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Abstract: The categorical interpretations on representations of diagonal crossed products of
infinite-dimensional coFrobenius Hopf algebras are studied in this paper. By the tools of multiplier
Hopf algebra and homological algebra theories, we get that the unital representation category of
a diagonal crossed product of an infinite-dimensional coFrobenius Hopf algebra is isomorphic to
its generalized Yetter-Drinfeld category, which generalizes the results of Panaite et al. in finite-
dimensional case.
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1 Introduction

A Yetter-Drinfel’d module over a Hopf algebra, firstly introduced by Yetter (crossed
bimodule in [1]), is a module and a comodule satisfying a certain compatibility condition.
The main feature is that Yetter-Drinfel’d modules form a pre-braided monoidal category.
Under favourable conditions (e.g. if the antipode of the Hopf algebra is bijective), the
category is even braided (or quasisymmetric). Via a (pre-) braiding structure, the notion
of Yetter-Drinfel’d module plays a part in the relations between quantum groups and knot
theory.

When a Hopf algebra is finite-dimensional, the generalized (anti) Yetter-Drinfel’d mod-
ule category was studied in [2]. The authors showed that ;YD (a, ) = H*saH (a,3)M, Where
H* < H(w, 3) is the diagonal crossed product algebra. Then one main question naturally
arises: Does this isomorphism still hold for some infinite-dimensional Hopf algebra?

For this question, we first recall from our paper [3] the diagonal crossed product of an
infinite-dimensional coFrobenius Hopf algebra, then we consider the representation category
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of the diagonal crossed product, and show that for a coFrobenius Hopf algebra H with its
dual multiplier Hopf algebra q , the unital He H (a, B)-module category is isomorphic to
(v, B)-Yetter-Drinfeld module category introduced in [2, 4], i.e., y YD (a, §) = o< (a,5) M-
Moreover, as braided T-categories the representation category Rep(@( Hw H (o, )
is isomorphic to YD(H) introduced in [2].

The paper is organized in the following way. In section 2, we recall some notions which

a,B)eEG

will be used in the following, such as multiplier Hopf algebras and («, 3)-quantum double of
an infinite dimensional coFrobenius Hopf algebra.

In section 3, we show that for a coFrobenius Hopf algebra H, the unital Hw H (a, B)-
module category 7, Hia, B)M is isomorphic to g YD (a, B). And as braided T-categories the
representation theory Rep(.A) is isomorphic to YD(H) introduced in [2], generalizing the
classical result in [2, 5].

2 Preliminaries

We begin this section with a short introduction to multiplier Hopf algebras.

Throughout this paper, all spaces we considered are over a fixed field K (such as the
field C of complex numbers). Algebras may or may not have units, but always should be
non-degenerate, i.e., the multiplication maps (viewed as bilinear forms) are non-degenerate.
Recalling from the appendix in [6], the multiplier algebra M (A) of an algebra A is defined
as the largest algebra with unit in which A is a dense ideal.

2.1 Multiplier Hopf Algebras

Now, we recall the definition of a multiplier Hopf algebra (see [6] for details). A comul-
tiplication on an algebra A is a homomorphism A : A — M (A ® A) such that A(a)(1 ® b)
and (a ® 1)A(b) belong to A ® A for all a,b € A. We require A to be coassociative in the
sense that

@212 1)(A®)AG)I®)) =(eA)((a®1)ADB)11 )

for all a,b,c € A (where ¢ denotes the identity map).

A pair (A4, A) of an algebra A with non-degenerate product and a comultiplication A
on A is called a multiplier Hopf algebra, if the maps 77,72 : A® A — M(A® A) defined
by

Ti(a®b)=A@)(1®b), Toa®b)=(a®1)AD) (2.1)

have range in A ® A and are bijective.

A multiplier Hopf algebra (A, A) is called regular if (A4, A“P) is also a multiplier Hopf
algebra, where AP denotes the co-opposite comultiplication defined as AP = 7o A with
7 the usual flip map from A ® A to itself (and extended to M(A ® A)). In this case,
Aa)(b® 1) and (1®a)A(b) € A® A for all a,b € A.
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Multiplier Hopf algebra (A, A) is regular if and only if the antipode S is bijective from
A to A (see [7], Proposition 2.9). In this situation, the comultiplication is also determined
by the bijective maps 13,7, : A® A — A ® A defined as follows

T3(a®b) = Ala)(b® 1), Ty(a®b) = (1 ® a)A(b) (2.2)

for all a,b € A.

In this paper, all the multiplier hopf algebras we considered are regular. We will use the
adapted Sweedler notation for regular multiplier Hopf algebras (see [8]). We will e.g., write
Y- a@q) @ ayb for A(a)(1®0b) and ) aby ® by for (a ® 1)A(b), sometimes we omit the ) .

Define two linear operators 7 and 7’ acting on A ® A introduced by the formulae

T (a @ b) = b2y ® aS(b))b),
T'(a®b) = by ® S(b))ab)

for any a,b € A.

These two operators above are well-defined, since

T(a®b) =Ty(S@)T3(t @S H7(a®Db),
T'(a®b)=(1®S)Tyr(t® S )Tya® D).

They are obviously invertible, and the inverses can be written as follows

Tﬁl(a ® b) = bSil(a(g,))a(l) ® a(2),
T 'a®b) = a@bS  aw) ®aq).

For any a,b € A, T oTy, = Ty. If A is commutative, then 7’ = 7, and if A is cocommu-
tative, then 7 = 7.
Proposition 2.1 Operators 7 and 7’ satisfy the braided equation

To)eT)(TR)=00T)(TR)(xT),
(T'")RTNT' @) =0T )T @) (txT").

2.2 Diagonal Crossed Product of an Infinite Dimensional coFrobenius Hopf
Algebra

Let H be a Hopf algebra, and o,8 € Autpo,r(H). Denote G = Autpopr(H) X
Autpropr(H), a group with multiplication (a, 3) * (7,8) = (a7, 8y *87y). The unit is (¢,¢)
and (o, 3)7! = (a1, aB ta™).

Let H be a coFrobenius Hopf algebra with its dual multiplier Hopf algebra H. Then
A= @(a,ﬁ)ec Aa,p) = @(a,ﬁ)eG H H(a, B) is a G-cograded multiplier Hopf algebra with
the following strucrures:
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For any (o, 3) € G, A(a,5) has the multiplication given by
(poah)(gal) = p(alha)) » g 4 S B(he)) b h)l

for p,q € H and h,l e H.

e The comultiplication on A is given by:

A(a,0),(1,8) * Alag)x(v,0) — M (A, ® Ay,5))s
Aa,8).(v.0) (P> h) = AP (p)(y @ v~ ) A(h).

The counit €4 on A(,,,) = D(H) is the counit on the Drinfel’d double of H.

For any («, 3) € G, the antipode is given by
S+ Afap) — A1
S(a,,@) (p D> h) = T(OéﬁS(h) ® S_l(p)) in A(aﬂ)a = A(afl7aﬂfla—l).

e A crossing action £ : G — Aut(A) is given by
(7,9) ‘A — A - A
lap) P Ao (@,8)x(1,0)x(c,8) -1 = Alara—1,a8-167-18va-1),

1) (ppah) =poBat saay !B 1y(h).

Let H be a coFrobenius Hopf algebra with a left integral ¢, and t € A is a cointegral in
A such that ¢(t) = 1. Recalling from [5] there is an element

u@v =Y t(pp)®S  (pu) € M(H o H).
Following from Lemma 9 in [5] we have:

° ForanypeﬁandheH,
v(p, u) = p, u({v, h) = h. (2.3)
o Let u®v =1 ®v, then
(AR)(u®v)=u®u v, LRA) (ukv)=ud@vav. (2.4)

And from [3] A = @(a’ Byea Hwea H (ar, B) is a quasitriangular G-cograded multiplier Hopf

algebra with a generalized R-matrix given by

R= Y Rapoo= D, exfl(wovsl

(@,8),(7,0)€G (,8),(7,0)€G

3 Representation Category of the Diagonal Crossed Product
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Recalling from [2], a (a, §)-Yetter-Drinfel’d module over H is a vector space M, such
that M is a left H-module (with notation h @ m — h-m) and a right H-comodule (with
notation M — M ® H, m — my ® m(1)) with the following compatibility condition:

(h . m)(o) & (h . m)(l) = h(z) . m(o) &® ﬂ(h(3))m(1)a571(h(1)). (3.1)

We denote by YD (a, §) the category of (v, §)-Yetter-Drinfel’d modules, morphism being
the H-linear H-colinear maps. If H is ”finite-dimensional”, then

HyDH(Oéaﬁ) = H*NH(&,B)Mv

where H* 1 H(«, 3) is the diagonal crossed product.

One main question naturally arises: Does this isomorphism also hold for some ”infinite-
dimensional” Hopf algebras? In the following, we will give a positive answer to an infinite-
dimensional coFrobenius Hopf algebra case.

Recalling from Lemma 11 in [5], If M is a left unital H-module, then

p: M — M®H,
m s ZS_l(w(l)) M t(pe) =v-mu
gives the H-comodule structure on M. Following this lemma, we get the following proposi-

tion.
Proposition 3.1 If M € p_y(, 5 M, then M € # YD (a, §) with structures

h-m = (exah)-m,
m — M) X m() = (S_l(w(l)) D] 1) -mQ t(‘ap(g)).
Proof Here we treat H and H as subalgebras of Hw H (a, B) in the usual way, then
it is easy to get M is an H-module and H-comodule.

To show M € gD (a, B), ie., p(h-m) = hw - mey @ B(h@)mayasS (ha), it is
enough to verify that

(S™ () D h) @ t(-p(2)) = (€2 h)) (S (pa)) b 1) ® B(hs))t(p)aS™ (b))

Viewing H 1 H(o, ) ® H as a subspace of Hom(H, (H = H)(a, 8)) in a natural way, we
only need to check that

(2.3) N
pah = (ST ew)) < h) ()

= (exh) (S (eq)) > 1)(p, B(he)t(-0@)aS™ (ha)))

holds for any p € H. Indeed, for any p’ € q ,

(' > b)) (S~ () < 1)(p, B(hz) )t (o)) S~ (ha)))
= (' > h@) (S (pay) > 1)(p, Bhe)t(-0@)aS™ (hay))
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= (p' ™ he)(pe) = 1) {pay, Blhas)) (ps), aS™ (b))
(py: B(his)))pe3), @S~ (h1))) P2y, S~ B(hiay) ) (p(ay, (b)) (D' pes) > hs))
= ppxh.

This completes the proof.
Proposition 3.2 If M € ;YD (a,3), then M € Frsat (or,5)M With the structure

(p>ah)-m = p((h-m)a))(h-m)q-

Proof It is straightforward to check that (p<h)- ((gp<l)-m) = ((peah)(gp<l))-m
In fact,

(pr<ah) - ( grl) )
= (p>ah)-(q(( )@ D)
(po<h)- (g(B l(s) m(1>a5 o)l - m)
= q(BUa)mmas™ (Iqa)p((hle) - m©)a)) (Ble) - m©) o)
= q(Bs)meas™ (1)) p(B(helw)mayas™ (hale)) (hels) - mo),

and

( p<ih)(gr<l) )
({ay, ™ B(he) ) (@) (h))) (pacz) > hayl)) - m

{90y, 5~ ﬂ(h<3>)><q(s), (h)) (Pa(2)) ((hxl - m) (1)) @ ()l - m) o)

{q0), S7' B(hs)) ) as), alha))) (pae) (B(hayle)mayasS™ (hayla))) (hele) - mo)
= {a): ST B(hen))ae)> a(h@))(p; Bhes)lw)maaS™ (h)le))

{

(g,

42); Blhe)ls))m@aS™ (hiyln))) (hals) - mo)
B(lsy)mzaS™ (1)) (p, B(he)lay)mayaS™ (hayle)) (heyls) - mio)-

Next, we get the main result of this section, generalizing the conclusion in [2] and giving

an answer to the question introduced in Section 1.
Theorem 3.3 For a coFrobenius Hopf algebra H,

fI[x]H(a,ﬁ)M = HyDH(aa ﬂ) (32)

Proof The correspondence easily follows from Proposition 3.1 and 3.2. Let f : M — N
be a morphism in YD (a, ), i.e., f is a module and comodule map. Then in Froat ()M

(f@upm) = F((S (ew)x1) -m)®t(-pe)
p(f(m)) = (S pw) 1) f(m)®t(pw).
(f ®t)p(m) = p(f(m)) implies f is a H 1 1-module map, and so a 1 YD (a, B)-module
map. We define a functor Fi, g) : YD (a, B) — Frsar (a,5)’M @s follows,

F(a,ﬁ)(M):Mv and F(a,ﬁ)(f) :f
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Conversely, if f : M — N be a morphism in z_ 5, 5M, then

(f @ )p(m) FS™Hpqy) pal) -m) @ t(pe)
(S pm) 1) - f(m) @ ()
= p(f(m)).
This shows that f is a H-comodule map. Then we similarly define a functor G, ) :

fvatt (@M — 1YD (@, 8) by Gap) (M) = M,andG(q.p)(f) = /.
From above, F' and G preserve the morphisms from each other. Also F( 3G (a3 =

Lia,5) and G(a.5)F(a,5) = L(a,s)- We have established the equivalence between YD («, 3)
and H‘MH(a,B)M'
Corollary 3.4 Let H be a coFrobenius Hopf algebra and «, 3,7 € Aut(H), then
it (089 M = fisat (o.M
Proof It follows straightforwardly from the fact z YD (a8,~3) = y YD (a, 7).
Example 3.5 (1) When a = 3 = ¢, then H <1 H(1,1) = D(H) the quantum double of
a coFrobenius Hopf algebra. Then we have the following result, which is the main result in
[5], i.e., for a coFrobenius Hopf algebra H,
a YD = 5 M.
(2) When a = 52 and 8 = 1, y YD (52,1) is exactly the category of anti-Yetter-Drinfeld
modules defined in [9]. Then we have
#YDH(5%,1) = fINH(Sz,L)M'

Let YD(H) be the disjoint union of zYD (a, ) for every (a, 3) € G. Then following
Section 3 in [2] or [4, 10] (H is a special multiplier Hopf algebra), we have that z YD is a

braided T-category with the structures as follows
e Tensor product: if V € yYD"(a,8) and W € yp YD (v,6) with a, §,7,6 € Aut(H),
then V@ W € g YD (ary, 6771 87), with the structures as follows:
he-(v@w) =v(ha) -v@y ' Br(he) - w,
v w = (VR w)e) @ (VO w)a) = (v0) ©we) @ wayvn)
forallve V,we W.

e Crossed functor: Let W € zYD"(v,6), we define &, 5 (W) = (“PW = W as vector
space, with structures: for all a,a’ € A and w € W
a—w=y""'pya"(a) w,
W= Weos> @ Wers = Wo) & Oéﬁ_l(wu))-

Then @AW € z YD ((a, B)#(7,80)#(a, 8)"Y) = gID" (aya™t, aB 16y~ fyar).
The functor {4 3) acts as identity on morphisms.
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e Braiding: If V € ;YD (a, 3), and W € g YD (v, 6). Taking VW = (*AW we define
amap Cyw : VW — VYWV by

Clap).(7:0) (v @ w) = w(oy @ B~ (w(y)) - v
forallv eV and w € W.

Following from Theorem 3.3, we obtain the following result, generalizing Theorem 3.10
in [2].

Theorem 3.6 For a coFrobenius Hopf algebra H and its G-cograded multiplier Hopf
algebra A = @(aﬁ)egfl < H(a,3), Rep(A) and YD(H) are isomorphic as braided T-
categories over G.
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