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Abstract: The categorical interpretations on representations of diagonal crossed products of

infinite-dimensional coFrobenius Hopf algebras are studied in this paper. By the tools of multiplier

Hopf algebra and homological algebra theories, we get that the unital representation category of

a diagonal crossed product of an infinite-dimensional coFrobenius Hopf algebra is isomorphic to

its generalized Yetter-Drinfeld category, which generalizes the results of Panaite et al. in finite-

dimensional case.
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1 Introduction

A Yetter-Drinfel’d module over a Hopf algebra, firstly introduced by Yetter (crossed
bimodule in [1]), is a module and a comodule satisfying a certain compatibility condition.
The main feature is that Yetter-Drinfel’d modules form a pre-braided monoidal category.
Under favourable conditions (e.g. if the antipode of the Hopf algebra is bijective), the
category is even braided (or quasisymmetric). Via a (pre-) braiding structure, the notion
of Yetter-Drinfel’d module plays a part in the relations between quantum groups and knot
theory.

When a Hopf algebra is finite-dimensional, the generalized (anti) Yetter-Drinfel’d mod-
ule category was studied in [2]. The authors showed that HYDH(α, β) ∼= H∗./H(α,β)M, where
H∗ ./ H(α, β) is the diagonal crossed product algebra. Then one main question naturally
arises: Does this isomorphism still hold for some infinite-dimensional Hopf algebra?

For this question, we first recall from our paper [3] the diagonal crossed product of an
infinite-dimensional coFrobenius Hopf algebra, then we consider the representation category
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of the diagonal crossed product, and show that for a coFrobenius Hopf algebra H with its
dual multiplier Hopf algebra Ĥ, the unital Ĥ ./ H(α, β)-module category is isomorphic to
(α, β)-Yetter-Drinfeld module category introduced in [2, 4], i.e., HYDH(α, β) ∼= Ĥ./H(α,β)M.

Moreover, as braided T -categories the representation category Rep(
⊕

(α,β)∈G Ĥ ./ H(α, β))
is isomorphic to YD(H) introduced in [2].

The paper is organized in the following way. In section 2, we recall some notions which
will be used in the following, such as multiplier Hopf algebras and (α, β)-quantum double of
an infinite dimensional coFrobenius Hopf algebra.

In section 3, we show that for a coFrobenius Hopf algebra H, the unital Ĥ ./ H(α, β)-
module category Ĥ./H(α,β)M is isomorphic to HYDH(α, β). And as braided T -categories the
representation theory Rep(A) is isomorphic to YD(H) introduced in [2], generalizing the
classical result in [2, 5].

2 Preliminaries

We begin this section with a short introduction to multiplier Hopf algebras.
Throughout this paper, all spaces we considered are over a fixed field K (such as the

field C of complex numbers). Algebras may or may not have units, but always should be
non-degenerate, i.e., the multiplication maps (viewed as bilinear forms) are non-degenerate.
Recalling from the appendix in [6], the multiplier algebra M(A) of an algebra A is defined
as the largest algebra with unit in which A is a dense ideal.

2.1 Multiplier Hopf Algebras

Now, we recall the definition of a multiplier Hopf algebra (see [6] for details). A comul-
tiplication on an algebra A is a homomorphism ∆ : A −→ M(A⊗A) such that ∆(a)(1⊗ b)
and (a ⊗ 1)∆(b) belong to A ⊗ A for all a, b ∈ A. We require ∆ to be coassociative in the
sense that

(a⊗ 1⊗ 1)(∆⊗ ι)(∆(b)(1⊗ c)) = (ι⊗∆)((a⊗ 1)∆(b))(1⊗ 1⊗ c)

for all a, b, c ∈ A (where ι denotes the identity map).
A pair (A,∆) of an algebra A with non-degenerate product and a comultiplication ∆

on A is called a multiplier Hopf algebra, if the maps T1, T2 : A ⊗ A −→ M(A ⊗ A) defined
by

T1(a⊗ b) = ∆(a)(1⊗ b), T2(a⊗ b) = (a⊗ 1)∆(b) (2.1)

have range in A⊗A and are bijective.
A multiplier Hopf algebra (A,∆) is called regular if (A,∆cop) is also a multiplier Hopf

algebra, where ∆cop denotes the co-opposite comultiplication defined as ∆cop = τ ◦∆ with
τ the usual flip map from A ⊗ A to itself (and extended to M(A ⊗ A)). In this case,
∆(a)(b⊗ 1) and (1⊗ a)∆(b) ∈ A⊗A for all a, b ∈ A.
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Multiplier Hopf algebra (A,∆) is regular if and only if the antipode S is bijective from
A to A (see [7], Proposition 2.9). In this situation, the comultiplication is also determined
by the bijective maps T3, T4 : A⊗A −→ A⊗A defined as follows

T3(a⊗ b) = ∆(a)(b⊗ 1), T4(a⊗ b) = (1⊗ a)∆(b) (2.2)

for all a, b ∈ A.
In this paper, all the multiplier hopf algebras we considered are regular. We will use the

adapted Sweedler notation for regular multiplier Hopf algebras (see [8]). We will e.g., write∑
a(1) ⊗ a(2)b for ∆(a)(1⊗ b) and

∑
ab(1) ⊗ b(2) for (a⊗ 1)∆(b), sometimes we omit the

∑
.

Define two linear operators T and T ′ acting on A⊗A introduced by the formulae

T (a⊗ b) = b(2) ⊗ aS(b(1))b(3),

T ′(a⊗ b) = b(1) ⊗ S(b(2))ab(3)

for any a, b ∈ A.
These two operators above are well-defined, since

T (a⊗ b) = T4(S ⊗ ι)T3(ι⊗ S−1)τ(a⊗ b),

T ′(a⊗ b) = (ι⊗ S)T4τ(ι⊗ S−1)T4(a⊗ b).

They are obviously invertible, and the inverses can be written as follows

T −1(a⊗ b) = bS−1(a(3))a(1) ⊗ a(2),

T ′−1(a⊗ b) = a(3)bS
−1(a(2))⊗ a(1).

For any a, b ∈ A, T ◦ T2 = T4. If A is commutative, then T ′ = τ , and if A is cocommu-
tative, then T = τ .

Proposition 2.1 Operators T and T ′ satisfy the braided equation

(T ⊗ ι)(ι⊗ T )(T ⊗ ι) = (ι⊗ T )(T ⊗ ι)(ι⊗ T ),

(T ′ ⊗ ι)(ι⊗ T ′)(T ′ ⊗ ι) = (ι⊗ T ′)(T ′ ⊗ ι)(ι⊗ T ′).

2.2 Diagonal Crossed Product of an Infinite Dimensional coFrobenius Hopf
Algebra

Let H be a Hopf algebra, and α, β ∈ AutHopf (H). Denote G = AutHopf (H) ×
AutHopf (H), a group with multiplication (α, β) ∗ (γ, δ) = (αγ, δγ−1βγ). The unit is (ι, ι)
and (α, β)−1 = (α−1, αβ−1α−1).

Let H be a coFrobenius Hopf algebra with its dual multiplier Hopf algebra Ĥ. Then
A =

⊕
(α,β)∈GA(α,β) =

⊕
(α,β)∈G Ĥ ./ H(α, β) is a G-cograded multiplier Hopf algebra with

the following strucrures:
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• For any (α, β) ∈ G, A(α,β) has the multiplication given by

(p ./ h)(q ./ l) = p
(
α(h(1)) I q J S−1β(h(3))

)
./ h(2)l

for p, q ∈ Ĥ and h, l ∈ H.

• The comultiplication on A is given by:

∆(α,β),(γ,δ) : A(α,β)∗(γ,δ) −→ M(A(α,β) ⊗A(γ,δ)),

∆(α,β),(γ,δ)(p ./ h) = ∆cop(p)(γ ⊗ γ−1βγ)∆(h).

• The counit εA on A(ι,ι) = D(H) is the counit on the Drinfel’d double of H.

• For any (α, β) ∈ G, the antipode is given by

S : A(α,β) −→ A(α,β)−1 ,

S(α,β)(p ./ h) = T (αβS(h)⊗ S−1(p)) in A(α,β)−1 = A(α−1,αβ−1α−1).

• A crossing action ξ : G −→ Aut(A) is given by

ξ
(γ,δ)

(α,β) : A(γ,δ) −→ A(α,β)∗(γ,δ)∗(α,β)−1 = A(αγα−1,αβ−1δγ−1βγα−1),

ξ
(γ,δ)

(α,β)(p ./ h) = p ◦ βα−1 ./ αγ−1β−1γ(h).

Let H be a coFrobenius Hopf algebra with a left integral ϕ, and t ∈ A is a cointegral in
A such that ϕ(t) = 1. Recalling from [5] there is an element

u⊗ v =:
∑

t(·ϕ(2))⊗ S−1(ϕ(1)) ∈ M(H ⊗ Ĥ).

Following from Lemma 9 in [5] we have:

• For any p ∈ Ĥ and h ∈ H,

v〈p, u〉 = p, u〈v, h〉 = h. (2.3)

• Let u⊗ v = u′ ⊗ v′, then

(∆⊗ ι)(u⊗ v) = u⊗ u′ ⊗ vv′, (ι⊗∆)(u⊗ v) = uu′ ⊗ v ⊗ v′. (2.4)

And from [3] A =
⊕

(α,β)∈G Ĥ ./ H(α, β) is a quasitriangular G-cograded multiplier Hopf
algebra with a generalized R-matrix given by

R =
∑

(α,β),(γ,δ)∈G

R(α,β),(γ,δ) =
∑

(α,β),(γ,δ)∈G

ε ./ β−1(u)⊗ v ./ 1.

3 Representation Category of the Diagonal Crossed Product
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Recalling from [2], a (α, β)-Yetter-Drinfel’d module over H is a vector space M , such
that M is a left H-module (with notation h ⊗m 7→ h ·m) and a right H-comodule (with
notation M → M ⊗H, m 7→ m(0) ⊗m(1)) with the following compatibility condition:

(h ·m)(0) ⊗ (h ·m)(1) = h(2) ·m(0) ⊗ β(h(3))m(1)αS−1(h(1)). (3.1)

We denote by HYDH(α, β) the category of (α, β)-Yetter-Drinfel’d modules, morphism being
the H-linear H-colinear maps. If H is ”finite-dimensional”, then

HYDH(α, β) ∼= H∗./H(α,β)M,

where H∗ ./ H(α, β) is the diagonal crossed product.
One main question naturally arises: Does this isomorphism also hold for some ”infinite-

dimensional” Hopf algebras? In the following, we will give a positive answer to an infinite-
dimensional coFrobenius Hopf algebra case.

Recalling from Lemma 11 in [5], If M is a left unital Ĥ-module, then

ρ : M −→ M ⊗H,

m 7→
∑

S−1(ϕ(1)) ·m⊗ t(·ϕ(2)) = v ·m⊗ u

gives the H-comodule structure on M . Following this lemma, we get the following proposi-
tion.

Proposition 3.1 If M ∈ Ĥ./H(α,β)M, then M ∈ HYDH(α, β) with structures

h ·m = (ε ./ h) ·m,

m 7→ m(0) ⊗m(1) = (S−1(ϕ(1)) ./ 1) ·m⊗ t(·ϕ(2)).

Proof Here we treat Ĥ and H as subalgebras of Ĥ ./ H(α, β) in the usual way, then
it is easy to get M is an H-module and H-comodule.

To show M ∈ HYDH(α, β), i.e., ρ(h · m) = h(2) · m(0) ⊗ β(h(3))m(1)αS−1(h(1)), it is
enough to verify that

(S−1(ϕ(1)) ./ h)⊗ t(·ϕ(2)) = (ε ./ h(2))(S−1(ϕ(1)) ./ 1)⊗ β(h(3))t(·ϕ(2))αS−1(h(1)).

Viewing Ĥ ./ H(α, β) ⊗H as a subspace of Hom(Ĥ, (Ĥ ./ H)(α, β)) in a natural way, we
only need to check that

p ./ h
(2.3)
= (S−1(ϕ(1)) ./ h)t(pϕ(2))

= (ε ./ h(2))(S−1(ϕ(1)) ./ 1)〈p, β(h(3))t(·ϕ(2))αS−1(h(1))〉

holds for any p ∈ Ĥ. Indeed, for any p′ ∈ Ĥ,

(p′ ./ h(2))(S−1(ϕ(1)) ./ 1)〈p, β(h(3))t(·ϕ(2))αS−1(h(1))〉
= (p′ ./ h(2))(S−1(ϕ(1)) ./ 1)〈p, β(h(3))t(·ϕ(2))αS−1(h(1))〉
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= (p′ ./ h(2))(p(2) ./ 1)〈p(1), β(h(3))〉〈p(3), αS−1(h(1))〉
= 〈p(1), β(h(5))〉〈p(3), αS−1(h(1))〉〈p(2), S

−1β(h(4))〉〈p(4), α(h(1))〉(p′p(3) ./ h(3))

= p′p ./ h.

This completes the proof.
Proposition 3.2 If M ∈ HYDH(α, β), then M ∈ Ĥ./H(α,β)M with the structure

(p ./ h) ·m = p((h ·m)(1))(h ·m)(0).

Proof It is straightforward to check that (p ./ h) · ((q ./ l) ·m)
=

(
(p ./ h)(q ./ l)

) ·m.
In fact,

(p ./ h) · ((q ./ l) ·m)

= (p ./ h) · (q((l ·m)(1))(q · l)(0)
)

= (p ./ h) · (q(β(l(3))m(1)αS−1(l(1)))l(2) ·m(0)

)

= q
(
β(l(3))m(1)αS−1(l(1))

)
p
(
(hl(2) ·m(0))(1)

)
(hl(2) ·m(0))(0)

= q
(
β(l(5))m(2)αS−1(l(1))

)
p
(
β(h(3)l(4))m(1)αS−1(h(1)l(2))

)
(h(2)l(3)) ·m(0),

and
(
(p ./ h)(q ./ l)

) ·m
=

(〈q(1), S
−1β(h(3))〉〈q(3), α(h(1))〉(pq(2) ./ h(2)l)

) ·m
= 〈q(1), S

−1β(h(3))〉〈q(3), α(h(1))〉(pq(2))((h(2)l ·m)(1))⊗ (h(2)l ·m)(0)

= 〈q(1), S
−1β(h(5))〉〈q(3), α(h(1))〉(pq(2))

(
β(h(4)l(3))m(1)αS−1(h(2)l(1))

)
(h(3)l(2)) ·m(0)

= 〈q(1), S
−1β(h(7))〉〈q(3), α(h(1))〉〈p, β(h(5)l(4))m(1)αS−1(h(3)l(2))〉

〈q(2), β(h(6)l(5))m(2)αS−1(h(2)l(1))〉(h(4)l(3)) ·m(0)

= 〈q, β(l(5))m(2)αS−1(l(1))〉〈p, β(h(3)l(4))m(1)αS−1(h(1)l(2))〉(h(2)l(3)) ·m(0).

Next, we get the main result of this section, generalizing the conclusion in [2] and giving
an answer to the question introduced in Section 1.

Theorem 3.3 For a coFrobenius Hopf algebra H,

Ĥ./H(α,β)M∼= HYDH(α, β). (3.2)

Proof The correspondence easily follows from Proposition 3.1 and 3.2. Let f : M → N

be a morphism in HYDH(α, β), i.e., f is a module and comodule map. Then in Ĥ./H(α,β)M,

(f ⊗ ι)ρ(m) = f
(
(S−1(ϕ(1)) ./ 1) ·m)⊗ t(·ϕ(2))

ρ(f(m)) = (S−1(ϕ(1)) ./ 1) · f(m)⊗ t(·ϕ(2)).

(f ⊗ ι)ρ(m) = ρ(f(m)) implies f is a Ĥ ./ 1-module map, and so a HYDH(α, β)-module
map. We define a functor F(α,β) : HYDH(α, β) −→ Ĥ./H(α,β)M as follows,

F(α,β)(M) = M, and F(α,β)(f) = f.
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Conversely, if f : M → N be a morphism in Ĥ./H(α,β)M, then

(f ⊗ ι)ρ(m) = f
(
(S−1(ϕ(1)) ./ 1) ·m)⊗ t(·ϕ(2))

= (S−1(ϕ(1)) ./ 1) · f(m)⊗ t(·ϕ(2))

= ρ(f(m)).

This shows that f is a H-comodule map. Then we similarly define a functor G(α,β) :

Ĥ./H(α,β)M−→ HYDH(α, β) by G(α,β)(M) = M, andG(α,β)(f) = f.

From above, F and G preserve the morphisms from each other. Also F(α,β)G(α,β) =
1(α,β) and G(α,β)F(α,β) = 1(α,β). We have established the equivalence between HYDH(α, β)
and Ĥ./H(α,β)M.

Corollary 3.4 Let H be a coFrobenius Hopf algebra and α, β, γ ∈ Aut(H), then

Ĥ./H(αβ,γβ)M∼= Ĥ./H(α,γ)M.

Proof It follows straightforwardly from the fact HYDH(αβ, γβ) ∼= HYDH(α, γ).
Example 3.5 (1) When α = β = ι, then Ĥ ./ H(ι, ι) = D(H) the quantum double of

a coFrobenius Hopf algebra. Then we have the following result, which is the main result in
[5], i.e., for a coFrobenius Hopf algebra H,

HYDH ∼= Ĥ./HM.

(2) When α = S2 and β = ι, HYDH(S2, ι) is exactly the category of anti-Yetter-Drinfeld
modules defined in [9]. Then we have

HYDH(S2, ι) ∼= Ĥ./H(S2,ι)M.

Let YD(H) be the disjoint union of HYDH(α, β) for every (α, β) ∈ G. Then following
Section 3 in [2] or [4, 10] (H is a special multiplier Hopf algebra), we have that HYDH is a
braided T -category with the structures as follows

• Tensor product: if V ∈ HYDH(α, β) and W ∈ HYDH(γ, δ) with α, β, γ, δ ∈ Aut(H),
then V ⊗W ∈ HYDH(αγ, δγ−1βγ), with the structures as follows:

h · (v ⊗ w) = γ(h(1)) · v ⊗ γ−1βγ(h(2)) · w,

v ⊗ w 7→ (v ⊗ w)(0) ⊗ (v ⊗ w)(1) = (v(0) ⊗ w(0))⊗ w(1)v(1)

for all v ∈ V, w ∈ W .

• Crossed functor: Let W ∈ HYDH(γ, δ), we define ξ(α,β)(W ) = (α,β)W = W as vector
space, with structures: for all a, a′ ∈ A and w ∈ W

a ⇀ w = γ−1βγα−1(a) · w,

w 7→ w<0> ⊗ w<1> = w(0) ⊗ αβ−1(w(1)).

Then (α,β)W ∈ HYDH((α, β)#(γ, δ)#(α, β)−1) = HYDH(αγα−1, αβ−1δγ−1βγα−1).
The functor ξ(α,β) acts as identity on morphisms.
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• Braiding: If V ∈ HYDH(α, β), and W ∈ HYDH(γ, δ). Taking V W = (α,β)W , we define
a map CV,W : V ⊗W −→ V W ⊗ V by

C(α,β),(γ,δ)(v ⊗ w) = w(0) ⊗ β−1(w(1)) · v
for all v ∈ V and w ∈ W .

Following from Theorem 3.3, we obtain the following result, generalizing Theorem 3.10
in [2].

Theorem 3.6 For a coFrobenius Hopf algebra H and its G-cograded multiplier Hopf
algebra A =

⊕
(α,β)∈G Ĥ ./ H(α, β), Rep(A) and YD(H) are isomorphic as braided T -

categories over G.
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无限维余Frobenius Hopf代数对角交叉积的表示范畴

杨 涛,刘慧丽

(南京农业大学理学院,江苏 南京 210095)

摘要: 本文研究了无限维余Frobenius Hopf代数对角交叉积表示范畴刻画的问题. 利用乘子Hopf代

数以及同调代数理论中的方法, 获得了无限维余Frobenius Hopf代数对角交叉积的表示范畴与广义Yetter-

Drinfeld范畴同构的结果, 推广了Panaite等人在有限维Hopf代数中的结果.
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