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Abstract: In this paper, we investigate a new class of differential mixed equilibrium problems
((DME), for short) in Banach space. By using Fan-KKM theorem and Ky Fan’s minmax inequality,
we respectively prove the existence of solutions for mixed equilibrium problems under some suitable
conditions. Moreover, we prove the superpositional measurability and upper semicontinuity for a
class of set-valued mappings. Finally, by using the theory of semigroups and Filippov implicit
function lemma, we obtain the existence theorem concerned with the mild solutions for (DME) and
discuss the compactness of the solution set. The results enrich and extend the theory of equilibrium.
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1 Introduction and Preliminaries

It was well known that Pang and Stewart introduced and studied differential varia-
tional inequality in a finite-dimensional Euclidean space (see [1]). Recently, the existence
of solutions for different types of differential variational inequalities problems (see [2-7]) is
considered by many authors.

In this paper, we introduce a class of differential mixed equilibrium problem. Under
various conditions, we obtain the existence theorem concerned with the mild solutions for
this class of problems.

Now we introduce some preliminaries which will be used in the paper. For any nonempty
set Y, P(Y) denotes the family of all nonempty subsets of Y. We denote

K(Y):={D e P(Y)|D is compact},

K,(Y):={D € P(Y)|D is compact and convex}.
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Lemma 1.1 [8] (Fan-KKM) Let K be a nonempty subset of a Hausdorff topological
vector space Fy and let G : K — P(E}) be a set-valued mapping with the properties:

(i) G is a KKM mapping;

(ii) G(v) is closed in E) for every v € K;

(iii) G(vg) is compact in E; for some vy € K.

Then one has (| G(v) # @.

veEK
Lemma 1.2 [9] Let K be a nonempty compact and convex subset of a Banach space

X, let ¢ : K x K — R be a mapping. Suppose the following conditions hold:

(i) © — ¢(x,y) is lower semicontinuous for every y € K;

(ii) y — —p(z,y) is convex for every x € K ;

(iii) @(y,y) < 0 for every y € K.

Then there exists T € K such that ¢(Z,y) < 0 for every y € K.

Definition 1.1 Let E; be a topological vector space and let P be a pointed convex
cone in F;. = is a partial order relation on F;: z <y if and only if y — z € P. A mapping
Q@ : E; — R is said to be order weak monotone increasing if for each z1, 22 € E; satisfying
21 = X, it holds Q(xy — x1) > 0.

Lemma 1.3 [10] Let F : X — P(Y) be a set-valued mapping, with X and Y be
topological spaces. The statements below are equivalent:

(i) F' is upper semicontinuous;

(i) for every closed set C' C Y, the set F~!(C) is closed in X, where

FYC):={ze X :F(z)NnC #0};
(iii) for every open set O C Y, the set F*1(O) is open in X, where
Ft0):={x € X : F(z) C O}.

(i) F is lower semicontinuous;
(ii”) for every closed set C C Y, the set F™(C) is closed in X, where

FtH(C):={z € X : F(z) C C};
(iii”) for every open set O C Y, the set F'~1(O) is open in X, where
FY0O):={z € X :F(z)NnO # 0}.

Definition 1.2 [11] Let X be a Banach space. A set-valued mapping F' : [0,7] — P(X)
is said to be measurable if for every closed set C' C X, the set F~!(C) := {z € [0,T] :
F(z) N C # (0} on R is measurable.

Definition 1.3 [12] Let E and E; be Banach spaces, and let an interval I C R.
We say that a mapping F' : I x E — P(F;) is super volitionally measurable if, for every
measurable set-valued mapping @ : I — K(F), the composition ¢ : I — P(E;) given by
o(t) = F(t,Q(t)) is measurable.
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Lemma 1.4 [11] Let E and E; be Banach spaces, and let an interval I C R. Assume
E is separable. If the mapping F : [ x E — K(F)) satisfies the Carathéodory condition or
is upper or lower semicontinuous, then F' is superpositionally measurable.

Lemma 1.5 [11] Let E and E; be Banach spaces. Suppose that the set-valued mapping
G :[0,T] x E — K(FE,) satisfies:

(i) for every x € E, G(-,z) : [0,T] — K(E;) has a strongly measurable selection;

(ii) for a.e. t € [0,T], G(t,-) : E — K(FE;) is upper semicontinuous.

Then for every strongly measurable function ¢ : [0,7] — E, there exists a strongly
measurable selection g : [0,7] — E; of the composition M : [0,7] — K(E,) given by
M(t) = G(t,q(t)) for a.e. t € [0,T].

Now we recall the classical definition of measure of noncompactness.

Definition 1.4 [11] Let X be a Banach space and (2, <) be a partially ordered set.
A mapping (8 : P(X) — 2 is called a measure of noncompactness(MNC, for short) in X if
B(cof?) = B(Q) for every Q € P(X). A measure of noncompactness (3 is called:

(i) monotone if Qg, 2 € P(X), Qo C Q; implies 5(2y) < B(Q241);

(ii) nonsingular if f({a} U ) = 5(Q) for every a € X,Q € P(X).

An example is the Hausdorff MNC, , which is defined by

x(2) :=inf{e > 0:3Q; € P(E),diam(;) <e,i=1,-,-,ns.t. QC U O},
i=1
Another example we mentioned here is the monotone nonsingular MNC in the space
C([0,T]; E). Namely, for every nonempty bounded set Q C C([0,T7]; E), it is equal to

v(©) = max (v(w), mode(w)), (L.1)

where A(Q) denotes the collection of all countable subsets of 2, and

Y(w) == sup e x(w(t)),
te[0,T]

mode(w) := lim sup max z(t1) — z(t2) | &-

Definition 1.5 [11] Let X be a closed subset of a Banach space E and let 5 be a MNC
in E. A set-valued mapping F : X — K(FE) is said to be S-condensing if there exists some
0 <k <1 such that 3(F(2)) < kB(?) for every 2 € P(X).

Lemma 1.6 [11] Let E be a Banach space and M C E be a nonempty closed and
convex subset. If F': M — K, (M) is a closed (-condensing set-valued mapping with 3 be
a nonsingular MNC § in F, then the set FixF' of fixed points of F' is nonempty.

Lemma 1.7 [11] Let E be a Banach space and let CCE be a nonempty closed subset.
F :C — K(E) is a closed set-valued mapping, which is (-condensing on every bounded
subset of F with a monotone MNC g in E. If FixF' is bounded, then it is compact.

2 The Introduction of Some New Problems
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Let E and F; be real Banach spaces and let K be a nonempty compact and convex subset
of E;. Let A: D(A) C E — FE be the infinitesimal generator of a Cy—semigroup e“? in F
and let ¢ : E1 — R be a convex, lower semicontinuous functional. Let f : [0,T|x ExE; — E
and g : [0,T] x E x E; — R be two fixed mappings with some constant T' > 0. In this paper,

we investigate a new class of differential mixed equilibrium problems((DME), for short):

z(t) = Az(t) + f(t,z(t),u(t)), tel0,T]
u(t) € SOL(K, g(t, z(t),-),¢), t€][0,T] (2.1)
z(0) = xo,

where SOL(K, g(t, z(t),-), ¢) stands for the solution set of the mixed equilibrium problem
((MEP), for short): find u : [0,7] — K such that

g(t,x(t),v —u(t)) + ¢(v) — d(u(t)) > 0,Vv € K. (2.2)

Definition 2.1 A pair of functions (z,u), with x € C([0,T]; E) and v : [0,T] — K
measurable, is said to be a mild solution of problem (DME) if

z(t) = ey +/0 A9 f(s x(s),u(s))ds, tel0,T], (2.3)

and u(s) € SOL(K, g(s,xz(s),-),$),s € [0,T]. If (z,u) is a mild solution of problem (DME),

then x is called the mild trajectory and w is called the variational control trajectory.

3 Existence and Properties of Solution Sets for Mixed Equilibrium
Problems

Let E; be a real Banach space and let K be a nonempty subset of 1. Let Q : E; — R
and ¢ : £1 — R be two fixed mappings. Now we consider the following mixed equilibrium
problem: find u € K such that

Qv —u)+ ¢(v) — d(u) > 0,Vv € K. (3.1)

In this section, we will use Fan-KKM theorem and Ky Fan’s minmax inequality sepa-
rately to prove the existence and properties of solutions for (3.1).

Theorem 3.1 Let (E;, <) be a totally ordered real Banach space and let K be a
nonempty compact and convex subset of F;. ) : E; — R is an order weak monotone
increasing mapping with Q(0) = 1. Assume that:

(i) @ is concave, continuous and Q(z) — Q(—z) = 0 on Ej;

(ii) ¢ : E1 — R is convex and lower semicontinuous on Ej.

Then the solution set of (3.1) is nonempty, convex and closed in K.

Proof We consider the set-valued mapping G : K — P(K) defined by

Gw):={ue K:Q(v—u)+ ¢(v) —¢(u) > 0},Vv € K.
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For each v € K, G(v) is nonempty since v € G(v).
First, we claim that G(v) is closed in K for all v € K. Indeed, we take a sequence
{u,} € G(v) such that u,, — ug as n — oo. We get

Qv —uy) + ¢(v) — d(uy,) > 0,¥n € N.

Applying the continuity of () and the lower semicontinuity of ¢, let n — oo, then we
have

Qv —up) + ¢(v) — ¢(ug) > 0,

which means vy € G(v), so G(v) is closed in K.

Second, we claim that G is a KKM mapping. Arguing by contradiction, we assume that

there exist a finite subset {vq,vq,+,+,-,v,} C K and ug = > Nu;(D- N =1, 0 < \; < 1)

1=0 =1
n

such that ug € |J G(v;), then we have
i=1

Q(vi - U’O) + ¢(U1) - ¢(u0) < O7VZ € {17 27 c '7’I’L},

which implies

Z )\iQ(’l}i — UO) + Z /\Zqﬁ(’l}l) — ¢(U0) < 0.
i=1 =1

Since ¢ is convex, we further obtain Y \;Q(v; —ug) < 0, which means 35 € {1,2,---,n}
i=1

such that Q(v; — ug) < 0. Since Q(z) — Q(—z) = 0 on E;, we have
Q(UO — 1)]‘) = Q(’Uj — Uo) < 0. (32)

Since E; is totally ordered, we have either v; < uy or ug < v; holds. Since @ is order weak

monotone increasing, we get
Q(uo —vj) >0 or Q(v; —ug) >0,

which contradicts (3.2). Therefore G is a KKM mapping.
Third, for any vy € K, since G(vg) is a closed subset of the compact set K, we know
G(vp) is a compact set.
Using Lemma 1.1, we derive
) G #0,
veK
which ensures that the solution set of (3.1) is nonempty.
Finally, we verify that the solution set of problem (3.1) is closed and convex.

Let {u,} be a sequence in the solution set satisfying u,, — ug as n — oo, then we have

Qv —uy) + éd(v) — d(u,) > 0,Vv € K,
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which yields in the limit
Qv —up) + ¢(v) — P(ug) > 0,Vv € K.

Therefore ug solves problem (3.1), thus the solution set of (3.1) is closed.
Let u; and ug be arbitrary points in the solution set of (3.1), A € [0,1]. Since @ is

concave and ¢ is convex, for any v € K, we have

Qv — (Aur + (1 = Muz)) + ¢(v) — ¢(Auy + (1 = Aug)
=QA(v —u1) + (1 = X)(v = u2)) + A¢(v) + (1 = M) (v) — (Aur + (1 = Auy)
ZAQ(v —ur) + (1 = N)Q(v —uo) + AM¢(v) = ¢(ur)) + (1 = A)(d(v) — d(u2))
=AMQv —u1) + ¢(v) — d(ur)) + (1 = A)(Q(v — u2) + ¢(v) — P(uz))

>0.

This implies that Au; + (1 — A)ug solves problem (3.1), thus the solution set of (3.1) is
convex. The proof is complete.

Example 3.1 Let F; = R, K = [0,1] and P = [0,+00) be a cone, we define the
mappings @ : ;1 — R and ¢: E; — R by

Q(z) = V/|a| +1 and ¢(z) = x.

We can check that the solution set of (3.1) is [0, 1].

Theorem 3.2 Let E; be a real Banach space and let K be a nonempty compact and
convex subset of Ey. Let @ : E; — R be a mapping satisfies Q(0) = 0. Assume that:

(i) @ is concave, continuous on Ff;

(ii) ¢ : E1 — R is convex and lower semicontinuous on Ej.

Then the solution set of (3.1) is nonempty, convex and closed in K.

Proof We consider the mapping ¢ : K x K — R defined by
P(u,v) := =Q(v —u) + ¢(u) — ¢(v).

One can check that ¢(-,-) satisfies conditions (i),(ii) and (iii) in Lemma 1.2.
Thus, by Lemma 1.2, we obtain that there exists w € K, such that

o, v) = =Qv —u) + ¢(u) — ¢(v) <0, Vv € K,

or equivalently,

Qv —1u)+ ¢(v) — ¢(m) > 0,Vv € K.

Hence, the solution set of (3.1) is nonempty.
In fact, the solution set of (3.1) is convex and closed. The proof can be done by arguing

in the same way as Theorem 3.1, so we omit it.
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Example 3.2 Let E; = R, K = [0,1], we define the mappings @ : F; — R and
¢:FEy — R by
Q(x) =z and ¢(z) = z(x — 2).
We can check that the solution set of (3.1) is {0}.
Remark 3.1 The hypotheses of Theorem 3.1 and Theorem 3.2 are different, while
we obtain the same conclusion. The reason is that the method we use is different, we use
Fan-KKM theorem to prove Theorem 3.1, while using Ky Fan’s minmax inequality in the

proof of Theorem 3.2.

4 Continuity and Superpositional Measurability for a Class of Set-
Valued Mappings

Theorem 4.1 Let (E;, <) be a totally ordered real Banach space and let K be a
nonempty compact and convex subset of F;. FE is a real separable Banach space. The
mappings Q(:) := g(t,z,-) and ¢ : E; — R satisfy hypotheses in Theorem 3.1. Assume that:

(i) (t,xz) — g(t,x,u) is continuous on [0,T] x E;

(i) u — g(t, z,u) is upper semicontinuous on K.

Then the set-valued mapping U : [0,7] x E — K,(K) defined by

Ut,z) :={ue K :g(t,z,v—u)+ ¢(v) — p(u) >0,Yv € K} (4.1)

is upper semicontinuous and superpositionally measurable.

Proof Theorem 3.1 guarantees that for every (t,z) € [0,7] x E, the set U(t,z) is
nonempty, convex and compact in K. Thus the mapping U(+,-) is well defined.

Now we claim that U(-,-) is upper semicontinuous. By Lemma 1.3, it’s sufficient to
prove that U=Y(C) := {(t,z) € [0,T] x E : U(t,z) N C # (0} is closed for each closed subset
C of K. In fact, if (t,,z,) € U7 (C) and (t,,z,) — (to, o). Since (t,,z,) € U~'(C), there
exists u,, € U(t,,xz,) NC,¥n € N. Therefore,

9(tn, Tn,v —up) + o(v) — (u,) > 0,Vv € K. (4.2)

Since C' is a closed subset of the compact set K, we obtain C' is also a compact set.
Hence there is a subsequence {u,, } such that u,, — uy € K. Let k — oo in (4.2), by the

conditions (i) and (ii), we have
9(to, zo,v — ug) + ¢(v) — P(ug) > 0,Vv € K.

In other words, we proved uy € U(tg,xo) NC, so (tg,z9) € U'(C). Therefore, U(-,-) is
upper semicontinuous.
Finally, we conclude that U(t,x) is superpositionally measurable by applying Lemma

1.4. This completes the proof.

5 Existence of Mild Solutions for a Class of Differential Mixed Equilib-
rium Problems
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In this section, we will show the existence of solutions for (DME). First, we assume the
following hypotheses on the mapping f : [0,T] X E x F; — F in (2.1):

(f1) for every (t,x) € [0,T] x E, the set f(t,z, D) is convex in E for every convex set
D C K

(f2) there exists ¢ € L'(]0,T]) such that

1f &,z u)lle < @)1+ lz]le),V({E, z,u) € [0,T] x E x K;

(f3) f(-yz,u) : [0,T] — E is measurable for every (z,u) € E x E;
(f4) f(t,-,-) : E x E; — E is continuous for a.e. ¢t € [0,T];
(f5) there exists k € L'([0,T]) such that

||f(t,£L'0,U) - f(tvxlau)HE < k(t)”.’bo - leE

for a.e. t € [0,T],Vzo,x1 € E,Vu € K.
We next study the properties of the set-valued mapping F' : [0,7] x E — P(F) given
by
F(t,z) = f(t,z,U(t,x)),

with U introduced in (4.1).

Lemma 5.1 [2] Let E and E; be real Banach space, with E separable, and let K C F;
be a nonempty compact and convex subset. We assume that the hypotheses of Theorem 4.1
and conditions (f1) — (f5) are fulfilled. Then we have:

(i) F(t,z) € K,(F) for all (t,z) € [0,T] x E;

(ii) F(-,x) has a strongly measurable selection for every = € F;

(iii) F'(t,-) is upper semicontinuous for a.e. ¢t € [0, T7;

(iv) for every bounded subset D C E, there exists [ € L'([0,T]) such that

X(F(t,D)) <(t)x(D), for a.e. t € [0,T],

where x is the Hausdorff measure of noncompactness in F.
By Lemma 5.1 we can define the set-valued mapping Pr : C([0,T]; E) — P(L*([0,T]; E))
by
Pr(q) := {g|g is strongly measurable and g(t) € F(t,q(t)) for a.e. t € [0,T]}.

Furthermore, we can introduce I : C([0,T]; E) — K,(C([0,T]; E)) by

Tz :={y e C(0,T; E) : y(t) = ey + /Ot eMt=9n(s)ds, h € Pp(z)}, (5.1)

At in E as

where A : D(A) C E — E is the infinitesimal generator of a Cy—semigroup e
given in (2.1).

Lemma 5.2 [13] Under the hypotheses of Lemma 5.1, the set-valued mapping I' in
(5.1) is upper semicontinuous and v-condensing in the sense of Definition 1.5 on every closed

bounded subset of C([0,T]; E), with v constructed in (1.1).
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Theorem 5.1 Under the hypotheses of Lemma 5.2, the solution set of problem (DME)
in the sense of Definition 2.1 is nonempty and the set of all mild trajectories x of (DME) is
compact in C([0,T]; E).

Proof We introduce the following evolutionary differential inclusion((EDT), for short):

{ B(t) = Az(t) + F(t,z(t), te€[0,7T] (5.2)

Here F(t,z) = f(t,x,U(t,x)) with U(t,z) is defined in (4.1). The proof of the theorem
is divided into three parts.

Step 1 We note that the solution set of (EDI) is nonempty if and only if the set of fixed
points FixI" of I is nonempty. By Lemma 5.2, the set-valued mapping I" : C([0,T]; E) —
K,(C[0,T]; E) in (5.1) is upper semicontinuous and v-condensing on every bounded subset
of C([0,T]; E).

Let L be a positive constant such that

t 1
/ e Lt=(s)ds < — , Wt € [0,T], (5.3)
0 M

where ¢ € L'([0,T]) and M := max |le?!].
te[0,7)

By (5.3), there exists » > 0 such that
¢
M||zo|| g + Mr/ e Ft=y(s)ds < r, Vt €[0,T). (5.4)
0

Next, we introduce the equivalent norm on the space C([0,T]; E) by

—Lt
= m t
||« te[g%i]e lz()|le,

we denote the closed ball centered at 0 with radius r in C([0,T]; E) by
Br(0) i= {o € OO, T} B) | & < v,

Now we claim that I'(B,.(0)) € B,(0). Let x € B,.(0) and y € I'z. From (5.1), there
exists h € Pp(x) such that

t
y(t) = ey +/ eAt=y(s)h(s) ds, YVt € [0,T].
0
Using (f2), we obtain

t
e ly()| s =e Xl + / e In(s) ds||
0

t
<eBeMao| + e M / e R(s)ls ds
0

t
<M (l|lzolle + 14l o.rp) +M||$||*/ e Hy(s) ds.
0
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Since z € B,.(0) and using (5.4), it follows that for every t € [0, 7],

t
e Mly®)le < M(llzolle + ¥l L2 o,m)) + M?"/ e M y(s)ds <1,
0

which implies ||y« < r. Therefore, I'(B,(0)) C B,.(0).

Applying Lemma 5.2 and Lemma 1.6 with M = B,.(0) and F = T, it follows that
FixI" # (). Hence the solution set of (EDI) is nonempty.

Step 2 We claim that the solution set of (EDI) is compact in C([0,T]; E). Let
xz € C([0,T]; E) be a solution of (EDI), then we have

t
lz (@)l e < lle®|lllzolls +/ le | ()]l ds, ¥t € [0,T],
0

where h € Pp(x). From the condition (f2) we obtain
t
lz(®)lle < Mol + M/ P(s)(1 + [lz(s)] ) ds
0

¢
< M([lzollz + (141l 1 o7y +/ P(s)llz(s)]z ds).
0
Using Gronwall inequality, we have the following estimate
2]l < M([lzollm + 19| o,mpy)e™ et o,

Therefore, FixI" is bounded in C([0,T7]; E).

Applying Lemma 5.2 and Lemma 1.7 with F' = T", we know the solution set of problem
(EDI), which equals to FixI', is compact in C([0,T]; E).

Step 3 Note that the set-valued mapping U is superpositionally measurable from
Theorem 4.1. Therefore, by Filippov implicit function lemma (see [11]), we deduce that for
every solution x of (EDI), there exists a measurable selection u(t) € U(t,z(t)) such that
z(t) = Ax(t) + f(t,z(t),u(t)),t € [0,T]. Hence, (z,u) is a mild solution of problem (DME)
in the sense of Definition 2.1, which implies the set of all mild trajectories of problem (DME)
is consistent with the solution set of problem (EDI). This completes the proof.
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