1 Assume that p = 0. Then all solutions of the system Eq.(3.30) are given
by
sin” #

Vecosf’

A(B) = ¢1sinfvVcosh, b(h) = co (4.1)

for any positive constants ¢; and cs.
Proof Since both §(u) and b(u) are not constants, regarding 6 as variable, we get
from Eq.(3.30) that

dA 1 3psin® 0
— = \(0)(cot 0 —
g~ MO eotd = g T 1662(0) cos (42)
db (tan9 +2cot 0)b(6) + 3ptan@sin* 0 '
do 16b(6)
Since p = 0, the equations above reduce to
dA 1 db tan
5= A(0)(cot O — m), i ( 5 T 2cot 0)b(0). (4.3)
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The integration of the above equations give us the solution of A(#) and b(f) as follows:

sin? 6
Viecosf’

for any positive constants ¢; and cp. Hence we finish our proof.

A(O) = c1sinfVcosh, b() = co

(4.4)

5 The Geometric Result

In this section, we show a geometric result.

Theorem 5.1 Let M be a two-dimensional complex space form of constant holo-
morphic sectional curvature 4p. If ¥ is a symplectic critical surface with circular ellipse of
curvature in M, then Y is a minimal surface in M.

Proof First, we prove our result in the case of p # 0:

We already know that

Alog A di}%

- . (5.1)

K= 22 - A2

and that
K = (1+3cos®0)p —2(|al]* — 2b* + |c|?). (5.2)
Using the first equation of Eq.(3.30) and Eq.(5.1), we can get

48 cos*d  8cos?d

sin® 9 sin 0

K = (—48cot® 0 + 24 cot* 6 + )b + (9sin® O cos? @ — 12 cos* 0)p. (5.3)
Using Eqs.(3.13) and (5.2), since ¢ = 0, we have
K = p+3pcos® 0 — 8b* cot*  — 8b? cot® O + 2b>. (5.4)

Combining Egs.(5.3) and (5.4), we get
4 10 20

U o LR

sin” 0 sin® 6 (5.5)
+ (9sin? A cos?> § — 12cos* @ — 3cos> — 1)p = 0.

(—48cot® § + 32 cot” 6 +

Regarding 6 as variable, taking the derivative of Eq.(5.5) and using the second equation
of Eq.(4.2), we have

272 cos® 0 0 192cos’ 0
(—192cot” 0+ 80cot® 0 + 64cot® g — —ocos 0 BeosO 192¢o8’0 gyt
sin” 6 sin® 6 sin’ @ (5.6)

18 cos®d 18cos’d 3 sin®
sin 6 sin 6 4cosb

+ 78sin 6 cos® § — 15sin® § cos @ + 3sinf cos ) p = 0.

(

Set z = sin§. Using Eq.(5.5), we have

2 _ pr'(21at — 3627 1 16)

2(352% — 7222 + 36) (5:7)
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Taking Eq.(5.7) into Eq.(5.6), we get

pr(66152° — 2822425 + 438962 — 296322 + 7344)
4v/T — 22(3524 — 7222 + 36)

Hence, x is constant, then # is constant. So b = 0 by the second formula of Eq.(3.30),

= 0. (5.8)

i.e. H=0. Thus, we finish the first part of our proofs.
Now, we prove our result in the case of p = 0:
When p = 0, using the second formula of Eq.(4.1) and Eq.(5.3), we have
30

>0
K= —4803% + 4803% + 24c3 cos® O — 8c3 cos b. (5.9)
sin” 6 sin” 6

Using the second formula of Eq.(4.1) and Eq.(5.4), we get

.4
0
K = —8c2 cos® 0 — 8cZsin® f cos O + 2¢2 —

. 5.10
cos ( )

Combining Eq.(5.9) and Eq.(5.10), we can have

48 cos® 0  48cos*f  2sin* 6

-2 3 .
sinZ 0 sn20 cosd + 8sin“ 0 cos O + 32 cos” § — 8cos ) = 0.

Set z = sin 6, then we get

2(35z* — 722% + 36)
v1—2a?
hence z is constant, then 6 is constant. So b = 0 by the second formula of Eq.(3.30), i.e.
H = 0. We finish our proofs.
Remark 5.2 The coordinate of b? in Eq.(5.5) doesn’t equal to 0. Setting z = sin#,

from the calculation by Mathematica, we can know that

:(:)7

48cos*  8cos?d
- +8cot?h—2=
sin® 9 sin* 9 T

2(3524 — 7222 + 36)

—48 cot® 0 + 32 cot* 0 + 1

:0’

If x = \/é, the above equation equals to zero, then from Eq.(5.5), we have
9sin? 6 cos?f — 12cos* O — 3cos? 0 — 1 = —21z* + 3622 — 16 = 0,

and solve the equation by Mathematica, but we can’t have the solution in (0,1). It’s a
contradiction. So the coordinate of b? in Eq.(5.5) doesn’t equal to 0.

Remark 5.3 From the discussion in Remark 5.2, we can know that the denominator
in Eq.(5.8) doesn’t equal to 0.

As we already know that any closed symplectic minimal surface in a Kéhler-Einstein
surface with non-negative scalar curvature is holomorphic, we have the following Liouville

theorem:
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Corollary 5.4 Any closed symplectic critical surfaces with circular ellipse of curvature
in two-dimensional complex space forms with non-negative holomorphic sectional curvature
must be holomorphic.
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