THE REPRESENTATION CATEGORIES OF DIAGONAL CROSSED PRODUCTS OF INFINITE－DIMENSIONAL COFROBENIUS HOPF ALGEBRAS

YANG Tao，LIU Hui－li
（College of Science，Nanjing Agricultural University，Nanjing 210095，China）

Abstract

The categorical interpretations on representations of diagonal crossed products of infinite－dimensional coFrobenius Hopf algebras are studied in this paper．By the tools of multiplier Hopf algebra and homological algebra theories，we get that the unital representation category of a diagonal crossed product of an infinite－dimensional coFrobenius Hopf algebra is isomorphic to its generalized Yetter－Drinfeld category，which generalizes the results of Panaite et al．in finite－ dimensional case．

Keywords：coFrobenius Hopf algebra；diagonal crossed product；Yetter－Drinfel＇d module 2010 MR Subject Classification：16T05；16T99
Document code：A Article ID：0255－7797（2021）03－0495－08

1 Introduction

A Yetter－Drinfel＇d module over a Hopf algebra，firstly introduced by Yetter（crossed bimodule in［1］），is a module and a comodule satisfying a certain compatibility condition． The main feature is that Yetter－Drinfel＇d modules form a pre－braided monoidal category． Under favourable conditions（e．g．if the antipode of the Hopf algebra is bijective），the category is even braided（or quasisymmetric）．Via a（pre－）braiding structure，the notion of Yetter－Drinfel＇d module plays a part in the relations between quantum groups and knot theory．

When a Hopf algebra is finite－dimensional，the generalized（anti）Yetter－Drinfel＇d mod－ ule category was studied in［2］．The authors showed that ${ }_{H} \mathcal{Y D}^{H}(\alpha, \beta) \cong{ }_{H^{*} \bowtie H(\alpha, \beta)} \mathcal{M}$ ，where $H^{*} \bowtie H(\alpha, \beta)$ is the diagonal crossed product algebra．Then one main question naturally arises：Does this isomorphism still hold for some infinite－dimensional Hopf algebra？

For this question，we first recall from our paper［3］the diagonal crossed product of an infinite－dimensional coFrobenius Hopf algebra，then we consider the representation category

[^0]of the diagonal crossed product, and show that for a coFrobenius Hopf algebra H with its dual multiplier Hopf algebra \widehat{H}, the unital $\widehat{H} \bowtie H(\alpha, \beta)$-module category is isomorphic to (α, β)-Yetter-Drinfeld module category introduced in $[2,4]$, i.e., ${ }_{H} \mathcal{Y}^{H}(\alpha, \beta) \cong \widehat{H} \bowtie H(\alpha, \beta)^{\mathcal{M}}$. Moreover, as braided T-categories the representation category $\operatorname{Rep}\left(\bigoplus_{(\alpha, \beta) \in G} \widehat{H} \bowtie H(\alpha, \beta)\right)$ is isomorphic to $\mathcal{Y} \mathcal{D}(H)$ introduced in [2].

The paper is organized in the following way. In section 2 , we recall some notions which will be used in the following, such as multiplier Hopf algebras and (α, β)-quantum double of an infinite dimensional coFrobenius Hopf algebra.

In section 3, we show that for a coFrobenius Hopf algebra H, the unital $\widehat{H} \bowtie H(\alpha, \beta)$ module category $\widehat{H} \bowtie H(\alpha, \beta)^{\mathcal{M}}$ is isomorphic to ${ }_{H} \mathcal{Y} \mathcal{D}^{H}(\alpha, \beta)$. And as braided T-categories the representation theory $\operatorname{Rep}(\mathcal{A})$ is isomorphic to $\mathcal{Y} \mathcal{D}(H)$ introduced in [2], generalizing the classical result in $[2,5]$.

2 Preliminaries

We begin this section with a short introduction to multiplier Hopf algebras.
Throughout this paper, all spaces we considered are over a fixed field K (such as the field \mathbb{C} of complex numbers). Algebras may or may not have units, but always should be non-degenerate, i.e., the multiplication maps (viewed as bilinear forms) are non-degenerate. Recalling from the appendix in [6], the multiplier algebra $M(A)$ of an algebra A is defined as the largest algebra with unit in which A is a dense ideal.

2.1 Multiplier Hopf Algebras

Now, we recall the definition of a multiplier Hopf algebra (see [6] for details). A comultiplication on an algebra A is a homomorphism $\Delta: A \longrightarrow M(A \otimes A)$ such that $\Delta(a)(1 \otimes b)$ and $(a \otimes 1) \Delta(b)$ belong to $A \otimes A$ for all $a, b \in A$. We require Δ to be coassociative in the sense that

$$
(a \otimes 1 \otimes 1)(\Delta \otimes \iota)(\Delta(b)(1 \otimes c))=(\iota \otimes \Delta)((a \otimes 1) \Delta(b))(1 \otimes 1 \otimes c)
$$

for all $a, b, c \in A$ (where ι denotes the identity map).
A pair (A, Δ) of an algebra A with non-degenerate product and a comultiplication Δ on A is called a multiplier Hopf algebra, if the maps $T_{1}, T_{2}: A \otimes A \longrightarrow M(A \otimes A)$ defined by

$$
\begin{equation*}
T_{1}(a \otimes b)=\Delta(a)(1 \otimes b), \quad T_{2}(a \otimes b)=(a \otimes 1) \Delta(b) \tag{2.1}
\end{equation*}
$$

have range in $A \otimes A$ and are bijective.
A multiplier Hopf algebra (A, Δ) is called regular if $\left(A, \Delta^{c o p}\right)$ is also a multiplier Hopf algebra, where $\Delta^{c o p}$ denotes the co-opposite comultiplication defined as $\Delta^{c o p}=\tau \circ \Delta$ with τ the usual flip map from $A \otimes A$ to itself (and extended to $M(A \otimes A)$). In this case, $\Delta(a)(b \otimes 1)$ and $(1 \otimes a) \Delta(b) \in A \otimes A$ for all $a, b \in A$.

Multiplier Hopf algebra (A, Δ) is regular if and only if the antipode S is bijective from A to A (see [7], Proposition 2.9). In this situation, the comultiplication is also determined by the bijective maps $T_{3}, T_{4}: A \otimes A \longrightarrow A \otimes A$ defined as follows

$$
\begin{equation*}
T_{3}(a \otimes b)=\Delta(a)(b \otimes 1), \quad T_{4}(a \otimes b)=(1 \otimes a) \Delta(b) \tag{2.2}
\end{equation*}
$$

for all $a, b \in A$.
In this paper, all the multiplier hopf algebras we considered are regular. We will use the adapted Sweedler notation for regular multiplier Hopf algebras (see [8]). We will e.g., write $\sum a_{(1)} \otimes a_{(2)} b$ for $\Delta(a)(1 \otimes b)$ and $\sum a b_{(1)} \otimes b_{(2)}$ for $(a \otimes 1) \Delta(b)$, sometimes we omit the \sum.

Define two linear operators \mathcal{T} and \mathcal{T}^{\prime} acting on $A \otimes A$ introduced by the formulae

$$
\begin{aligned}
& \mathcal{T}(a \otimes b)=b_{(2)} \otimes a S\left(b_{(1)}\right) b_{(3)} \\
& \mathcal{T}^{\prime}(a \otimes b)=b_{(1)} \otimes S\left(b_{(2)}\right) a b_{(3)}
\end{aligned}
$$

for any $a, b \in A$.
These two operators above are well-defined, since

$$
\begin{aligned}
& \mathcal{T}(a \otimes b)=T_{4}(S \otimes \iota) T_{3}\left(\iota \otimes S^{-1}\right) \tau(a \otimes b) \\
& \mathcal{T}^{\prime}(a \otimes b)=(\iota \otimes S) T_{4} \tau\left(\iota \otimes S^{-1}\right) T_{4}(a \otimes b)
\end{aligned}
$$

They are obviously invertible, and the inverses can be written as follows

$$
\begin{aligned}
& \mathcal{T}^{-1}(a \otimes b)=b S^{-1}\left(a_{(3)}\right) a_{(1)} \otimes a_{(2)} \\
& \mathcal{T}^{\prime-1}(a \otimes b)=a_{(3)} b S^{-1}\left(a_{(2)}\right) \otimes a_{(1)}
\end{aligned}
$$

For any $a, b \in A, \mathcal{T} \circ T_{2}=T_{4}$. If A is commutative, then $\mathcal{T}^{\prime}=\tau$, and if A is cocommutative, then $\mathcal{T}=\tau$.

Proposition 2.1 Operators \mathcal{T} and \mathcal{T}^{\prime} satisfy the braided equation

$$
\begin{aligned}
& (\mathcal{T} \otimes \iota)(\iota \otimes \mathcal{T})(\mathcal{T} \otimes \iota)=(\iota \otimes \mathcal{T})(\mathcal{T} \otimes \iota)(\iota \otimes \mathcal{T}) \\
& \left(\mathcal{T}^{\prime} \otimes \iota\right)\left(\iota \otimes \mathcal{T}^{\prime}\right)\left(\mathcal{T}^{\prime} \otimes \iota\right)=\left(\iota \otimes \mathcal{T}^{\prime}\right)\left(\mathcal{T}^{\prime} \otimes \iota\right)\left(\iota \otimes \mathcal{T}^{\prime}\right)
\end{aligned}
$$

2.2 Diagonal Crossed Product of an Infinite Dimensional coFrobenius Hopf Algebra

Let H be a Hopf algebra, and $\alpha, \beta \in A u t_{H o p f}(H)$. Denote $G=A u t_{H o p f}(H) \times$ $\operatorname{Aut}_{H o p f}(H)$, a group with multiplication $(\alpha, \beta) *(\gamma, \delta)=\left(\alpha \gamma, \delta \gamma^{-1} \beta \gamma\right)$. The unit is (ι, ι) and $(\alpha, \beta)^{-1}=\left(\alpha^{-1}, \alpha \beta^{-1} \alpha^{-1}\right)$.

Let H be a coFrobenius Hopf algebra with its dual multiplier Hopf algebra \widehat{H}. Then $\mathcal{A}=\bigoplus_{(\alpha, \beta) \in G} \mathcal{A}_{(\alpha, \beta)}=\bigoplus_{(\alpha, \beta) \in G} \widehat{H} \bowtie H(\alpha, \beta)$ is a G-cograded multiplier Hopf algebra with the following strucrures:

- For any $(\alpha, \beta) \in G, \mathcal{A}_{(\alpha, \beta)}$ has the multiplication given by

$$
(p \bowtie h)(q \bowtie l)=p\left(\alpha\left(h_{(1)}\right) \bowtie q \triangleleft S^{-1} \beta\left(h_{(3)}\right)\right) \bowtie h_{(2)} l
$$

for $p, q \in \widehat{H}$ and $h, l \in H$.

- The comultiplication on \mathcal{A} is given by:

$$
\begin{aligned}
& \Delta_{(\alpha, \beta),(\gamma, \delta)}: \mathcal{A}_{(\alpha, \beta) *(\gamma, \delta)} \longrightarrow M\left(\mathcal{A}_{(\alpha, \beta)} \otimes \mathcal{A}_{(\gamma, \delta)}\right), \\
& \Delta_{(\alpha, \beta),(\gamma, \delta)}(p \bowtie h)=\Delta^{c o p}(p)\left(\gamma \otimes \gamma^{-1} \beta \gamma\right) \Delta(h) .
\end{aligned}
$$

- The counit $\varepsilon_{\mathcal{A}}$ on $\mathcal{A}_{(\iota, \iota)}=D(H)$ is the counit on the Drinfel'd double of H.
- For any $(\alpha, \beta) \in G$, the antipode is given by

$$
\begin{aligned}
& S: \mathcal{A}_{(\alpha, \beta)} \longrightarrow \mathcal{A}_{(\alpha, \beta)^{-1}} \\
& S_{(\alpha, \beta)}(p \bowtie h)=T\left(\alpha \beta S(h) \otimes S^{-1}(p)\right) \text { in } \mathcal{A}_{(\alpha, \beta)^{-1}}=\mathcal{A}_{\left(\alpha^{-1}, \alpha \beta^{-1} \alpha^{-1}\right)}
\end{aligned}
$$

- A crossing action $\xi: G \longrightarrow \operatorname{Aut}(\mathcal{A})$ is given by

$$
\begin{aligned}
& \xi_{(\alpha, \beta)}^{(\gamma, \delta)}: \mathcal{A}_{(\gamma, \delta)} \longrightarrow \mathcal{A}_{(\alpha, \beta) *(\gamma, \delta) *(\alpha, \beta)^{-1}}=\mathcal{A}_{\left(\alpha \gamma \alpha^{-1}, \alpha \beta^{-1} \delta \gamma^{-1} \beta \gamma \alpha^{-1}\right)}, \\
& \xi_{(\alpha, \beta)}^{(\gamma, \delta)}(p \bowtie h)=p \circ \beta \alpha^{-1} \bowtie \alpha \gamma^{-1} \beta^{-1} \gamma(h) .
\end{aligned}
$$

Let H be a coFrobenius Hopf algebra with a left integral φ, and $t \in A$ is a cointegral in A such that $\varphi(t)=1$. Recalling from [5] there is an element

$$
u \otimes v=: \sum t\left(\cdot \varphi_{(2)}\right) \otimes S^{-1}\left(\varphi_{(1)}\right) \in M(H \otimes \widehat{H})
$$

Following from Lemma 9 in [5] we have:

- For any $p \in \widehat{H}$ and $h \in H$,

$$
\begin{equation*}
v\langle p, u\rangle=p, \quad u\langle v, h\rangle=h \tag{2.3}
\end{equation*}
$$

- Let $u \otimes v=u^{\prime} \otimes v^{\prime}$, then

$$
\begin{equation*}
(\Delta \otimes \iota)(u \otimes v)=u \otimes u^{\prime} \otimes v v^{\prime}, \quad(\iota \otimes \Delta)(u \otimes v)=u u^{\prime} \otimes v \otimes v^{\prime} \tag{2.4}
\end{equation*}
$$

And from [3] $\mathcal{A}=\bigoplus_{(\alpha, \beta) \in G} \widehat{H} \bowtie H(\alpha, \beta)$ is a quasitriangular G-cograded multiplier Hopf algebra with a generalized R-matrix given by

$$
R=\sum_{(\alpha, \beta),(\gamma, \delta) \in G} R_{(\alpha, \beta),(\gamma, \delta)}=\sum_{(\alpha, \beta),(\gamma, \delta) \in G} \varepsilon \bowtie \beta^{-1}(u) \otimes v \bowtie 1 .
$$

3 Representation Category of the Diagonal Crossed Product

Recalling from [2], a (α, β)-Yetter-Drinfel'd module over H is a vector space M, such that M is a left H-module (with notation $h \otimes m \mapsto h \cdot m$) and a right H-comodule (with notation $\left.M \rightarrow M \otimes H, m \mapsto m_{(0)} \otimes m_{(1)}\right)$ with the following compatibility condition:

$$
\begin{equation*}
(h \cdot m)_{(0)} \otimes(h \cdot m)_{(1)}=h_{(2)} \cdot m_{(0)} \otimes \beta\left(h_{(3)}\right) m_{(1)} \alpha S^{-1}\left(h_{(1)}\right) . \tag{3.1}
\end{equation*}
$$

We denote by ${ }_{H} \mathcal{Y} \mathcal{D}^{H}(\alpha, \beta)$ the category of (α, β)-Yetter-Drinfel'd modules, morphism being the H-linear H-colinear maps. If H is "finite-dimensional", then

$$
{ }_{H} \mathcal{Y D}^{H}(\alpha, \beta) \cong{ }_{H^{*} \bowtie H(\alpha, \beta)} \mathcal{M}
$$

where $H^{*} \bowtie H(\alpha, \beta)$ is the diagonal crossed product.
One main question naturally arises: Does this isomorphism also hold for some "infinitedimensional" Hopf algebras? In the following, we will give a positive answer to an infinitedimensional coFrobenius Hopf algebra case.

Recalling from Lemma 11 in [5], If M is a left unital \widehat{H}-module, then

$$
\begin{aligned}
\rho: & M \longrightarrow M \otimes H \\
& m \mapsto \sum S^{-1}\left(\varphi_{(1)}\right) \cdot m \otimes t\left(\cdot \varphi_{(2)}\right)=v \cdot m \otimes u
\end{aligned}
$$

gives the H-comodule structure on M. Following this lemma, we get the following proposition.

Proposition 3.1 If $M \in{ }_{\hat{H} \bowtie H(\alpha, \beta)} \mathcal{M}$, then $M \in{ }_{H} \mathcal{Y} \mathcal{D}^{H}(\alpha, \beta)$ with structures

$$
\begin{aligned}
& h \cdot m=(\varepsilon \bowtie h) \cdot m \\
& m \mapsto m_{(0)} \otimes m_{(1)}=\left(S^{-1}\left(\varphi_{(1)}\right) \bowtie 1\right) \cdot m \otimes t\left(\cdot \varphi_{(2)}\right)
\end{aligned}
$$

Proof Here we treat \widehat{H} and H as subalgebras of $\widehat{H} \bowtie H(\alpha, \beta)$ in the usual way, then it is easy to get M is an H-module and H-comodule.

To show $M \in{ }_{H} \mathcal{Y D}^{H}(\alpha, \beta)$, i.e., $\rho(h \cdot m)=h_{(2)} \cdot m_{(0)} \otimes \beta\left(h_{(3)}\right) m_{(1)} \alpha S^{-1}\left(h_{(1)}\right)$, it is enough to verify that

$$
\left(S^{-1}\left(\varphi_{(1)}\right) \bowtie h\right) \otimes t\left(\cdot \varphi_{(2)}\right)=\left(\varepsilon \bowtie h_{(2)}\right)\left(S^{-1}\left(\varphi_{(1)}\right) \bowtie 1\right) \otimes \beta\left(h_{(3)}\right) t\left(\cdot \varphi_{(2)}\right) \alpha S^{-1}\left(h_{(1)}\right) .
$$

Viewing $\widehat{H} \bowtie H(\alpha, \beta) \otimes H$ as a subspace of $\operatorname{Hom}(\widehat{H},(\widehat{H} \bowtie H)(\alpha, \beta))$ in a natural way, we only need to check that

$$
\begin{aligned}
p \bowtie h & \stackrel{(2.3)}{=}\left(S^{-1}\left(\varphi_{(1)}\right) \bowtie h\right) t\left(p \varphi_{(2)}\right) \\
& =\left(\varepsilon \bowtie h_{(2)}\right)\left(S^{-1}\left(\varphi_{(1)}\right) \bowtie 1\right)\left\langle p, \beta\left(h_{(3)}\right) t\left(\cdot \varphi_{(2)}\right) \alpha S^{-1}\left(h_{(1)}\right)\right\rangle
\end{aligned}
$$

holds for any $p \in \widehat{H}$. Indeed, for any $p^{\prime} \in \widehat{H}$,

$$
\begin{aligned}
& \left(p^{\prime} \bowtie h_{(2)}\right)\left(S^{-1}\left(\varphi_{(1)}\right) \bowtie 1\right)\left\langle p, \beta\left(h_{(3)}\right) t\left(\cdot \varphi_{(2)}\right) \alpha S^{-1}\left(h_{(1)}\right)\right\rangle \\
=\quad & \left(p^{\prime} \bowtie h_{(2)}\right)\left(S^{-1}\left(\varphi_{(1)}\right) \bowtie 1\right)\left\langle p, \beta\left(h_{(3)}\right) t\left(\cdot \varphi_{(2)}\right) \alpha S^{-1}\left(h_{(1)}\right)\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =\left(p^{\prime} \bowtie h_{(2)}\right)\left(p_{(2)} \bowtie 1\right)\left\langle p_{(1)}, \beta\left(h_{(3)}\right)\right\rangle\left\langle p_{(3)}, \alpha S^{-1}\left(h_{(1)}\right)\right\rangle \\
& =\left\langle p_{(1)}, \beta\left(h_{(5)}\right)\right\rangle\left\langle p_{(3)}, \alpha S^{-1}\left(h_{(1)}\right)\right\rangle\left\langle p_{(2)}, S^{-1} \beta\left(h_{(4)}\right)\right\rangle\left\langle p_{(4)}, \alpha\left(h_{(1)}\right)\right\rangle\left(p^{\prime} p_{(3)} \bowtie h_{(3)}\right) \\
& =p^{\prime} p \bowtie h .
\end{aligned}
$$

This completes the proof.
Proposition 3.2 If $M \in{ }_{H} \mathcal{Y D}^{H}(\alpha, \beta)$, then $M \in{ }_{\hat{H} \bowtie H(\alpha, \beta)} \mathcal{M}$ with the structure

$$
(p \bowtie h) \cdot m=p\left((h \cdot m)_{(1)}\right)(h \cdot m)_{(0)} .
$$

Proof It is straightforward to check that $(p \bowtie h) \cdot((q \bowtie l) \cdot m)=((p \bowtie h)(q \bowtie l)) \cdot m$. In fact,

$$
\begin{aligned}
& (p \bowtie h) \cdot((q \bowtie l) \cdot m) \\
= & (p \bowtie h) \cdot\left(q\left((l \cdot m)_{(1)}\right)(q \cdot l)_{(0)}\right) \\
= & (p \bowtie h) \cdot\left(q\left(\beta\left(l_{(3)}\right) m_{(1)} \alpha S^{-1}\left(l_{(1)}\right)\right) l_{(2)} \cdot m_{(0)}\right) \\
= & q\left(\beta\left(l_{(3)}\right) m_{(1)} \alpha S^{-1}\left(l_{(1)}\right)\right) p\left(\left(h l_{(2)} \cdot m_{(0)}\right)_{(1)}\right)\left(h l_{(2)} \cdot m_{(0)}\right)_{(0)} \\
= & q\left(\beta\left(l_{(5)}\right) m_{(2)} \alpha S^{-1}\left(l_{(1)}\right)\right) p\left(\beta\left(h_{(3)} l_{(4)}\right) m_{(1)} \alpha S^{-1}\left(h_{(1)} l_{(2)}\right)\right)\left(h_{(2)} l_{(3)}\right) \cdot m_{(0)},
\end{aligned}
$$

and

$$
\begin{aligned}
& ((p \bowtie h)(q \bowtie l)) \cdot m \\
= & \left(\left\langle q_{(1)}, S^{-1} \beta\left(h_{(3)}\right)\right\rangle\left\langle q_{(3)}, \alpha\left(h_{(1)}\right)\right\rangle\left(p q_{(2)} \bowtie h_{(2)} l\right)\right) \cdot m \\
= & \left\langle q_{(1)}, S^{-1} \beta\left(h_{(3)}\right)\right\rangle\left\langle q_{(3)}, \alpha\left(h_{(1)}\right)\right\rangle\left(p q_{(2)}\right)\left(\left(h_{(2)} l \cdot m\right)_{(1)}\right) \otimes\left(h_{(2)} l \cdot m\right)_{(0)} \\
= & \left\langle q_{(1)}, S^{-1} \beta\left(h_{(5)}\right)\right\rangle\left\langle q_{(3)}, \alpha\left(h_{(1)}\right)\right\rangle\left(p q_{(2)}\right)\left(\beta\left(h_{(4)} l_{(3)}\right) m_{(1)} \alpha S^{-1}\left(h_{(2)} l_{(1)}\right)\right)\left(h_{(3)} l_{(2)}\right) \cdot m_{(0)} \\
= & \frac{\left\langle q_{(1)}, S^{-1} \beta\left(h_{(7)}\right)\right\rangle\left\langle q_{(3)}, \alpha\left(h_{(1)}\right)\right\rangle\left\langle p, \beta\left(h_{(5)} l_{(4)}\right) m_{(1)} \alpha S^{-1}\left(h_{(3)} l_{(2)}\right)\right\rangle}{\left\langle q_{(2)}, \beta\left(h_{(6)} l_{(5)}\right) m_{(2)} \alpha S^{-1}\left(h_{(2)} l_{(1)}\right)\right\rangle\left(h_{(4)} l_{(3)}\right) \cdot m_{(0)}} \\
= & \frac{\left\langle q, \beta\left(l_{(5)}\right) m_{(2)} \alpha S^{-1}\left(l_{(1)}\right)\right\rangle\left\langle p, \beta\left(h_{(3)} l_{(4)}\right) m_{(1)} \alpha S^{-1}\left(h_{(1)} l_{(2)}\right)\right\rangle\left(h_{(2)} l_{(3)}\right) \cdot m_{(0)} .}{} .
\end{aligned}
$$

Next, we get the main result of this section, generalizing the conclusion in [2] and giving an answer to the question introduced in Section 1.

Theorem 3.3 For a coFrobenius Hopf algebra H,

$$
\begin{equation*}
\widehat{H} \bowtie H(\alpha, \beta) \mathcal{M} \cong{ }_{H} \mathcal{Y D}^{H}(\alpha, \beta) . \tag{3.2}
\end{equation*}
$$

Proof The correspondence easily follows from Proposition 3.1 and 3.2. Let $f: M \rightarrow N$ be a morphism in ${ }_{H} \mathcal{Y} \mathcal{D}^{H}(\alpha, \beta)$, i.e., f is a module and comodule map. Then in ${ }_{\hat{H} \bowtie H(\alpha, \beta)} \mathcal{M}$,

$$
\begin{aligned}
(f \otimes \iota) \rho(m) & =f\left(\left(S^{-1}\left(\varphi_{(1)}\right) \bowtie 1\right) \cdot m\right) \otimes t\left(\cdot \varphi_{(2)}\right) \\
\rho(f(m)) & =\left(S^{-1}\left(\varphi_{(1)}\right) \bowtie 1\right) \cdot f(m) \otimes t\left(\cdot \varphi_{(2)}\right) .
\end{aligned}
$$

$(f \otimes \iota) \rho(m)=\rho(f(m))$ implies f is a $\widehat{H} \bowtie 1$-module map, and so a ${ }_{H} \mathcal{Y}^{H}(\alpha, \beta)$-module map. We define a functor $F_{(\alpha, \beta)}:{ }_{H} \mathcal{Y} \mathcal{D}^{H}(\alpha, \beta) \longrightarrow{ }_{\hat{H} \bowtie H(\alpha, \beta)} \mathcal{M}$ as follows,

$$
F_{(\alpha, \beta)}(M)=M, \quad \text { and } \quad F_{(\alpha, \beta)}(f)=f
$$

Conversely, if $f: M \rightarrow N$ be a morphism in $\widehat{H} \bowtie H(\alpha, \beta)^{\mathcal{M}}$, then

$$
\begin{aligned}
(f \otimes \iota) \rho(m) & =f\left(\left(S^{-1}\left(\varphi_{(1)}\right) \bowtie 1\right) \cdot m\right) \otimes t\left(\cdot \varphi_{(2)}\right) \\
& =\left(S^{-1}\left(\varphi_{(1)}\right) \bowtie 1\right) \cdot f(m) \otimes t\left(\cdot \varphi_{(2)}\right) \\
& =\rho(f(m)) .
\end{aligned}
$$

This shows that f is a H-comodule map. Then we similarly define a functor $G_{(\alpha, \beta)}$: $\widehat{H} \bowtie H(\alpha, \beta) \mathcal{M} \longrightarrow{ }_{H} \mathcal{Y} \mathcal{D}^{H}(\alpha, \beta)$ by $G_{(\alpha, \beta)}(M)=M, \operatorname{and} G_{(\alpha, \beta)}(f)=f$.

From above, F and G preserve the morphisms from each other. Also $F_{(\alpha, \beta)} G_{(\alpha, \beta)}=$ $1_{(\alpha, \beta)}$ and $G_{(\alpha, \beta)} F_{(\alpha, \beta)}=1_{(\alpha, \beta)}$. We have established the equivalence between ${ }_{H} \mathcal{Y D}^{H}(\alpha, \beta)$ and $\hat{H} \bowtie H(\alpha, \beta) \mathcal{M}$.

Corollary 3.4 Let H be a coFrobenius Hopf algebra and $\alpha, \beta, \gamma \in \operatorname{Aut}(H)$, then

$$
\widehat{H} \bowtie H(\alpha \beta, \gamma \beta) \mathcal{M} \cong \hat{H}_{\bowtie H(\alpha, \gamma)} \mathcal{M}
$$

Proof It follows straightforwardly from the fact ${ }_{H} \mathcal{Y} \mathcal{D}^{H}(\alpha \beta, \gamma \beta) \cong{ }_{H} \mathcal{Y D}^{H}(\alpha, \gamma)$.
Example 3.5 (1) When $\alpha=\beta=\iota$, then $\widehat{H} \bowtie H(\iota, \iota)=D(H)$ the quantum double of a coFrobenius Hopf algebra. Then we have the following result, which is the main result in [5], i.e., for a coFrobenius Hopf algebra H,

$$
{ }_{H} \mathcal{Y} \mathcal{D}^{H} \cong \widehat{H} \bowtie H \mathcal{M}
$$

(2) When $\alpha=S^{2}$ and $\beta=\iota,{ }_{H} \mathcal{Y D}^{H}\left(S^{2}, \iota\right)$ is exactly the category of anti-Yetter-Drinfeld modules defined in [9]. Then we have

$$
{ }_{H} \mathcal{Y} D^{H}\left(S^{2}, \iota\right) \cong{\widehat{H} \bowtie H\left(S^{2}, \iota\right)} \mathcal{M}
$$

Let $\mathcal{Y} \mathcal{D}(H)$ be the disjoint union of ${ }_{H} \mathcal{Y D}^{H}(\alpha, \beta)$ for every $(\alpha, \beta) \in G$. Then following Section 3 in [2] or [4, 10] (H is a special multiplier Hopf algebra), we have that ${ }_{H} \mathcal{Y} \mathcal{D}^{H}$ is a braided T-category with the structures as follows

- Tensor product: if $V \in{ }_{H} \mathcal{Y D}^{H}(\alpha, \beta)$ and $W \in{ }_{H} \mathcal{Y D}^{H}(\gamma, \delta)$ with $\alpha, \beta, \gamma, \delta \in A u t(H)$, then $V \otimes W \in{ }_{H} \mathcal{Y} \mathcal{D}^{H}\left(\alpha \gamma, \delta \gamma^{-1} \beta \gamma\right)$, with the structures as follows:

$$
\begin{aligned}
& h \cdot(v \otimes w)=\gamma\left(h_{(1)}\right) \cdot v \otimes \gamma^{-1} \beta \gamma\left(h_{(2)}\right) \cdot w \\
& v \otimes w \mapsto(v \otimes w)_{(0)} \otimes(v \otimes w)_{(1)}=\left(v_{(0)} \otimes w_{(0)}\right) \otimes w_{(1)} v_{(1)}
\end{aligned}
$$

for all $v \in V, w \in W$.

- Crossed functor: Let $W \in{ }_{H} \mathcal{Y D}^{H}(\gamma, \delta)$, we define $\xi_{(\alpha, \beta)}(W)={ }^{(\alpha, \beta)} W=W$ as vector space, with structures: for all $a, a^{\prime} \in A$ and $w \in W$

$$
\begin{aligned}
& a \rightharpoonup w=\gamma^{-1} \beta \gamma \alpha^{-1}(a) \cdot w \\
& w \mapsto w_{<0>} \otimes w_{<1>}=w_{(0)} \otimes \alpha \beta^{-1}\left(w_{(1)}\right)
\end{aligned}
$$

Then ${ }^{(\alpha, \beta)} W \in{ }_{H} \mathcal{Y D}^{H}\left((\alpha, \beta) \#(\gamma, \delta) \#(\alpha, \beta)^{-1}\right)={ }_{H} \mathcal{Y D}^{H}\left(\alpha \gamma \alpha^{-1}, \alpha \beta^{-1} \delta \gamma^{-1} \beta \gamma \alpha^{-1}\right)$.
The functor $\xi_{(\alpha, \beta)}$ acts as identity on morphisms.
－Braiding：If $V \in{ }_{H} \mathcal{Y D}^{H}(\alpha, \beta)$ ，and $W \in{ }_{H} \mathcal{Y D}^{H}(\gamma, \delta)$ ．Taking ${ }^{V} W={ }^{(\alpha, \beta)} W$ ，we define a map $C_{V, W}: V \otimes W \longrightarrow{ }^{V} W \otimes V$ by

$$
C_{(\alpha, \beta),(\gamma, \delta)}(v \otimes w)=w_{(0)} \otimes \beta^{-1}\left(w_{(1)}\right) \cdot v
$$

for all $v \in V$ and $w \in W$ ．
Following from Theorem 3．3，we obtain the following result，generalizing Theorem 3．10 in［2］．

Theorem 3．6 For a coFrobenius Hopf algebra H and its G－cograded multiplier Hopf algebra $\mathcal{A}=\bigoplus_{(\alpha, \beta) \in G} \widehat{H} \bowtie H(\alpha, \beta), \operatorname{Rep}(\mathcal{A})$ and $\mathcal{Y} \mathcal{D}(H)$ are isomorphic as braided T－ categories over G ．

References

［1］Yetter N．Quantum groups and representations of monoidal categories［J］．Mathematical Proceedings of the Cambridge Philosophical Society，1990，108（2）：261－290．
［2］Panaite F，Staic Mihai D．Generalized（anti）Yetter－Drinfel＇d modules as components of a braided T－category［J］．Israel Journal of Mathematics，2007，158（1）：349－365．
［3］Yang T，Zhou X，Zhu H．A class of quasitriangular group－cograded multiplier Hopf algebras［J］． Glasgow Mathematical Journal，2020，62（1）：43－57．
［4］Yang T，Wang S H．Constructing new braided T－categories over regular multiplier Hopf algebras［J］． Communications in Algebra，2011，39（9）：3073－3089．
［5］Zhang Y H．The quantum double of a coFrobenius Hopf algebra［J］．Communications in Algebra， 1999，27（3）：1413－1427．
［6］Van Daele，A．Multiplier Hopf algebras［J］．Transaction of the American Mathematical Society，1994， 342（2）：917－932．
［7］Van Daele，A．An algebraic framework for group duality［J］．Advances in Mathematics，1998，140（2）： 323－366．
［8］Van Daele，A．Tools for working with multiplier Hopf algebras［J］．The Arabian Journal for Science and Engineering，2008，33（2C）：505－527．
［9］Hajac P，Khalkhali M，Rangipour B，Sommerhäuser Y．Stable anti－Yetter－Drinfeld modules［J］． Comptes Rendus Mathematique，2004，338（8）：587－590．
［10］Yang T，Zhou X，Ma T．On braided T－categories over multiplier Hopf algebras［J］．Communications in Algebra，2013，41（8）：2852－2868．

无限维余Frobenius Hopf代数对角交叉积的表示范畴

杨 涛，刘慧丽
（南京农业大学理学院，江苏 南京 210095）

摘要：本文研究了无限维余Frobenius Hopf代数对角交叉积表示范畴刻画的问题．利用乘子Hopf代数以及同调代数理论中的方法，获得了无限维余Frobenius Hopf代数对角交叉积的表示范畴与广义Yetter－
Drinfeld范畴同构的结果，推广了Panaite等人在有限维Hopf代数中的结果．
关键词：余Frobenius Hopf代数；对角交叉积；Yetter－Drinfel＇d模
$\operatorname{MR}(2010)$ 主题分类号： $16 \mathrm{~T} 05 ; 16 \mathrm{~T} 99$ 中图分类号：O153．3

[^0]: ${ }^{*}$ Received date：2021－04－27 Accepted date：2021－06－23
 Foundation item：Supported by China Postdoctoral Science Foundation（2019M651764），National Natural Science Foundation of China（11601231）．

 Biography：Yang Tao（1984－），male，born at Huaian，Jiangsu，associate professor，major in Hopf algebras．E－mail：yang320830＠126．com．

