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Abstract: In this paper, we study the optimal dividend problem in the discrete risk model

in which transaction costs and taxes are required when dividends occur. Moreover assume that

dividends are paid to the shareholders according to an admissible strategy with dividend rates

bounded by a constant. The company controls the amount of dividends in order to maximize the

cumulative expected discounted dividends prior to ruins. We show that the optimal value function

is the unique bounded solution of a set of discrete Hamilton-Jacobi-Bellman equations. In addition,

the optimal image functions are approximately obtained by solving the HJB equation.
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1 Introduction

Over the past decades, the optimal dividend problem has been a hot issue and a large
number of papers in this field have came out. The study of dividend problem has a realistic
sense: for a joint-stock company, it has responsibility to pay dividends to its shareholder,
therefore choosing a divided strategy is important for this company. The research of dividend
problem stems from the work of De Finetti [1]. He is the first to suggest that a company
should maximize the expected discounted dividend payout. In earlier research of this field,
scholars focused on two kinds of dividend strategies. The first one is the constant barrier
strategy. In this model, we have a barrier b, splitting region into two parts. Under such
policy, the surplus cannot cross the barrier b at any time t > 0, and when it hits the barrier,
it will either stay at the barrier b or decrease below the barrier (see for example Gerber and
Shiu [2], Albrecher et al.[3], Albrecher and Kainhofer [4], Li and Garrido [5], Loeffen et al.

∗ Received date: 2020-10-27 Accepted date: 2021-02-22

Foundation item: Supported by National Natural Science Foundation of China (71401061,

12001235).

Biography: Wang Shaofeng (1972–), male, born at Jinxiang, Shandong, professor, major in risk

theory. E-mail:2804020711@qq.com.



No. 6 An optimal dividend strategy in the discrete model when payments are subject to · · · · · · 515

[6] ). The second one is threshold strategy, specifically, dividends can be paid out at certain
rate if the surplus exceeds a threshold (see for example Gerber and Shiu [2], Lin and Pavlova
[7]). Stochastic control theory has been introduced to solve the optimal dividend problem.
HJB equation, QVI, and singular control as tools were used to deal with dividend problem
from different aspects. Asmussen and Taksar [3] considered optimal continuous dividend for
diffusion model. In the paper Azcue and Muler [8], the author not only studied the optimal
continuous dividend strategy but also considered the reinsurance policy in the compound
Poisson model. Impulsive dividend and reinsurance strategies for diffusion model can be
found in paper Cadenillas et al. [9].

Compared with continuous time risk models, obviously discrete time risk models with
the dividend payment strategies have not attracted much attention, although De Finetti [1]
gave the problem first in a discrete time model. However, discrete time models also have their
merits, for example, they are closer to reality and they can be seen as the approximations
of continuous time models. For the optimal dividend payment problem in discrete models,
see [1] and [10] for the classic results. In addition, several recent contributions can be
found. Gerber et al. [11] modeled the surplus of an insurance company (before dividends)
as a time-homogeneous Markov chain with possible changes of size +1, 0,−1,−2, ... in one
period, and showed that the optimal dividend-payment strategy is band strategy irrespective
of the penalty at ruin. Tan et al. [12] considered the discrete Sparre Andersen risk model
and its derivative models by anew setting up the initial times, and showed that the optimal
value function is the unique bounded solution of a set of discrete Hamilton-Jacobi-Bellman
equations.

However, in these papers, it is assumed that there are not any transaction costs when
dividends are paid out. Practically, transaction costs cannot be neglected. Here, to make
the dividend analysis even more realistic, we take into account fixed transaction cost K > 0
which is incurred each time the dividend is paid out. In addition to transaction costs, we
assume that the shareholders are required to pay taxes with a tax rate 1−k (0 < k < 1). Due
to the additional difficulty, the optimal dividend problems subject to transaction costs are
still rarely considered in the insurance literature. As far as we know, the optimal dividend
problem with transaction costs and taxes was considered only under the diffusion and the
classical model. Jeanblanc- Picque and Shiryaev [13] applied impulse control theory to obtain
the optimal dividend strategy in which only the dividend control was allowed and there was
a fixed transaction cost. Cadenillas et al. [9] considered the optimal dividend problem with
proportional reinsurance control when payments were subject to taxes as well as transaction
costs. For a general diffusion model and the case of no reinsurance, the optimal dividend
problem with transaction costs and taxes was solved in Paulsen [14]. Bai and Guo [15]
studied the optimal dividend problem in the classical risk model with transaction costs and
taxes which were required when dividends occured.

Therefore, it is necessary to look for an optimal dividend strategy when dividend pay-
ments are subject to both transaction costs and taxes in discrete risk model.
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In this paper, we study the optimal dividend problem in the discrete model. Transaction
costs and taxes are required when dividends occur. The outline of this paper is as follows.
In Section 2, we give a rigorous mathematical formulation of the problem. In Section 3,
we heuristically derive the set of discrete HJB equations for the optimal value functions
and introduce the transformation method. Section 4 firstly gives properties of the optimal
image functions and then by solving the HJB equation, the optimal image functions are
approximately obtained.

2 Problem Formulation

Consider the discrete Andersen surplus process

U(t) = u + ct−
N(t)∑
i=1

Xi, t = 0, 1, 2, · · · ,

where U(0) = u is the initial surplus, which is a non-negative integer. c is the premium
received in each time period, which is a positive integer. The counting process N(t), t =
0, 1, 2, · · · denotes the number of claims up to time t and is defined as N(t) = max{n :
T1 + T2 + · · · + Tn ≤ t}, where claim inter-occurrence times Ti are assumed i.i.d. positive
and integer-valued random variables with common probability function p(k) = Pr(Ti =
k), k = 1, 2, · · · and ETi < ∞. Therefore, N = {N(t)} is an ordinary renewal process. The
random variable Xi represents the ith claim, independent of {N(t)}. The random variables
Xi, i = 1, 2, . . . are i.i.d random variables with common probability function f(k) = Pr(Xi =
k), k = 1, 2, . . . . Denote the filtration by {Ft} (t = 0, 1, 2, · · · ), where Ft comprises all the
information before time t.

We do not need positive safety loading condition in this paper. We say the company
ruins if the surplus becomes negative. Put σk = T1 +T2 + · · ·+Tk (k = 1, 2, . . . ) and σ0 = 0.
Let

P̄ (0) = 1, P̄ (n) = 1−
n∑

k=1

p(k),∀n ≥ 1,

and assume that P̄ (n) > 0 for any positive integer n. Let s = s(t) denote the distance
between N(t) and t (t = 0, 1, 2, . . . ), namely, s(t) = t − N(t). Obviously, the set of all
possible values of s is {0, 1, 2, . . . }.

We now enrich the model. Let the company pay dividends to its shareholders according
to some dividend strategies. To make the dividend analysis even more realistic, we take into
account fixed both transaction costs K and transaction taxes with tax rate 1− k which are
incurred each time that dividends are paid out (no matter how much).

A strategy is described by

π = (τ1, τ2, . . . τn, . . . ; ξ1, ξ2, . . . , ξn, . . . ),

where τn and ξn denote the times and amounts of dividends. Thus, when applying strategy
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π, the resulting reserve process Uπ(t) is given by

Uπ(t) = u + ct−
N(t)∑
i=1

Xi −
∞∑

n=1

I(τn<t)ξn, t = 0, 1, 2, · · · .

A strategy is said to be admissible if
(i) Dividend payment at every time t will not lead to ruin;
(ii) Dividend paid at every time t will not exceed a positive integer upper bound denoted

by c0;
(iii) Dividend paid at time t is integer-valued and Ft -measurable;
(iv) K

k
< ξn ≤ Uπ(σn), n = 0, 1, 2, · · · .

We denote the set of all admissible strategies by Π.
The condition (4) means that when the dividends are paid out, the net amount of

money that the shareholders receive must be positive (i.e. K
k

< ξn ), and the total amount
of dividends cannot exceed the reserve available at that time (i.e. ξn ≤ Uπ(σn)).

It is easy to see that the optimal admissible payment at the initial time 0 is a function
with respect to U(0). With each admissible strategy π, φπ

0 (u) denotes the optimal payment
given that the initial surplus is u, where the subscript 0 refers to the so-called “zero-delayed
case” and s(0) = 0. At time t = 1, we give attention to two scenarios. The first is that if a
claim occurs, the surplus process really gets renewed when the claim does not lead to ruins.
Hence, the optimal payment at this time is φπ

0 (x) where the subscript 0 is exactly equal to
the value of s(1) and x = u−φπ

0 (u)+ c−X1 . The second scenario is that if no claim occurs,
the rest of the surplus process is a new surplus process with the occurrence of the claims
described by a delayed renewal process. Similarly, the optimal payment at the initial time
in the new surplus process is only dependent on its initial surplus. We denote by φπ

1 (x) the
optimal payment when the initial surplus is x, where the subscript 1 is now the value of s(1)
and refers to the‘‘delayed case’’with the probability function of the epoch of the first
claim being g1(k) = p(k+1)

P̄ (1)
(k = 1, 2, . . . ). Then, analogizing in turn for scenarios at time

2, 3, . . . , we can find that the all possible values of the optimal payment at arbitrary time
t can be denoted by φπ

s (x), s = 0, 1, 2, . . . ;x = 0, 1, 2, . . . , where x is the surplus of time t,
and s = t −N(t) refers to the “delayed case” (or “zero-delayed case”) with the probability
function of the epoch of the first claim being gs(m) = p(m+s)

P̄ (s)
(m = 1, 2, . . . ). In other words,

the optimal dividend payment at time t is only dependent on the distance s and the surplus
x of the time. Because of the fact, we only discuss a type of admissible strategies, namely
the optimal payments that are functions of two variables: the distance s and the surplus x.
For any π ∈ Π, the corresponding value function is defined as

V π(u) = Eu

[
τ∑

t=0

rt(kφs(t)(Uπ(t))−K)

]
, (2.1)

where r ∈ (0, 1) is the unit time discount factor, τ is the time of ruin and Eu represents the
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conditional expectation on the initial surplus u. The optimal value function is defined as

V ∗(u) = sup
π∈Π

V π(u). (2.2)

and the corresponding optimal strategy is denoted by π∗ such that V ∗(u) = V π∗(u). If we
regard an arbitrary time t (t = 1, 2, . . . ) as initial time and the surplus of the time as initial
surplus, then we get a new surplus process with the probability function of the epoch of
the first claim being gs(t)(k). Let V π

s(t)(u) denote the value function of the strategy π and
V ∗

s(t)(u) denote the optimal value function in the derivative surplus process. Our object is
to find the optimal strategy which maximizes the corresponding value functions.

3 Optimal Value Functions and Their Transformations

Theorem 3.1 For an initial surplus u ∈ N, the optimal value functions V ∗
m(u)(m =

0, 1, 2, ...) satisfy the following discrete HJB equations

V ∗
m(u) = max

d=0,1,2,...,c0
∧

u
{(kd−K) +

P̄ (m + 1)
P̄ (m)

rV π
m+1(u− d + c)

+
P (m + 1)

P̄ (m)
r

u−d+c∑
j=1

V π
0 (u− d + c− j)f(j)},m = 0, 1, 2, . . . . (3.1)

Proof Assume that π ∈ Π and the corresponding value functions in different surplus
processes are V π

m(u)(m = 0, 1, 2, . . . ). Then,

V π
0 (u) =(kφπ

0 (u)−K) + (1− p(1))rV π
1 (u− φπ

0 (u) + c)

+ p(1)r
u−φπ

0 (u)+c∑
j=1

V π
0 (u− φπ

0 (u) + c− j)f(j),

V π
1 (u) =(kφπ

1 (u)−K) +
P̄ (2)
P̄ (1)

rV π
2 (u− φπ

1 (u) + c)

+
P (2)
P̄ (1)

r

u−φπ
1 (u)+c∑
j=1

V π
0 (u− φπ

1 (u) + c− j)f(j),

...

V π
n (u) =(kφπ

n(u)−K) +
P̄ (n + 1)

P̄ (n)
rV π

n+1(u− φπ
n(u) + c)

+
P (n + 1)

P̄ (n)
r

u−φπ
n(u)+c∑
j=1

V π
0 (u− φπ

n(u) + c− j)f(j),

...
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It is obvious that the following holds,

V ∗
m(u) = max

d=0,1,2,...,c0
∧

u
{(kd−K) +

P̄ (m + 1)
P̄ (m)

rV π
m+1(u− d + c)

+
p(m + 1)

P̄ (m)
r

u−d+c∑
j=1

V π
0 (u− d + c− j)f(j)},m = 0, 1, 2, . . . . (3.2)

Therefore, the proof of Theorem 3.1 is complete.
Since the dividend paid at any time does not exceed c0, for any non-negative integer m,

V π
m(u) ≤ kc0 −K

1− r
. (3.3)

For the arbitrary admissible strategy π ∈ Π, we transform its value functions V π
m(u) by

V π
m(u) = (kφπ

m(u)−K) + W π
m(u− φπ

m(u)). (3.4)

Then, by (3.2) the image functions W π
m(u) satisfy the following equations

W π
m(u) =

P̄ (m + 1)
P̄ (m)

r[W π
m+1(u + c− φπ

m+1(u + c)) + kφπ
m+1(u + c)−K] (3.5)

+
P (m + 1)

P̄ (m)
r

u+c∑
j=1

[W π
0 (u + c− φπ

0 (u + c− j)− j) + kφπ
0 (u + c− j)−K]f(j),

m = 0, 1, 2, . . . .

According to (3.5), W π
m(u) can apparently be interpreted as all expected discounted

dividends except for the possible dividend paid at initial time in the surplus process Uπ(t+n);
n = 0, 1, · · · with s(t) = m. Then, for any non-negative integer m, we have

W π
m(u) ≤ r

1− r
(kc0 −K). (3.6)

The following Theorem 3.2 will tell us that the payment strategy corresponding to
maximal image functions is optimal, i.e. it maximizes both W π

m(u) and V π
m(u) for arbitrary

non-negative integers u and m. Therefore, we only need to obtain the optimal image func-
tions to reach our objective.

Lemma3.1 (Contraction mapping principle) Suppose (X, ρ) is a complete metric space.
Let T : X → X be a contraction mapping on X, i.e. there is a nonnegative real number
q < 1 such that (Tx,Ty) ≤ q(x, y) for all x, y ∈ X. Then the map T admits one and only
one fixed point x

′
, i.e. T(x

′
) = x

′
.

Theorem 3.2 Assume that π∗ ∈ Π,W π∗
m (u) and φπ∗

m (u)(m = 0, 1, . . . ) are the images of
its value functions and the corresponding dividend payment. Then, W π∗

m (u) are all maximal
if and only if

φπ∗
m (u) = arg max

d=0,1,2,...,c0
∧

u
{W π∗

m (u− d) + kd−K} (3.7)
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holds for any non-negative integer m and any non-negative integer u. In addition, φπ∗
m (u)

obtained by (3.7) also maximizes all of the value functions V π∗
m (u)(m = 0, 1, . . . ).

Proof (“only if” part) We assume that W π∗
m (u) = supπ∈Π W π

m(u) (m = 0, 1, . . . ) are all
the maximal image functions. By (3.5), it follows that W π∗

m (u) (m = 0, 1, . . . ) satisfy the
equations

W π∗
m (u) = sup

π∈Π
W π

m(u) (3.8)

=
P̄ (m + 1)

P̄ (m)
r[W π

m+1(u + c− φπ
m+1(u + c)) + kφπ

m+1(u + c)−K]

+
P (m + 1)

P̄ (m)
r

u+c∑
j=1

[W π
0 (u + c− φπ

0 (u + c− j)− j) + kφπ
0 (u + c− j)−K]f(j),

m = 0, 1, 2, . . . .

Obviously, (3.8) is equivalent to

W π∗
m (u) =

P̄ (m + 1)
P̄ (m)

r max
d=0,1,2,...,c0

∧
u
W π∗

m+1(u + c− d) + kd−K (3.9)

+
P (m + 1)

P̄ (m)
r

u+c∑
j=1

max
d=0,1,2,...,c0

∧
u
[W π∗

0 (u + c− j − d) + kd−K]f(j),

m = 0, 1, 2, . . . .

A comparison of (3.5) and (3.9) with W π∗
m (u) and φπ∗

m (u) interpreted as the optimal image
functions and the corresponding dividend payment respectively, for any non-negative integer
m and any non-negative integer u, we have

(kφπ∗
m (u)−K) + W π∗

m (u− φπ∗
m (u)) = max

d=0,1,2,...,c0
∧

u
W π∗

m (u− d) + kd−K (3.10)

from which (3.7) follows.
(“if” part) We consider the complete metric space l∞, the set of all bounded real se-

quences. Obviously, ∀π ∈ Π,W π
m(u) ∈ l∞ for any m, the patchwork made up of them,

denoted by W = (W π
0 (u),W π

2 (u), . . . ), also belongs to l∞. Assume that Fm(u), Gm(u) ∈
l∞(m = 0, 1, . . . ), F = (F0(u), F1(u), F2(u), . . . ), and G = (G0(u), G1(u), G2(u), . . . ). Define
operator T : l∞ → l∞ by

TF =(P̄ (1)rT1F1 + P (1)rT0F0,
P̄ (2)
P̄ (1)

rT1F2 +
P (2)
P̄ (1)

rT0F0, . . . , (3.11)

P̄ (n)
P̄ (n− 1)

rT1Fn +
P (n)

P̄ (n− 1)
rT0F0,

P̄ (n + 1)
P̄ (n)

rT1Fn+1 +
P (n + 1)

P̄ (n)
rT0F0, . . . ),

where the operator T1 defined by

T1Fm(u) = Fm(u + c− φFm
(u + c)) + kφFm

(u + c)−K, (3.12)
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the operator T0 defined by

T0F0(u) =
u+c∑
j=1

[F0(u + c− φF0(u + c− j)− j) + kφF0(u + c− j)−K]f(j), (3.13)

and
φFm

(u) = arg max
d=0,1,2,...,c0

∧
u
{Fm(u− d) + kd−K}.

ρ(TF,TG) = supn≥0 ρ(TFn,TGn) denotes the distance between TF and TG, ρ(F, G) =
supn≥0 ρ(Fn, Gn) denotes the distance between F and G. Then,

ρ(TF,TG) = sup
n≥0

ρ(TFn,TFn)

≤ sup
n≥1

P̄ (n)
P̄ (n− 1)

rd(T1Fn,T1Gn) +
p(n)

P̄ (n− 1)
rρ(T0F0,T0G0). (3.14)

For any fixed u and any fixed m, assume that, without loss of generality,

Fm(u + c− φFm
(u + c)) + kφFm

(u + c)−K ≥ Gm(u + c− φGm
(u + c)) + kφGm

(u + c)−K.

Then,

ρ(T1Fm,T1Gm) = sup
u
|(Fm(u + c− φFm

(u + c)) + kφFm
(u + c)−K)

− (Gm(u + c− φGm
(u + c)) + kφGm

(u + c)−K)|
≤ sup

u
|Fm(u + c− φFm

(u + c)) + kφFm
(u + c)−K) (3.15)

− (Gm(u + c− φFm
(u + c)) + kφFm

(u + c)−K)|
=sup

u
|(Fm(u + c− φFm

(u + c))−Gm(u + c− φFm
(u + c))|

=ρ(Fm, Gm)

≤ρ(F, G).

Similarly, we can obtain

ρ(T0F0,T0G0) ≤ ρ(F0, G0) ≤ ρ(F, G). (3.16)

By (3.14), (3.15) and (3.16), we have

ρ(TF,TG) ≤ sup
n≥1

P̄ (n)
P̄ (n− 1)

rρ(T1Fn,T1Gn) +
p(n)

P̄ (n− 1)
rd(T0F0,T0G0)

≤ sup
n≥1

P̄ (n)
P̄ (n− 1)

rρ(F, G) +
p(n)

P̄ (n− 1)
rρ(F, G)

= rρ(F, G), (3.17)

from which we find that T is a contraction mapping because of the fact that r < 1. By
lemma 3.1, we conclude that for each m, Eq.(3.9) has a bounded and unique solution. By
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(3.4), for arbitrary non-negative integers u and m, V π∗
m (u) is also maximal when φπ∗

m (u)
satisfies (3.7).

4 Properties of Image Functions and Bellman’s Recursive Algorithm

Theorem4.1 Assume that π ∈ Π, V π
m(u) and W π

m(u)(k = 0, 1, . . . ) are the value func-
tions and their corresponding image functions. Then

sup
u

V π
m(u) ≤ sup

u
V π

0 (u) +
∑∞

n=1 P̄ (m + n− 1)
P̄ (m)

rn−1(kc0 −K),m = 0, 1, 2, . . . ; (4.1)

sup
u

W π
m(u) ≤ sup

u
W π

0 (u) +
∑∞

n=1 P̄ (m + n− 1)
P̄ (m)

rn(kc0 −K),m = 0, 1, 2, . . . , (4.2)

Proof For any positive integer m and any non-negative integer u0 , from (3.2) we have

V π
m(u0) =(kφm(u0)−K) +

P̄ (m + 1)
P̄ (m)

rV π
m+1(u0 − φm(u0) + c)

+
P (m + 1)

P̄ (m)
r

u0−φm(u0)+c∑
j=1

V π
0 (u0 − φm(u0) + c− j)f(j).

Taking supu on both sides, due to that φn(u) ≤ c0, n = 0, 1, . . . , we get

sup
u

V π
m(u) ≤(kc0 −K) +

P̄ (m + 1)
P̄ (m)

r sup
u

V π
m+1(u) +

p(m + 1)
P̄ (m)

r sup
u

V π
0 (u).

≤(kc0 −K) +
P̄ (m + 1)

P̄ (m)
r[(kc0 −K) +

P̄ (m + 2)
P̄ (m + 1)

r sup
u

V π
m+2(u)

+
p(m + 2)
P̄ (m + 1)

r sup
u

V π
0 (u)] +

p(m + 1)
P̄ (m)

r sup
u

V π
0 (u)

=(1 +
P̄ (m + 1)

P̄ (m)
r)(kc0 −K) + (

p(m + 1)
P̄ (m)

r +
P̄ (m + 2)

P̄ (m)
r2) sup

u
V π

0 (u)

+
P̄ (m + 2)

P̄ (m)
r2 sup

u
V π

m+2(u).

As is deduced above, we can recursively deduce

sup
u

V π
m(u) ≤ (1 +

P̄ (m + 1)
P̄ (m)

r +
P̄ (m + 2)

P̄ (m)
r2 + · · ·+ P̄ (m + n− 1)

P̄ (m)
rn−1)(kc0 −K)

+ (
p(m + 1)

P̄ (m)
r +

P̄ (m + 2)
P̄ (m)

r2 + · · ·+ P̄ (m + n)
P̄ (m)

rn) sup
u

V π
0 (u) +

P̄ (m + n)
P̄ (m)

rn sup
u

V π
m+n(u).

Letting n →∞ yields

sup
u

V π
m(u) ≤

∞∑
n=1

P̄ (m + n− 1)
P̄ (m)

rn−1(kc0 −K) +
∞∑

n=1

P̄ (m + n)
P̄ (m)

rn sup
u

V π
0 (u), (4.3)

from which (4.1) follows. Similarly, from (3.5), we can obtain

sup
u

W π
m(u) ≤

∞∑
n=1

P̄ (m + n− 1)
P̄ (m)

rn(kc0 −K) +
∞∑

n=1

P̄ (m + n)
P̄ (m)

rn sup
u

W π
0 (u), (4.4)
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from which we see that (4.2) holds.
For any F ∈ l∞, we define

φF (u) = arg max
d∈{0,1,2,...,c0

∧
u}
{F (u− d) + kd−K}, u = 0, 1, 2, . . . . (4.5)

Theorem 4.2 Given two positive integers n and l, assume that Wm(m = 0, 1, . . . ) are
the maximal image functions, W̃n+l is an approximation of Wn+l such that 0 < W̃n+l(u) ≤

r
1−r

(kc0 −K) for any non-negative integer u. Define n + l − 1 functions W̃m(m = n + l −
1, n + l − 2, . . . , 1) in turn by

W̃m(u) =
P̄ (m + 1)

P̄ (m)
r[W̃m+1(u + c− φW̃m+1

(u + c)) + kφW̃m+1
(u + c)−K] (4.6)

+
P (m + 1)

P̄ (m)
r

u+c∑
j=1

[W0(u + c− φW0(u + c− j)− j) + kφW0(u + c− j)−K]f(j).

Then, as l →∞,
d(W̃i,Wi) → 0, ∀i ≤ n. (4.7)

Proof For any positive integer m such that 1 ≤ m ≤ n + l − 1, we get

d(W̃m,Wm) ≤ P̄ (m + 1)
P̄ (m)

rd(W̃m+1,Wm+1), (4.8)

from which we have

d(W̃i,Wi) ≤ P̄ (n + l)
P̄ (i)

rn+l−id(W̃n+l,Wn+l) ≤ P̄ (n + l)
P̄ (n)

rld(W̃n+l,Wn+l) (4.9)

hold for any positive integer i such that 1 ≤ i ≤ n. Because of d(W̃n+l,Wn+l) ≤ r
1−r

(kc0−K),
letting l →∞ (4.7) follow from (4.9).

Theorem 4.2 above plays a key role in solving the optimization problem. To obtain
the optimal strategy and its value functions, according to (4.7), we choose l which is great
enough, letting W̃n+l(u) = W0(u), then we will obtain n + l − 1 functions W̃m(m = n + l −
1, n + l − 2, . . . , 1) by recursion formula (4.6), starting with

W̃n+l−1(u) =
P̄ (m + l)

P̄ (n + l − 1)
r[W0(u + c− φW0(u + c)) + kφW0(u + c)−K]

+
P (n + l)

P̄ (n + l − 1)
r

u+c∑
j=1

[W0(u + c− φW0(u + c− j)− j) + kφW0(u + c− j)−K]f(j).

(4.10)
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离散模型下带有交易费和税的最优分红

王绍锋1, 尹传存2

(1. 济宁学院数学与计算机应用技术学院, 山东 曲阜273155)

(2. 曲阜师范大学统计学院, 山东 曲阜273155)

摘要: 本文研究离散模型下带有分红交易费和税的最优分红问题. 在分红率有界的条件下, 通过更新

初始时间得到最优值函数并证明最优值函数为Hamilton–Jacobi–Bellman 方程的唯一有界解. 另外,我们

通过解HJB方程获得最优映像函数的近似解.
关键词: 离散模型; 最优策略; 值函数; 映像函数
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