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Abstract: While the variable time-steps two-step backward differentiation formula (BDF2)
is valuable and widely used to capture the multi-scale dynamics of model solutions, the stability
and convergence of BDF2 with variable time steps still remain incomplete. In this work, we re-
visit BDF2 scheme for linear diffusion-reaction problem. By using the technique of the discrete
orthogonal convolution (DOC) kernels developed in [11], and introducing the concept of the dis-
crete complementary convolution (DCC) kernels, we present that BDF2 scheme is unconditionally
stable under a adjacent time-step ratio condition: 0 < 7k := 7k/Th—1 < Tmax ~ 4.8645. With
the uses of DOC and DCC kernels, the second-order temporal convergence can be achieved under
0 < 7k < Tmax &~ 4.8645. Our analysis shows that the second-order convergence is sharp and ro-
bust. The robustness means that the second-order convergence is sharp for any time step satisfying
0 < 7t < rmax = 4.8645, this is, it does not need extra restricted conditions on the time steps.
In addition, our analysis also shows that the first level solution u' obtained by BDF1 (i.e. Euler
scheme) does not cause the loss of global accuracy of second order with 0 < r;, < 4.8645. Numerical
examples are provided to demonstrate our theoretical analysis.

Keywords: BDF2; DOC; DCC; variable time steps; sharp error estimate

2010 MR Subject Classification: 65M06; 65M12

Document code: A Article ID: 0255-7797(2021)06-0471-18

1 Introduction

In this paper, we revisit two-step backward differentiation formula (BDF2) with variable
time steps for solving the linear reaction-diffusion equation:

up = Au+ ku+ f(x,t), xeQ,te (0,7,
u(z,0) = ug(x), r€Q, (1.1)
u(z,t) =0, x €00, tel0,T],

where the reaction coefficient x € R, and 2 is a bounded domain.

Set the generally nonuniform time levels 0 =ty < t; <ty < -+ <ty =T with the kth
time-step size 7, := t; — tr—1, the maximum step size 7 := max;<p<n Tx, and the adjacent
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time-step ratios
T

ry = 2<k<N.

b
Tk—1

The BDF1 and BDF2 formulas with variable time steps are respectively defined by

1 1+2r, .
Diu" = —V,u", D" = s, S ~ut — rianu"*I,
Tn To(1+7y) Ta(l4+1,)

where the difference operator V,u" := u™ —u"~! for 1 <n < N.
By taking b\ := 1/, and for n > 1

g — A2 ey Ty

o = - <1+r ), 1 m, and bgn) =0 (f0r2§]§n—1), (12)

the BDF1 and BDF2 can be written as a unified discrete convolution form

Dou™ := Zbgi)kVTuk, n > 1. (1.3)
k=1

For n = 1, we use BDF1 scheme to obtain the solution u', and for n > 1, we use BDF2
scheme. Based on the unified notation (L.3), the BDF2 scheme with variable time steps is
given as

Dou' = Au" + ku' + ", for 1<n<N. (1.4)

The BDF2 with variable time steps is widely used to solve stiff or differential-algebraic
problems [3, 4, 6, 15, (16, [17] as it has the nice property of the strong stability. One can
refer to [1, 2, B, 12, [16] for the details. While the practical use of BDF2 is well developed,
the theoretical analysis seems to be difficult. Even so, many excellent mathematicians still
make a big progress on the analysis of BDF2 scheme with variable time steps.

For the stability analysis of problem (1.1) with x = 0, twenty years ago Becker [1] (one
also refers to Thomée’s classical book [16, Lemma 10.6]) presented the bound under the ratio
condition 0 < rj, < (2+1/13)/3 ~ 1.868 that

[u"|| < Cexp(CTw) (luoll + Y75 || f]]) for n>1, (1.5)
j=1
where I'), := ZZ;; max{0,r; — rg42} and || - || denotes the Lo-norm. As pointed out in

[16] and [2], the magnitudes of I',, can be zero, bounded [16, pp. 175] and unbounded
[2, Remark 4.1] by selecting certain step-ratio sequence and vanishing step sizes. After
that, Emmrich [3] improves the Becker’s constrained condition to 0 < r < 1.91, but still
keeps the undesirable factor exp(CT',) in the Ly-norm stability. Recently, Chen et al. [2]
present the energy stability for the Cahn-Hilliard equation under a new ratio condition
0 <7 < (34 +/17)/2 =~ 3.561, and then Liao and Zhang [11] propose the technique of
the discrete orthogonal convolution (DOC) kernels and present the stability estimate for
the linear problem (1.1) under the same ratio condition. The new ratio condition improves
Grigorieff’s stability condition 0 < 7, < 14 /2 given nearly forty years ago [5]. One also
refers to [13] and [6, Section IIL5] a classical book by Hairer et al. In addition, Liao and
Zhang [11] obtain the first-order convergence under 0 < r, < 3.561. If the second-order
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convergence is expected in [11], they need an extra restriction condition |R,| < Ny < N
with the index set

mpz{k’1+x/§grkg(3+ﬁ)/2}. (1.6)

As pointed out in [11], the condition |R,| < Ny < N seems to be more theoretical
rather than practical. For more practical applications, it is natural to ask if we can theoret-
ically extend the restriction on adjacent time-step ratios and without any extra restriction
condition like |R,| < Ny < N, meanwhile, keep the sharp error estimate.

The aim of this paper is to extend 0 < 7, < 3.561 to a new ratio condition 0 <
7, < 4.8645 and prove that the second-order convergence of BDF2 scheme is sharp and
robust. To do so, we use the concept of DOC kernels originally developed in [11], and also
introduce the concept of discrete complementary convolution (DCC) kernels developed for
solving fractional PDEs [7, 8, 9, 10]. Based on DOC and DCC kernels, we first present
the corresponding energy (H'-norm) stability estimate with a new adjacent time-step ratio
condition

Al: 0 <7y < Phax = % <§/1196—12\/177 + {/1196#—12\/177) + % ~ 4.8645,
for2 <k <N.

Here 7.y is the positive real solution of x® = (2 + 1)?, see the details in Lemma 2.1.

For the sharp and robust convergence, we further express the local truncated error by
an error convolution structure (ECS) with the BDF2 kernel, see more details in Lemma
3.9. Using the definition of DOC kernels, the ECS can significantly circumvent the complex
calculation of BDF2 and DOC kernels. Thus, we have the sharp and robust second-order
convergence under the ratio condition A1 (i.e. 0 < ry < 4.8645). The robustness means the
error estimate only depends on the adjacent step ratio restriction A1, and does not suffer
from other conditions on the mesh sizes, like the restricted condition |R,|] < Ny < N in
[11]. In this sense, the second-order convergence is robust for variable time step sizes. On
the other hand, our analysis also shows that the first-order BDF1 for the first level solution
u' is enough to have the sharp second-order convergence. Thus, our analysis removes the
doubt of the choice of the first level solution u! computed by BDF1, which further improves
the nice results in [11], [14].

The organization of the paper is given as follows. In Section 2, we present the semi-
positive definition of BDF2 kernels under condition A1, and the properties of DOC and DCC
kernels. The stability analysis and second-order convergence of the BDF2 scheme (1.3) are
given in Section 3. Numerical examples are provided to demonstrate our theoretical analysis.

2 The Properties of BDF2, DOC and DCC Kernels

In this section, we first consider the positive semi-definiteness of BDF2 convolution
kernels and the properties of DOC and DCC kernels, which are useful for the analysis of
stability and convergence of BDF2 scheme in section 3.

2.1 Positive Semi-Definiteness of BDF2 Convolution Kernels

We first consider the positive semi-definiteness of BDF2 convolution kernels bgi)k. It

has been proven in [11] that the BDF2 convolution kernels bflnj . are positive semi-definite
under the ratio condition 0 < r; < 3.561. A natural question is whether the ratio condition
can be relaxed. In this subsection, we will prove the positive semi-definiteness of BDF2
convolution kernels bfl"_)k under a new ratio condition Al (i.e., 0 < rp < 4.8645). To this
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end, we first present the following lemma which plays a key role in the proof of the positive

semi-definiteness of bf:?k
There exist typical values €, > 0 and 2.« > 0 such that

Lemma 2.1
2,2 y
>0 0< T,y < Lmax (27)

3( ) . 2¢, +4dex — esx _
x? y7 6* L (1 +x> (1 +y) )

where €, = 1/\/Tmax and T,y is the positive root of the equation z* = (1 + 2x)2.
Proof We now present the details how to find €, and Zy.y. Set y = x in (2.7) and

consider the quadratic function

H(z) = —22® + (4e — 1)z + 2e. (2.8)

The positive root of $(x) = 0 is given by
:46—14-\/8634-1662—864-1' (2.9)

2¢2

Noting z is a function of e. We can produce its maximum by searching e, such that 2’ = 0.

To do so, we take the derivative of x with respect to € as
;=26 —8e? 4 6 — 1 — (26 — 1)V/8e3 4 16€% — 8e + 1

€3/8€3 + 16€2 — 8¢ + 1

Tr =

To find an €, such that 2’ = 0, we only need to consider
— 263 — 82 4 6. — 1 — (26, — 1)1/8€3 + 1662 — 8¢, + 1 = 0,

(26, — 1)%(8€2 + 16€2 — 8¢, + 1) = (2€2 + 8€2 — be, + 1)?,

=
= (€ + 2 — 1) =0,
(ex #0) = € +2,—1=0.

Thus, we have the positive root of €3 + 2¢, — 1 = 0 given as

3
€ = ‘/6172(3/\/177+9 — V/VITT —9) = 0.4534,

Set g(€) = v/8€3 + 16€2 — 8¢ + 1. From 2/(e,) = 0, we have
(e,) = —2€3 — 8e? + 66*3— 1—(2e. — 1)g(es) _o,
E*g(G*)

—2e3 — 8l +6e, —1  —8¢ +10¢, — 3
B 2, —1

where we have used €2 = 1 — 2¢, in the last identity.
From (2.9), we have the maximum value xp., at €, as

—8¢2 €x —
_de.—1+4g(e.) 46*—1'4"% 1
Tmax — 262 - 262 - ?

- ‘ 1
= & (V119612177 + V/1196+12V177 ) + - =~ 4.8645.

(2.10)
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From € + 2¢, — 1 = 0, we have €2(¢2 + 2)? = 1 and substitute €, =

1
vV Tmax

into the resulting.

Then, the direct calculation shows that x,... satisfies the equation

xmax

(1 4+ 220y )2

For the given value €, and 7., we now prove (2.7) holds. Considering the function

B(x) =

its derivative &'(x) is given by

&' (z) = —

(2¢, + de,x — E2*)(1+2)7 1,

(x — (Ve(ex +2) — 6*))($+ (vel(€x +2) — 6*))

€2(1+x)?

When 0 < x < /€. (€. + 2) — €., we have &'(z) > 0. Hence, it holds that

xmax

& > B(0) = 2¢,(~ 0.9068) > ~ (0.8295).
(1) 2 ©(0) = 26,(~ 0.9068) > 2 (~ 0.8295)
When /e, (e, +2) — €, < & < Tyax, we have &'(z) < 0. Hence, it holds that
xmax
> . = —
&(z) > B(Tmax) T—

Thus, we prove §F(z, Tmax, €x) > 0 for 0 < & < Zyax. Noting F(z, vy, €) is a decreasing function
with respect to y, we have §(x,y, €x) > F(%, Tmax, €x) > 0 for 0 < 2,y < Zpax. The proof is

complete.

Lemma 2.2
any real sequence {wy}7_,, it holds that

Tk+1 vV Tmax ’LUk

2
Tk vV T'max wk_ 1

Assume the time step ratio ry satisfy A1l (i.e., 0 < rp < 4.8645). For

2we S b . > /- C k>2 211
Z Wi +Tk+l) Tk (1+7‘k> Thk—1 ( )
ZZwk Zb;’“jjwj >0, forn>1. (2.12)
k=1  j=1
Proof Noting 2ab < ea? + b?/e (Ve > 0) and b{*) < 0, we have for k > 2 that
) b(k)
2wy, Zbk w; Jw? + 206 wew_y > (2687 + eb\w? + —w?_,
_ 2c+dery, — er? wf,% T wi
1—|—7’k €ETL ].—I—T’k,ETk_l
_ 2etdery — e%ﬁwfi_ Tha1 "Ui Thi1 wf,% T wi_,
1+7"k €ETL 1+Tk+1 €T 1+’I“k+1 €Tk 1+7"k67'k,1
(24 dery, — €217 Thil wf,% Tht1 Uic TR Wiy
o 1—|—7’k 1+Tk+1 €ETL 1+Tk+1 €ETL 1—|—7’k €TEL—1
::%’(’I”k,T'k+1,£)
2 2 2
Tyl Wi TE Wy Wi,
1+rppreme 147, ey 8 rt,€) €Ty
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Set € = €, = 1/1/Tmax, it follows from Lemma 2.1 that
S(re,Trs1,€) >0, VO <7, Thr1 < Taxe (2.13)

Thus, the inequality (2.11) holds true.
From the inequality (2.11), the direct calculation yields

Vv

w
T1 ! (]. + 7’n+1) Tn (]. + 7’2) 1
Tn4+14/Tmax wi 2 + (2 RV rmax)TQ w%

n k 2 2

(k) 2 2 Tn+14/ Tmax W, 724/Tmax WY

2w > 0wy > Swl+ - _ -+
k=1 j=1

(1+7r,41) Tn (1+1ry) T
o TnttyTmax Wi 24 (2 = V/Finax) Pimax 0}
— (Tt 7rag) Ta (1 + Tmax) T1
Trt1y/Tmax W2 w?

>0, n>1,

> S
- (1 + Tn+l> Tn (1 + Tmax)Tl

where the monotonicity of function [(z) = T and the fact 2 + (2 — \/Tmax)"max = 1 are
used. The proof is complete.

2.2 The Relationship Between DOC and DCC Kernels

The DCC kernels p'™ . are introduced in analogy of f; v'(s)ds = v(t) — v(0) such that

n—j

n n J n n
prﬁ)nguj = Zpi@j Zb;@lVTul = ZVTul Zpslnjjbg.ﬁl =u"—u’, Vn>1. (2.14)
J=1 Jj=1 =1 =1 j=l
From the identity (2.14]) holds for all n > 1, we define the DCC kernels by

—Jj i—k —

Zp;n)‘b(‘j) =1, ViI<k<n,1<n<N. (2.15)
j=k

From (2.15), the DCC kernels pgi) ; can be explicitly expressed by the BDF2 kernels bgjj &
namely,

n

p =178, p). = 5 > =l 1<i<n—1). (2.16)

0 k=j+1
The discrete orthogonal convolution (DOC) kernels are given in [11] as

> 00 =6, forall1 <k <n, (2.17)
j=k

where 0, represents the Kronecker delta symbol with 6, = 1if n = k and §,,, = 0if n # k.
From the DOC kernels (2.17), we have

Z Qi@jDzuj = Z AV Z Qﬁ@jb§jjl =u"—u"', 1<n<N. (2.18)
j=1 1=1 j=l

The two kernels have the following intimate relationship.
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Proposition 2.1 The DCC kernels defined by (2.15) and DOC kernels defined in
(2.17) have the following relationships

P =300, vi<j<n, (2.19)
l=3
0 = —psY,, Vi<ji<n, (2.20)
where p") := 0 (Vn > 0) are defined.

Proof Set q(n) Zln:j Hl(i)j (V1 < j < n). Then from the definition (2.17), we have

N 0 n no1
STCTIIED 99 SUINTIED 9) STLITINS LA
j=k

j=k l=j =k j=k
Hence, q =y 19(1) (1 < j < n) are solutions to (2.15). Noting the DCC kernels
uniquely ex1st due to the explicit expression (2.16). Thus, we have pﬁl”) ;= qn Zz = 9(l

The equality (2.20) can be directly yielded by (2.19) and the proof is complete
2.3 Properties of DOC and DCC Kernels
We now rewrite the definitions of DCC kernel (2.15) and DOC kernel (2.17) by

BP =1, BO = I, (2.21)
where we denote
[0 0 - 0 0 0 7 i 7 C 6 7
B Yo .0 0 0 i oi™
o o P .0 0 0 P oim
s_| - . . . | e | e- |
000 ) ",
2 1 n
L0 0 0 - 0 b B L p™, ] L 6™, ]

and I =[1,1,1,---,1,1]7 and Iy = [1,0,0,---,0,0]7. It is easy to verify that each compo-
nent of P and © is positive by using mathematical induction.

The positive semi-definitiveness of the DOC kernel 92"_% can be derived in [11] by the
positive semi-definitiveness of bgﬁ) &

Lemma 2.3 ([11]) If the BDF2 kernels bi:i)k defined in (1.2)) are positive semi-

definite, then the DOC kernels Hr(l"_)k defined in (2.17) are also positive semi-definite. This
is, it holds for any real sequence {w;}}_; that

n k
ZwkZH,(ckjjwj >0, Vn>1.
k=1  j=1
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Lemma 2.4 ([11]) The DOC kernels Gf:i) ; have the following properties:

ZGSZ- =T, forn > 1, (2.22)
j=1
n k
o =t for n > 1 2.23
i = tn, orn > 1. (2.23)
k=1 j=1

Lemma 2.5 ([I1]) The DOC kernel 951"7)]- can be explicitly represented by

Tn (1471) n r;
n) TQT: _71;£1 1+2r; fOI' 2 S k S n.
Ik = " (2.24)
™ Il o5 for k= 1.
i=k+1 ¢

We point out the results in Lemma 2.5 play an important role for the following con-
vergence analysis and the bound of DCC kernels. We now consider the properties of DCC
kernels.

Proposition 2.2 Let 7 be the maximum time-step size and the time-step ratios

satisfy 0 < r < r,, where 7, is any given positive constant. The DCC kernels pgln_) . defined
in (2.15)) satisfy

n k
my _ 147 T 2<j< 2.25
Pn—; 1+2T]ZT/€H 1+2ri7 >N, ( . )
=j i=j+1
k
pn 1= Tk (2.26)
i= 2
Z p(") = (2.27)
n r k—j n -
(n) * k
P < < o 2m> <D 5 <2 (2.28)
k=j k=j
where HZ _j1 = 1for j >k is defined.

Proof It follows from (2.19) in Proposition 2.1/ and Lemma 2.5/ that, for 2 < j < n,

) " * _ 1+ T
D — J_Zak*j_l_FQ; Z H 1—|—2r1_g (1+2T*) 7

k=j k=j i=j+1

and for j =1,

n k—j
=St = e L < X ()

k=j k=j
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where the monotonicity of function h(x) = 75, is used. The application of ;75— < % for

any r, > 0 yields the last inequality in (2.28). The equality (2.27) can be derived directly
by Proposition 2.1/ and Lemma 2.4/ since

n n n n k n
SUTED D LIRS 3 LIS A
j=1 =1 k=3 k=1 j=1 k=1

The proof is complete.

3 Stability and Convergence Analysis for BDF2 Scheme

3.1 Energy Stability

It is known that problem (1.1) with x < 0 has the property of energy dissipation. We
now present the corresponding energy stability for BDF2 scheme (1.4). To the end, we define
a (modified) discrete energy E* by

Tht1y/TmaxT,
EF = Va5 k|12 + |ub ]2 — k||uF]?, for k < 0and k> 1, (3.29)
1 + Tk+1
where the initial energy E° := |u°|? — k|[u°||* and 8,u* = V,u*/7,. Here we remark that

our discrete energy E* defined by (3.29) differs from the one in [I1] due to the different
modified formula, i.e., the first term in (3.29).
Here and below (-,-) and ||| represent the inner product and norm in L*(f2) space.

Theorem 3.6 Assume the condition A1 holds and « < 0, then the discrete solution
u" to the BDF2 scheme (1.4) with variable time steps satisfies

0, EF < 2(f* 0.u"), Vk>1. (3.30)

Furthermore, the discrete energy has the following estimate
VE" < VEO +4Co(> IV + 1), ¥n > 1. (3.31)

k=1
Proof For k > 2, the weak form of (1.4) is given as
(Dou®,v) = —(Vu, Vo) + w(u®,v) + (f¥ v), Yoec H}(Q), 2<k < N. (3.32)
Setting v = 2V, u* in the weak form (3.32), we have

2Dyu”, V k) + 2(Vur, V. VuP) + 2(—ku, V,uk) = 2(f% V. b, k>2. (3.33)

It follows from Lemma [2.2] that

2Dy, V, k) > FHIVImaxTh g k2 ThyTmaxTh=1) 5 k=12 (3.34)
14+ 751 147

Applying the inequality 2ab < a? + b?, one has
2(Vut, V,Vub) = 2| Va2 = 2|Vt |[[ Va1 > (Va2 = Va2,

2(—ru®, Vou') = = (2|u"||* = 2fu* [ [u* ) = =l = a1

(3.35)
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Inserting (3.34) and (3.35) into (3.33) and using the definition (3.29)), we arrive at
V. EF <2(f% V. ub), fork>2.

We now consider k = 1. For k = 1, the direct calculation produces

3/2

T'max TQ\/Tmax
2(Dyut, V.ou') = 27 |0, ut]]?> —=2  m10,ut||? > = 10,0t |2 3.36
(Dyu”, Vru') = 21| u”*1+rmaxﬁ|‘ ul]® = L1, 71| 0-u” || (3.36)

Noting the inequalities (3.35) also hold for k& = 1, together with (3.36), we have

T24/Tmax

Tt Til|0-ut | 4+ [Vl |2 = sllull® < [VUll* = sllu’|® + 2(F1, Vo),

which implies
V.E' <2(f', V,u').

Thus, we prove the inequality (3.30)).
Taking summation from 1 to n for (3.30), we have

E" < E°+2) (ff V.ub)

k=1

= B4 2(f",u") = 2> (V.5 ub ) = 2(f1, u0)
k=2

< B+ 20l Ml +2 ) M IV 41+ 20 1 (3.37)

k=2

where the Cauchy-Schwartz inequality is used to the last term in (3.37). On the other hand,
noting the Poincaré inequality produces ||u"| < Cqlu™|1, we have ||[u"|| < Cov E™. Thus,
from (3.37), we arrive at

E" < E° +2Co(|fMIVE" + > VERY V5 + | fHIVED).
k=2
Choose an integer ng (0 < ny < n) to satisfy E™ = maxg<g<, E*. Then

E™ < VEWE™ + 2CoVE™(lf" |+ Y IV 411+ 111

k=2

< VEWE™ +4CoVE™ (Y |V ¥+ 111D,
k=2

where the last inequality has used the fact that fm = f'+ > V,f* Noting that
1P < IVAFH 11Ol we have

1o

VE" < VE™ < VEO +4Co() IV 1511+ 1£°1)

k=1

< VEO+4Co(Y IV ¥+ 111D
k=1
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The proof is complete.
3.2 Stability Analysis of the Discrete Scheme

We first introduce a discrete Gronwall inequality.

Lemma 3.7  Assume A > 0 and the sequences {v;}}_, and {n;}}_, are nonnegative.
If

Up, §/\Z7'jvj+2nj, for 1<n<N\,

then it holds

v, < exp ()\tn_l) an, for 1<n<N.
§=0

The standard induction hypothesis can give the proof of lemma 3.7, which is omitted
here.

Theorem 3.8 If the condition A1 holds, the solution u™ of BDF2 scheme (1.4)) is
unconditionally stable in the L?-norm. If x > 0 and the maximum time-step size 7 < ﬁ, it
holds

n k
1< 2exp (4t ) (] +2 30 15768, £71)
k=1 j=1
< 2exp (4kt,1) ( Ju®l| +2> o5 || > for 1 <n < N. (3.38)
If k <0, it holds
n k n
)| < [l 42D 1D 0 0 < ]|+ 2> B [ 7], for1<n< N (3.39)
j=1 j=1 =1
Proof Applying the property (2.18) of DOC kernels to scheme (1.4]), we have
k k
Vub = ZH,(f_)j(Auj + ku?) + Zﬁ,ik_)jfj, for k>1. (3.40)
j=1 j=1

Noting the positive semi-definiteness of the DOC kernels in Lemma 2.3, we have

n k n

k
Z Oék)jAu] Z Vuk,ﬁ,gk_)jVuj> <0. (3.41)

k=1 j=1 k=1 j=1

Taking the inner product with u* on both sides of (3.40), summing the resulting from 1 to
n and using (3.41), we have

k n k
Z V) < Z Y00 sud) + > WY O ), for 1<n< N, (342)
j=1 k=1 j=1

k=1
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If k < 0in (3.42), we use ||u”]|? — ||uF~1]|2 < 2(u*, V, u*), the Cauchy-Schwarz inequality
and Lemma 2.3/ to have

n k
a1 < [u®l® + 23 bl Y 62,71, for 1<n < N. (3.43)
k=1 j=1
Selecting an integer ny (0 < ng < n) such that ||u™°| = maxo<p<n HukH From (3.43), we
have
no k
n 2 n n k ]
e 1P < [+ 20l Y 1Y 621 (3.44)
k=1 j=1

Eliminating a ||u™|| for both sides of (3.44) and noting ny < n, we have
ng k ‘
| < flure ) < ]+ 21> 0, £l
k=1 j=1
n k A
< Ill+23 13627
k=1 j=1
n ) n
<[l 2217167
j=1 k=j

= [l + 2> PN,
j=1

where we have used the Cauchy-Schwarz inequality, exchanged the order of summation and
used the property (2.19).
If k > 0 in (3.42), we apply the Cauchy-Schwarz inequality to have

n k n k
n k i k ;i
[ < )+ 26> > 0 |+ 2 Il 6 £, for 1 <n < N.
k=1 Jj=1 k=1 j=1

(3.45)
Similar to (3.44) by selecting ng (0 < ng < n) such that ||u"| = maxo<k<n Huk , one has
no k no k
no |12 n n k n k i
17 < [l | e+ 2l D a6 + 20wl Y 21D 6211 (3.46)
k=1 j=1 k=1 j=1

Eliminating a ||u™|| for both sides of (3.46)), we further have

no no k
| < flum ) < ]| +2mme 3 [t +2 301> 68, £
k=1 k=1 =1

n n k
< [l + 267 Y [lub (| + 2D 16 £,
k=1 k=1 j=1
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(k)

k
where we use the facts ng <nand ) 6,” ;= Tk Taking the maximum time-step size 7 < ﬁ

=1
in the above inequality, we finally arrive at

n—1 n k
el < 2 ] + e 3l + 430 Y6251
k=1 k=1 j=1
n—1 n n
< 2’| +drmc Y Juf[ 4D 171D 602,
k=1 j=1 k=3

n—1 n
= 2[|ul|| + drm Y [Jutf + 4> Sl
k=1 j=1

The Gronwall inequality in Lemma 3.7 directly produces the result (3.38). The proof is

complete.

3.3 Convergence Analysis of the Discrete Scheme

Set €" := u(t,,z) — u™(x) (n > 1). From (1.4), the error function is governed by

Doe™ = Ae™ + ke + 1", for 1<n<N,

where 0™ := Dou(t,) — ut(t,)(1 < n < N) denotes the truncation error.

Lemma 3.9 Denote

I
Gl = _/ (t - tlfl)QUttt dt, 1 S l S N,
2 ti—1
j LG & ;
R = —§b1 Tj,1 (Q(t — tjfl) + Tj,l)um dt, 2 S ] S N,
tj-1
1 t1 1 t1
Rl = tQUttt dt—/ tutt dt.
27'1 0 71 Jo

(3.47)

(3.48)

The truncation error 1/ := Dyu(t;) — us(t;) (1 < j < N) can be expressed by the following

form
W= b G+R, 1<j<N.
=1

Moreover, we have the follwing estimate

n k n n
k 1 k
23 1Yo <23 NGk 23 p IR
k=1 j=1 k=1 k=1
tr

t1 n tr
<4T/ ||utt|| dt + Z 7—]3 / ||utttH de + 2tn max Ty / ||uttt|| dt.
0 b1 th_1 1<k=n t

k—1

(3.49)

(3.50)
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Proof By using the Taylor’s expansion (see [16]), one has

A NN BTN 1. L
17] = ibgj)G‘] + §b§])G]_1 - ngj)’fj_l/ (2(t — tj—l) + Tj_l)um dt

tj—1

j .
P 1 /s J
= E bgj_)lGl — QbEJ)Tj—l/ (2(t — tj—l) + Tj_l)uttt dt
=1

tj71
J ) _
=Y WG+ R, 2<j <N,
=1

where the property of BDF2 kernels (1.2) that b,(cj) =0 for k£ > 2 is used. For j = 1, using
the Taylor’s expansion again, one has

t1
nl — M — ut(tl) = —b(()l)/ tutt dt
0

T1

. I I
= b(O )Gl + — / tQUttt dt_? / tutt dt
0 1Jo

27’1
=bG" + R
Hence, the equality (3.49) holds.
From (3.49), we now estimate

n k n n k
2) D0 <2 G 2> 1 o R
k=1 j=1 k=1

k=1 j=1
<2 IIGH+2) Pl IR, (3.51)
k=1 k=1
where the last inequality uses (2.19). Note that G', R/ can be bounded by
72 t
1G] < 21/ weel| dt, 1 <1<, (3.52)
ti—1
. or: +1 tj
||RJ|| S 27; +2T] Al ||utttHdt

tj
< Tj/ HutttH dt, 2<j<n.

ti—1

Noting 20 p{™, =t, in (2.27) and p{"”; < 2r in (2.28), we have

n n
S PR = SRR+ p IR
k=1 k=2

n tj ty
<3 o / el dt + / el dt
k=1 0

tj—1
t1

tr
S tn max Tp / ||utttH dt + 27'/ HuttH dt. (353)
1<k<n tho 1 0

Inserting (3.52) and (3.53) into (3.51)), we have the inequality (3.54). The proof is complete.
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Theorem 3.10 Let u(t,x) be the exact solution to problem (1.1). If the condi-
tion A1 holds, then the discrete solution u™ to BDF2 scheme (1.4) has the second-order
convergence in the L?-norm. If x > 0 and the maximum time-step size 7 < 1/(4k), it holds

lu(t,) —u™|| <2exp (4I€tn 1) (Hu quH +4T/ ||utt||dt+27'k/ lwegee || dE
0

k=1 t

tr
+2t,, max Tk/ [l || dt) , forl1<n<N. (3.54)
1<k<n ©

If k <0, it holds

tl n tk'
u(ta) — | < [u(0) — w0 + 4 / ot e+ 3 7 / et
0 k=1 te—1

tk
+ 2t,, max Tk/ [luge]| dt,  for 1 <n < N. (3.55)
1<k<n ©fp

Proof From Theorem 3.8 that if k > 0 and the maximum time step 7 < ﬁ, it holds
Ju(t) — u™]| < 2exp (4t (Hu(O — | +22 I Ze““)jffn) for 1 <n < N. (3.56)

If k <0, it holds
lu(tn) — u"|| < [Ju(0) — || +2Z HZQ ) for 1<n < N. (3.57)

The direct application of Lemma [3.9/to (3.56) and (3.57)) produces the error estimates (3.54)
and (3.55), respectively. The proof is complete.

Remark 1  For the error estimate of problem (1.1) with x = 0, Becker [1] gives an
estimate for 0 < r, < HT\/E ~ 1.868, which is improved to 0 < rp < 1.91 in [3] later.

By choosing different ry, the fact I';, in (1.5) can be bounded [16, pp. 175], unbounded [2,
Remark 4.1] or zero. Recently, Liao and Zhang [11] give an improved estimate

ty

t1
[lu(t,) —u™|| <2exp (4/<atn,1) ( Huo—uoH—i—Qtn/ [l || dt+ 3¢, max Tk/ [l || dt)
0 1<k<n .
(3.58)

with 0 < rp < 3.561. One can see that the right-hand-side second term in (3.58) has the
first-order convergence when ¢, is large. If they expect to have the second-order convergence,
they need an extra restriction condition |R,| < Ny < N with the index set defined by (1.6).
A similar error estimate is given in [18] with 0 < r, < /2 + 1.

Our result in Theorem [3.10 shows the sharp second-order convergence under 0 < r;, <
4.8645. And the second-order convergence is robust, which means the convergence order
remains valid for any time step satisfying the ratio 0 < rp < rpax &~ 4.864. As far as we
know, it is a pioneer paper to clarify the robust and sharp second-order convergence under
the new ratio 0 < rp < 4.864.
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Table 1 Numerical accuracy on random time mesh for k = 0
N e(N) Order T max 1
32 1.5345e-04 - 5.9985 e-02  16.754
64  3.7947e-05 2.0157  2.9585e-02  42.059
128  9.4821e-06 2.0007  1.4825e-02  86.0224
256  2.3648e-06 2.0035 7.4163e-03  167.412

Table 2 Numerical accuracy on random time mesh for Kk = 4
N e(N) Order T max 1
32 1.9048e-04 - 6.2473e-02  104.606
64 4.7853e-05 1.9930 2.7617e-02 10.0333
128  1.1964e-05 1.9999 1.4900e-02  48.278
256  3.0186e-06 1.9867 7.9698e-03 430.559

4 Numerical Experiment

We now report two examples to investigate the convergence order of BDF2 scheme (1.4)
with variable time-steps. In the simulations, we set the computational domain Q = (0,2)?,
final time 7" = 1, the number of spatial mesh M chosen by M = N. By taking

f=(7*/2 — Kk — 1) exp(—t)sin(rx/2) sin(ry/2),
we can construct an exact solution to problem (1.1) as a benchmark solution in the form of
u = exp(—t) sin(mz/2) sin(my/2).

The time meshes are constructed by the random time-steps 7, = T'x)/C, where C' =
Zszl X, and xy is randomly drawn from the uniform distribution on (0,1). In each run,
the discrete L?-norm at the final time 7' = 1

e(N)=h [ Y (ulwiy;,T) —uf (2:,9;))>

1<i,j<M

is recorded in Tables /1 and [2, in which we also list the maximum time-step 7 and maximum
adjacent time-step ratio. The numerical rate of convergence is calculated by

Order = log,(e(N)/e(2N)).

From the current data and more tests not listed here, we see that the BDF2 scheme is
robustly stable and convergent in the second order, which is consistent with our theoretical
analysis. Due to the time step is randomly chosen without any constrain condition, one
can see the first-step BDF1 does not bring the loss of accuracy, which again implies the
effectiveness of our analysis.

5 Conclusion

With the applications of DCC and DOC kernels, we present the stability and conver-
gence analysis of BDF2 scheme with variable time-steps under condition A1l. We extend
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the adjacent time step to a new ratio ry := 7% /7,1 < Tmax = 4.8645, and obtain the robust
and sharp second-order convergence without the extra constrained condition on ratios in
[11]. Our convergence results shows that the BDF1 scheme for first step is enough to have
the globally optimal second-order convergence. This conclusion removes the doubt of the
choice of the first level solution with first-order accuracy. Numerical results are provided to
demonstrate the theoretical analysis.

The technique developed in this work can be extended to a family of multi-step schemes
with variable time-steps for the stability and convergence analysis. The main challenge is
how to explore the useful properties of DOC and DCC kernels, and multi-step schemes’s
kernels.
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ZMt R N R ERIEE| B K BDF2I R S MIREM T

SRARFRT, B R
(1. RPCRFHCE S50k THA R0 i seh s, widk s 430072)
(2. AEHCHRRN AT AU 0B S TS, JEst 100193)

WE:  BEARRRASE KB R A G 2 5 A :U(BDF2)FE R 2 R EES) ) % BoA E 2 M E A2 1
2, AH AR E VE RIS S 0 M 5 AN e 8. FEAR AR, AT B8 1 2otk fe B4 8 i I BDF 24 5.
MA NP EEOERZ SR (DOC) TS, 5INEEEANE R (DCC) ML, FRATUER 1 7EAH SR I 8] 2
KM < me = 7o /Th—1 < Tmax ~ 4.8645F, BDF2#% 22 To 24 A A € 10 H B A i, JAm
TR, S R R R B, B ERR X TR0 < o= T/Tho1 < Tmax & 4.8645 HJ
I E) 22K, BDF2#E AT R U SerE, I AS 75 ZEARAN A I 8] 22 4G LU BR 1) 2% 1. BBk, FRATHI A i 22 B,
40 < rk < 4.86450f, FIBDF1(HIEulerk ) 1H 555 — P HUE Mu' A2 FEAER MR ERHIK. BU5, K
%8 0 T BUE G 3R VEIEA SR 7347

X #17: BDF2; DOC; DCC; KA K bRz b1t
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