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Abstract: While the variable time-steps two-step backward differentiation formula (BDF2)
is valuable and widely used to capture the multi-scale dynamics of model solutions, the stability
and convergence of BDF2 with variable time steps still remain incomplete. In this work, we re-
visit BDF2 scheme for linear diffusion-reaction problem. By using the technique of the discrete
orthogonal convolution (DOC) kernels developed in [11], and introducing the concept of the dis-
crete complementary convolution (DCC) kernels, we present that BDF2 scheme is unconditionally
stable under a adjacent time-step ratio condition: 0 < rk := τk/τk−1 ≤ rmax ≈ 4.8645. With
the uses of DOC and DCC kernels, the second-order temporal convergence can be achieved under
0 < rk ≤ rmax ≈ 4.8645. Our analysis shows that the second-order convergence is sharp and ro-
bust. The robustness means that the second-order convergence is sharp for any time step satisfying
0 < rk ≤ rmax ≈ 4.8645, this is, it does not need extra restricted conditions on the time steps.
In addition, our analysis also shows that the first level solution u1 obtained by BDF1 (i.e. Euler
scheme) does not cause the loss of global accuracy of second order with 0 < rk ≤ 4.8645. Numerical
examples are provided to demonstrate our theoretical analysis.
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1 Introduction

In this paper, we revisit two-step backward differentiation formula (BDF2) with variable
time steps for solving the linear reaction-diffusion equation:

ut = ∆u + κu + f(x, t), x ∈ Ω, t ∈ (0, T ],
u(x, 0) = u0(x), x ∈ Ω̄,

u(x, t) = 0, x ∈ ∂Ω, t ∈ [0, T ],
(1.1)

where the reaction coefficient κ ∈ R, and Ω is a bounded domain.
Set the generally nonuniform time levels 0 = t0 < t1 < t2 < · · · < tN = T with the kth

time-step size τk := tk − tk−1, the maximum step size τ := max1≤k≤N τk, and the adjacent
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time-step ratios
rk =

τk

τk−1

, 2 ≤ k ≤ N.

The BDF1 and BDF2 formulas with variable time steps are respectively defined by

D1u
n =

1
τn

∇τun, D2u
n =

1 + 2rn

τn(1 + rn)
∇τun − r2

n

τn(1 + rn)
∇τun−1,

where the difference operator ∇τun := un − un−1 for 1 ≤ n ≤ N .
By taking b

(1)
0 := 1/τ1, and for n > 1

b
(n)
0 =

1 + 2rn

τn(1 + rn)
, b

(n)
1 = − r2

n

τn(1 + rn)
, and b

(n)
j = 0 (for 2 ≤ j ≤ n− 1), (1.2)

the BDF1 and BDF2 can be written as a unified discrete convolution form

D2u
n :=

n∑
k=1

b
(n)
n−k∇τuk, n ≥ 1. (1.3)

For n = 1, we use BDF1 scheme to obtain the solution u1, and for n > 1, we use BDF2
scheme. Based on the unified notation (1.3), the BDF2 scheme with variable time steps is
given as

D2u
n = ∆un + κun + fn, for 1 ≤ n ≤ N. (1.4)

The BDF2 with variable time steps is widely used to solve stiff or differential-algebraic
problems [3, 4, 6, 15, 16, 17] as it has the nice property of the strong stability. One can
refer to [1, 2, 3, 12, 16] for the details. While the practical use of BDF2 is well developed,
the theoretical analysis seems to be difficult. Even so, many excellent mathematicians still
make a big progress on the analysis of BDF2 scheme with variable time steps.

For the stability analysis of problem (1.1) with κ = 0, twenty years ago Becker [1] (one
also refers to Thomée’s classical book [16, Lemma 10.6]) presented the bound under the ratio
condition 0 < rk ≤ (2 +

√
13)/3 ≈ 1.868 that

‖un‖ ≤ C exp(CΓn)
( ‖u0‖+

n∑
j=1

τj

∥∥f j
∥∥ )

for n ≥ 1, (1.5)

where Γn :=
∑n−2

k=2 max{0, rk − rk+2} and ‖ · ‖ denotes the L2-norm. As pointed out in
[16] and [2], the magnitudes of Γn can be zero, bounded [16, pp. 175] and unbounded
[2, Remark 4.1] by selecting certain step-ratio sequence and vanishing step sizes. After
that, Emmrich [3] improves the Becker’s constrained condition to 0 < rk ≤ 1.91, but still
keeps the undesirable factor exp(CΓn) in the L2-norm stability. Recently, Chen et al. [2]
present the energy stability for the Cahn-Hilliard equation under a new ratio condition
0 ≤ rk ≤ (3 +

√
17)/2 ≈ 3.561, and then Liao and Zhang [11] propose the technique of

the discrete orthogonal convolution (DOC) kernels and present the stability estimate for
the linear problem (1.1) under the same ratio condition. The new ratio condition improves
Grigorieff’s stability condition 0 ≤ rk < 1 +

√
2 given nearly forty years ago [5]. One also

refers to [13] and [6, Section III.5] a classical book by Hairer et al. In addition, Liao and
Zhang [11] obtain the first-order convergence under 0 ≤ rk ≤ 3.561. If the second-order
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convergence is expected in [11], they need an extra restriction condition |Rp| ≤ N0 ¿ N
with the index set

Rp =
{

k
∣∣∣ 1 +

√
2 ≤ rk ≤ (3 +

√
17)/2

}
. (1.6)

As pointed out in [11], the condition |Rp| ≤ N0 ¿ N seems to be more theoretical
rather than practical. For more practical applications, it is natural to ask if we can theoret-
ically extend the restriction on adjacent time-step ratios and without any extra restriction
condition like |Rp| ≤ N0 ¿ N , meanwhile, keep the sharp error estimate.

The aim of this paper is to extend 0 ≤ rk ≤ 3.561 to a new ratio condition 0 <
rk < 4.8645 and prove that the second-order convergence of BDF2 scheme is sharp and
robust. To do so, we use the concept of DOC kernels originally developed in [11], and also
introduce the concept of discrete complementary convolution (DCC) kernels developed for
solving fractional PDEs [7, 8, 9, 10]. Based on DOC and DCC kernels, we first present
the corresponding energy (H1-norm) stability estimate with a new adjacent time-step ratio
condition

A1: 0 < rk ≤ rmax = 1
6

(
3
√

1196−12
√

177 + 3
√

1196+12
√

177
)

+ 4
3
≈ 4.8645,

for 2 ≤ k ≤ N .

Here rmax is the positive real solution of x3 = (2x + 1)2, see the details in Lemma 2.1.
For the sharp and robust convergence, we further express the local truncated error by

an error convolution structure (ECS) with the BDF2 kernel, see more details in Lemma
3.9. Using the definition of DOC kernels, the ECS can significantly circumvent the complex
calculation of BDF2 and DOC kernels. Thus, we have the sharp and robust second-order
convergence under the ratio condition A1 (i.e. 0 < rk ≤ 4.8645). The robustness means the
error estimate only depends on the adjacent step ratio restriction A1, and does not suffer
from other conditions on the mesh sizes, like the restricted condition |Rp| ≤ N0 ¿ N in
[11]. In this sense, the second-order convergence is robust for variable time step sizes. On
the other hand, our analysis also shows that the first-order BDF1 for the first level solution
u1 is enough to have the sharp second-order convergence. Thus, our analysis removes the
doubt of the choice of the first level solution u1 computed by BDF1, which further improves
the nice results in [11, 14].

The organization of the paper is given as follows. In Section 2, we present the semi-
positive definition of BDF2 kernels under condition A1, and the properties of DOC and DCC
kernels. The stability analysis and second-order convergence of the BDF2 scheme (1.3) are
given in Section 3. Numerical examples are provided to demonstrate our theoretical analysis.

2 The Properties of BDF2, DOC and DCC Kernels

In this section, we first consider the positive semi-definiteness of BDF2 convolution
kernels and the properties of DOC and DCC kernels, which are useful for the analysis of
stability and convergence of BDF2 scheme in section 3.

2.1 Positive Semi-Definiteness of BDF2 Convolution Kernels

We first consider the positive semi-definiteness of BDF2 convolution kernels b
(n)
n−k. It

has been proven in [11] that the BDF2 convolution kernels b
(n)
n−k are positive semi-definite

under the ratio condition 0 < rk ≤ 3.561. A natural question is whether the ratio condition
can be relaxed. In this subsection, we will prove the positive semi-definiteness of BDF2
convolution kernels b

(n)
n−k under a new ratio condition A1 (i.e., 0 < rk ≤ 4.8645). To this
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end, we first present the following lemma which plays a key role in the proof of the positive
semi-definiteness of b

(n)
n−k.

Lemma 2.1 There exist typical values ε∗ > 0 and xmax > 0 such that

F(x, y, ε∗) :=
2ε∗ + 4ε∗x− ε2

∗x
2

(1 + x)
− y

(1 + y)
≥ 0, 0 < x, y ≤ xmax, (2.7)

where ε∗ = 1/
√

xmax and xmax is the positive root of the equation x3 = (1 + 2x)2.
Proof We now present the details how to find ε∗ and xmax. Set y = x in (2.7) and

consider the quadratic function

H(x) = −ε2x2 + (4ε− 1)x + 2ε. (2.8)

The positive root of H(x) = 0 is given by

x =
4ε− 1 +

√
8ε3 + 16ε2 − 8ε + 1

2ε2
. (2.9)

Noting x is a function of ε. We can produce its maximum by searching ε∗ such that x′ = 0.
To do so, we take the derivative of x with respect to ε as

x′ =
−2ε3 − 8ε2 + 6ε− 1− (2ε− 1)

√
8ε3 + 16ε2 − 8ε + 1

ε3
√

8ε3 + 16ε2 − 8ε + 1
.

To find an ε∗ such that x′ = 0, we only need to consider

− 2ε3
∗ − 8ε2

∗ + 6ε∗ − 1− (2ε∗ − 1)
√

8ε3∗ + 16ε2∗ − 8ε∗ + 1 = 0,

⇒ (2ε∗ − 1)2(8ε3
∗ + 16ε2

∗ − 8ε∗ + 1) = (2ε3
∗ + 8ε2

∗ − 6ε∗ + 1)2,

⇒ (ε3
∗ + 2ε∗ − 1)ε3

∗ = 0,

(ε∗ 6= 0) ⇒ ε3
∗ + 2ε∗ − 1 = 0.

Thus, we have the positive root of ε3
∗ + 2ε∗ − 1 = 0 given as

ε∗ =
3
√

12
6

( 3
√√

177 + 9− 3
√√

177− 9
) ≈ 0.4534.

Set g(ε) =
√

8ε3 + 16ε2 − 8ε + 1. From x′(ε∗) = 0, we have

x′(ε∗) =
−2ε3

∗ − 8ε2
∗ + 6ε∗ − 1− (2ε∗ − 1)g(ε∗)

ε3∗g(ε∗)
= 0,

⇒ g(ε∗) =
−2ε3

∗ − 8ε2
∗ + 6ε∗ − 1

2ε∗ − 1
=
−8ε2

∗ + 10ε∗ − 3
2ε∗ − 1

,

where we have used ε3
∗ = 1− 2ε∗ in the last identity.

From (2.9), we have the maximum value xmax at ε∗ as

xmax =
4ε∗ − 1 + g(ε∗)

2ε2∗
=

4ε∗ − 1 + −8ε2∗+10ε∗−3

2ε∗−1

2ε2∗
=

1
ε2∗

(2.10)

=
1
6

(
3
√

1196−12
√

177 +
3
√

1196+12
√

177
)

+
4
3
≈ 4.8645.
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From ε3
∗ + 2ε∗ − 1 = 0, we have ε2

∗(ε
2
∗ + 2)2 = 1 and substitute ε∗ = 1√

xmax
into the resulting.

Then, the direct calculation shows that xmax satisfies the equation

x3
max = (1 + 2xmax)2.

For the given value ε∗ and rmax, we now prove (2.7) holds. Considering the function

G(x) = (2ε∗ + 4ε∗x− ε2
∗x

2)(1 + x)−1,

its derivative G′(x) is given by

G′(x) = −
(
x− (

√
ε∗(ε∗ + 2)− ε∗)

)(
x + (

√
ε∗(ε∗ + 2)− ε∗)

)

ε2∗(1 + x)2
.

When 0 < x ≤
√

ε∗(ε∗ + 2)− ε∗, we have G′(x) ≥ 0. Hence, it holds that

G(x) ≥ G(0) = 2ε∗(≈ 0.9068) >
xmax

1 + xmax

(≈ 0.8295).

When
√

ε∗(ε∗ + 2)− ε∗ < x ≤ xmax, we have G′(x) ≤ 0. Hence, it holds that

G(x) ≥ G(xmax) =
xmax

1 + xmax

.

Thus, we prove F(x, xmax, ε∗) ≥ 0 for 0 < x ≤ xmax. Noting F(x, y, ε) is a decreasing function
with respect to y, we have F(x, y, ε∗) ≥ F(x, xmax, ε∗) ≥ 0 for 0 < x, y ≤ xmax. The proof is
complete.

Lemma 2.2 Assume the time step ratio rk satisfy A1 (i.e., 0 < rk ≤ 4.8645). For
any real sequence {wk}n

k=1, it holds that

2wk

k∑
j=1

b
(k)
k−jwj ≥

rk+1
√

rmax

(1 + rk+1)
w2

k

τk

− rk
√

rmax

(1 + rk)
w2

k−1

τk−1

, k ≥ 2, (2.11)

2
n∑

k=1

wk

k∑
j=1

b
(k)
k−jwj ≥ 0, for n ≥ 1. (2.12)

Proof Noting 2ab ≤ εa2 + b2/ε (∀ε > 0) and b
(k)
1 < 0, we have for k ≥ 2 that

2wk

k∑
j=1

b
(k)
k−jwj = 2b

(k)
0 w2

k + 2b
(k)
1 wkwk−1 ≥ (2b

(k)
0 + εb

(k)
1 )w2

k +
b
(k)
1

ε
w2

k−1

=
2ε + 4εrk − ε2r2

k

1 + rk

w2
k

ετk

− rk

1 + rk

w2
k−1

ετk−1

=
2ε + 4εrk − ε2r2

k

1 + rk

w2
k

ετk

− rk+1

1 + rk+1

w2
k

ετk

+
rk+1

1 + rk+1

w2
k

ετk

− rk

1 + rk

w2
k−1

ετk−1

=
(

2ε + 4εrk − ε2r2
k

1 + rk

− rk+1

1 + rk+1

)

︸ ︷︷ ︸
=:F(rk,rk+1,ε)

w2
k

ετk

+
rk+1

1 + rk+1

w2
k

ετk

− rk

1 + rk

w2
k−1

ετk−1

=
rk+1

1 + rk+1

w2
k

ετk

− rk

1 + rk

w2
k−1

ετk−1

+ F(rk, rk+1, ε)
w2

k

ετk

.
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Set ε = ε∗ = 1/
√

rmax, it follows from Lemma 2.1 that

F(rk, rk+1, ε∗) ≥ 0, ∀0 < rk, rk+1 ≤ rmax. (2.13)

Thus, the inequality (2.11) holds true.
From the inequality (2.11), the direct calculation yields

2
n∑

k=1

wk

k∑
j=1

b
(k)
k−jwj ≥ 2

τ1

w2
1 +

rn+1
√

rmax

(1 + rn+1)
w2

n

τn

− r2
√

rmax

(1 + r2)
w2

1

τ1

=
rn+1

√
rmax

(1 + rn+1)
w2

n

τn

+
2 + (2−√rmax)r2

(1 + r2)
w2

1

τ1

≥ rn+1
√

rmax

(1 + rn+1)
w2

n

τn

+
2 + (2−√rmax)rmax

(1 + rmax)
w2

1

τ1

≥ rn+1
√

rmax

(1 + rn+1)
w2

n

τn

+
w2

1

(1 + rmax)τ1

≥ 0, n ≥ 1,

where the monotonicity of function l(x) = x
1+x

and the fact 2 + (2 − √rmax)rmax = 1 are
used. The proof is complete.

2.2 The Relationship Between DOC and DCC Kernels

The DCC kernels p
(n)
n−j are introduced in analogy of

∫ t

0
v′(s)ds = v(t)− v(0) such that

n∑
j=1

p
(n)
n−jD2u

j =
n∑

j=1

p
(n)
n−j

j∑
l=1

b
(j)
j−l∇τul =

n∑
l=1

∇τul

n∑
j=l

p
(n)
n−jb

(j)
j−l = un−u0, ∀n ≥ 1. (2.14)

From the identity (2.14) holds for all n ≥ 1, we define the DCC kernels by
n∑

j=k

p
(n)
n−jb

(j)
j−k ≡ 1, ∀1 ≤ k ≤ n, 1 ≤ n ≤ N. (2.15)

From (2.15), the DCC kernels p
(n)
n−j can be explicitly expressed by the BDF2 kernels b

(j)
j−k,

namely,

p
(n)
0 = 1/b

(n)
0 , p

(n)
n−j =

1

b
(j)
0

n∑
k=j+1

(b(n)
k−j−1 − b

(n)
k−j)p

(n)
n−k (1 ≤ j ≤ n− 1). (2.16)

The discrete orthogonal convolution (DOC) kernels are given in [11] as
n∑

j=k

θ
(n)
n−jb

(j)
j−k = δnk, for all 1 ≤ k ≤ n, (2.17)

where δnk represents the Kronecker delta symbol with δnk = 1 if n = k and δnk = 0 if n 6= k.
From the DOC kernels (2.17), we have

n∑
j=1

θ
(n)
n−jD2u

j =
n∑

l=1

∇τul

n∑
j=l

θ
(n)
n−jb

(j)
j−l = un − un−1, 1 ≤ n ≤ N. (2.18)

The two kernels have the following intimate relationship.
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Proposition 2.1 The DCC kernels defined by (2.15) and DOC kernels defined in
(2.17) have the following relationships

p
(n)
n−j =

n∑
l=j

θ
(l)
l−j , ∀1 ≤ j ≤ n, (2.19)

θ
(n)
n−j = p

(n)
n−j − p

(n−1)
n−1−j , ∀1 ≤ j ≤ n, (2.20)

where p
(n)
−1 := 0 (∀n ≥ 0) are defined.

Proof Set q
(n)
n−j =

∑n

l=j θ
(l)
l−j (∀1 ≤ j ≤ n). Then from the definition (2.17), we have

n∑
j=k

q
(n)
n−jb

(j)
j−k =

n∑
j=k

n∑
l=j

θ
(l)
l−jb

(j)
j−k =

n∑
l=k

l∑
j=k

θ
(l)
l−jb

(j)
j−k =

n∑
l=k

δlk = 1.

Hence, q
(n)
n−j =

∑n

l=j θ
(l)
l−j (1 ≤ j ≤ n) are solutions to (2.15). Noting the DCC kernels

uniquely exist due to the explicit expression (2.16). Thus, we have p
(n)
n−j = q

(n)
n−j =

∑n

l=j θ
(l)
l−j .

The equality (2.20) can be directly yielded by (2.19) and the proof is complete.

2.3 Properties of DOC and DCC Kernels

We now rewrite the definitions of DCC kernel (2.15) and DOC kernel (2.17) by

BP = I, BΘ = I0, (2.21)

where we denote

B =




b
(n)
0 0 0 · · · 0 0 0

b
(n)
1 b

(n−1)
0 0 · · · 0 0 0

0 b
(n−1)
1 b

(n−2)
0 · · · 0 0 0

...
...

...
. . .

...
...

...
...

...
...

. . .
...

...
...

0 0 0 · · · b
(3)
1 b

(2)
0 0

0 0 0 · · · 0 b
(2)
1 b

(1)
0




, P =




p
(n)
0

p
(n)
1

p
(n)
2
...
...

p
(n)
n−2

p
(n)
n−1




, Θ =




θ
(n)
0

θ
(n)
1

θ
(n)
2
...
...

θ
(n)
n−2

θ
(n)
n−1




,

and I = [1, 1, 1, · · · , 1, 1]T and I0 = [1, 0, 0, · · · , 0, 0]T . It is easy to verify that each compo-
nent of P and Θ is positive by using mathematical induction.

The positive semi-definitiveness of the DOC kernel θ
(n)
n−k can be derived in [11] by the

positive semi-definitiveness of b
(n)
n−k.

Lemma 2.3 ([11]) If the BDF2 kernels b
(n)
n−k defined in (1.2) are positive semi-

definite, then the DOC kernels θ
(n)
n−k defined in (2.17) are also positive semi-definite. This

is, it holds for any real sequence {ωj}n
j=1 that

n∑
k=1

ωk

k∑
j=1

θ
(k)
k−jωj ≥ 0, ∀n ≥ 1.
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Lemma 2.4 ([11]) The DOC kernels θ
(n)
n−j have the following properties:

n∑
j=1

θ
(n)
n−j = τn, for n ≥ 1, (2.22)

n∑
k=1

k∑
j=1

θ
(k)
k−j = tn, for n ≥ 1. (2.23)

Lemma 2.5 ([11]) The DOC kernel θ
(n)
n−j can be explicitly represented by

θ
(n)
n−k =





τn(1+rk)
1+2rk

n∏
i=k+1

ri

1+2ri
, for 2 ≤ k ≤ n.

τn

n∏
i=k+1

ri

1+2ri
, for k = 1.

(2.24)

We point out the results in Lemma 2.5 play an important role for the following con-
vergence analysis and the bound of DCC kernels. We now consider the properties of DCC
kernels.

Proposition 2.2 Let τ be the maximum time-step size and the time-step ratios
satisfy 0 < rk ≤ r∗, where r∗ is any given positive constant. The DCC kernels p

(n)
n−k defined

in (2.15) satisfy

p
(n)
n−j =

1 + rj

1 + 2rj

n∑
k=j

τk

k∏
i=j+1

ri

1 + 2ri

, 2 ≤ j ≤ n, (2.25)

p
(n)
n−1 =

n∑
k=1

τk

k∏
i=2

ri

1 + 2ri

, (2.26)

n∑
j=1

p
(n)
n−j = tn, (2.27)

p
(n)
n−j ≤

n∑
k=j

τk

(
r∗

1 + 2r∗

)k−j

≤
n∑

k=j

τk

2k−j
≤ 2τ, (2.28)

where
∏k

i=j+1 = 1 for j ≥ k is defined.

Proof It follows from (2.19) in Proposition 2.1 and Lemma 2.5 that, for 2 ≤ j ≤ n,

p
(n)
n−j =

n∑
k=j

θ
(k)
k−j =

1 + rj

1 + 2rj

n∑
k=j

τk

k∏
i=j+1

ri

1 + 2ri

≤
n∑

k=j

τk

(
r∗

1 + 2r∗

)k−j

,

and for j = 1,

p
(n)
n−1 =

n∑
k=j

θ
(k)
k−1 =

n∑
k=1

τk

k∏
i=2

ri

1 + 2ri

≤
n∑

k=j

τk

(
r∗

1 + 2r∗

)k−j

,
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where the monotonicity of function h(x) = x
1+2x

is used. The application of r∗
1+2r∗

≤ 1
2

for
any r∗ ≥ 0 yields the last inequality in (2.28). The equality (2.27) can be derived directly
by Proposition 2.1 and Lemma 2.4 since

n∑
j=1

p
(n)
n−j =

n∑
j=1

n∑
k=j

θ
(k)
k−j =

n∑
k=1

k∑
j=1

θ
(k)
k−j =

n∑
k=1

τk = tn.

The proof is complete.

3 Stability and Convergence Analysis for BDF2 Scheme

3.1 Energy Stability

It is known that problem (1.1) with κ ≤ 0 has the property of energy dissipation. We
now present the corresponding energy stability for BDF2 scheme (1.4). To the end, we define
a (modified) discrete energy Ek by

Ek :=
rk+1

√
rmaxτk

1 + rk+1

‖∂τuk‖2 + |uk|21 − κ‖uk‖2, for κ ≤ 0 and k ≥ 1, (3.29)

where the initial energy E0 := |u0|21 − κ ‖u0‖2 and ∂τuk = ∇τuk/τk. Here we remark that
our discrete energy Ek defined by (3.29) differs from the one in [11] due to the different
modified formula, i.e., the first term in (3.29).

Here and below 〈·, ·〉 and ‖·‖ represent the inner product and norm in L2(Ω) space.
Theorem 3.6 Assume the condition A1 holds and κ ≤ 0, then the discrete solution

un to the BDF2 scheme (1.4) with variable time steps satisfies

∂τEk ≤ 2〈fk, ∂τuk〉, ∀k ≥ 1. (3.30)

Furthermore, the discrete energy has the following estimate

√
En ≤

√
E0 + 4CΩ(

n∑
k=1

‖∇τfk‖+ ‖f0‖), ∀n ≥ 1. (3.31)

Proof For k ≥ 2, the weak form of (1.4) is given as

〈D2u
k, v〉 = −〈∇uk,∇v〉+ κ〈uk, v〉+ 〈fk, v〉, ∀v ∈ H1

0 (Ω), 2 ≤ k ≤ N. (3.32)

Setting υ = 2∇τuk in the weak form (3.32), we have

2〈D2u
k,∇τuk〉+ 2〈∇uk,∇τ∇uk〉+ 2〈−κuk,∇τuk〉 = 2〈fk,∇τuk〉, k ≥ 2. (3.33)

It follows from Lemma 2.2 that

2〈D2u
k,∇τuk〉 ≥ rk+1

√
rmaxτk

1 + rk+1

‖∂τuk‖2 − rk
√

rmaxτk−1

1 + rk

‖∂τuk−1‖2. (3.34)

Applying the inequality 2ab ≤ a2 + b2, one has

2〈∇uk,∇τ∇uk〉 = 2‖∇uk‖2 − 2‖∇uk‖‖∇uk−1‖ ≥ ‖∇uk‖2 − ‖∇uk−1‖2,

2〈−κuk,∇τuk〉 = −κ(2‖uk‖2 − 2‖uk‖‖uk−1‖) ≥ −κ(‖uk‖2 − ‖uk−1‖2).
(3.35)
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Inserting (3.34) and (3.35) into (3.33) and using the definition (3.29), we arrive at

∇τEk ≤ 2〈fk,∇τuk〉, for k ≥ 2.

We now consider k = 1. For k = 1, the direct calculation produces

2〈D2u
1,∇τu1〉 = 2τ1‖∂τu1‖2≥ r

3/2
max

1 + rmax

τ1‖∂τu1‖2 ≥ r2
√

rmax

1 + r2

τ1‖∂τu1‖2. (3.36)

Noting the inequalities (3.35) also hold for k = 1, together with (3.36), we have

r2
√

rmax

1 + r2

τ1‖∂τu1‖2 + ‖∇u1‖2 − κ‖u1‖2 ≤ ‖∇u0‖2 − κ‖u0‖2 + 2〈f1,∇τu1〉,

which implies
∇τE1 ≤ 2〈f1,∇τu1〉.

Thus, we prove the inequality (3.30).
Taking summation from 1 to n for (3.30), we have

En ≤ E0 + 2
n∑

k=1

〈fk,∇τuk〉

= E0 + 2〈fn, un〉 − 2
n∑

k=2

〈∇τfk, uk−1〉 − 2〈f1, u0〉

≤ E0 + 2‖fn‖‖un‖+ 2
n∑

k=2

‖uk−1‖‖∇τfk‖+ 2‖f1‖‖u0‖, (3.37)

where the Cauchy-Schwartz inequality is used to the last term in (3.37). On the other hand,
noting the Poincaré inequality produces ‖un‖ ≤ CΩ|un|1, we have ‖un‖ ≤ CΩ

√
En. Thus,

from (3.37), we arrive at

En ≤ E0 + 2CΩ(‖fn‖
√

En +
n∑

k=2

√
Ek−1‖∇τfk‖+ ‖f1‖

√
E0).

Choose an integer n0 (0 ≤ n0 ≤ n) to satisfy En0 = max0≤k≤n Ek. Then

En0 ≤
√

E0
√

En0 + 2CΩ

√
En0(‖fn0‖+

n0∑
k=2

‖∇τfk‖+ ‖f1‖)

≤
√

E0
√

En0 + 4CΩ

√
En0(

n0∑
k=2

‖∇τfk‖+ ‖f1‖),

where the last inequality has used the fact that fn0 = f1 +
∑n0

k=2∇τfk. Noting that
‖f1‖ ≤ ‖∇τf1‖+ ‖f0‖, we have

√
En ≤

√
En0 ≤

√
E0 + 4CΩ(

n0∑
k=1

‖∇τfk‖+ ‖f0‖)

≤
√

E0 + 4CΩ(
n∑

k=1

‖∇τfk‖+ ‖f0‖).
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The proof is complete.

3.2 Stability Analysis of the Discrete Scheme

We first introduce a discrete Grönwall inequality.
Lemma 3.7 Assume λ > 0 and the sequences {vj}N

j=1 and {ηj}N
j=0 are nonnegative.

If

vn ≤ λ

n−1∑
j=1

τjvj +
n∑

j=0

ηj , for 1 ≤ n ≤ N,

then it holds

vn ≤ exp
(
λtn−1

) n∑
j=0

ηj , for 1 ≤ n ≤ N.

The standard induction hypothesis can give the proof of lemma 3.7, which is omitted
here.

Theorem 3.8 If the condition A1 holds, the solution un of BDF2 scheme (1.4) is
unconditionally stable in the L2-norm. If κ > 0 and the maximum time-step size τ ≤ 1

4κ
, it

holds

‖un‖≤ 2 exp
(
4κtn−1

)(∥∥u0
∥∥ + 2

n∑
k=1

‖
k∑

j=1

θ
(k)
k−jf

j‖
)

≤ 2 exp
(
4κtn−1

)(∥∥u0
∥∥ + 2

n∑
j=1

p
(n)
n−j

∥∥f j
∥∥

)
, for 1 ≤ n ≤ N. (3.38)

If κ ≤ 0, it holds

‖un‖ ≤
∥∥u0

∥∥ + 2
n∑

j=1

‖
k∑

j=1

θ
(k)
k−jf

j‖ ≤
∥∥u0

∥∥ + 2
n∑

j=1

p
(n)
n−j

∥∥f j
∥∥ , for 1 ≤ n ≤ N. (3.39)

Proof Applying the property (2.18) of DOC kernels to scheme (1.4), we have

∇τuk =
k∑

j=1

θ
(k)
k−j(∆uj + κuj) +

k∑
j=1

θ
(k)
k−jf

j , for k ≥ 1. (3.40)

Noting the positive semi-definiteness of the DOC kernels in Lemma 2.3, we have

n∑
k=1

k∑
j=1

〈uk, θ
(k)
k−j∆uj〉 = −

n∑
k=1

k∑
j=1

〈∇uk, θ
(k)
k−j∇uj〉 ≤ 0. (3.41)

Taking the inner product with uk on both sides of (3.40), summing the resulting from 1 to
n and using (3.41), we have

n∑
k=1

〈uk,∇τuk〉 ≤
n∑

k=1

〈uk,

k∑
j=1

θ
(k)
k−jκuj〉+

n∑
k=1

〈uk,

k∑
j=1

θ
(k)
k−jf

j〉, for 1 ≤ n ≤ N. (3.42)
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If κ ≤ 0 in (3.42), we use ‖uk‖2−‖uk−1‖2 ≤ 2〈uk,∇τuk〉, the Cauchy-Schwarz inequality
and Lemma 2.3 to have

‖un‖2 ≤ ‖u0‖2 + 2
n∑

k=1

‖uk‖‖
k∑

j=1

θ
(k)
k−jf

j‖, for 1 ≤ n ≤ N. (3.43)

Selecting an integer n0 (0 ≤ n0 ≤ n) such that ‖un0‖ = max0≤k≤n

∥∥uk
∥∥. From (3.43), we

have

‖un0‖2 ≤
∥∥u0

∥∥ ‖un0‖+ 2‖un0‖
n0∑

k=1

‖
k∑

j=1

θ
(k)
k−jf

j‖. (3.44)

Eliminating a ‖un0‖ for both sides of (3.44) and noting n0 ≤ n, we have

‖un‖ ≤ ‖un0‖ ≤
∥∥u0

∥∥ + 2
n0∑

k=1

‖
k∑

j=1

θ
(k)
k−jf

j‖

≤
∥∥u0

∥∥ + 2
n∑

k=1

‖
k∑

j=1

θ
(k)
k−jf

j‖

≤
∥∥u0

∥∥ + 2
n∑

j=1

‖f j‖
n∑

k=j

θ
(k)
k−j

=
∥∥u0

∥∥ + 2
n∑

j=1

p
(n)
n−j‖f j‖,

where we have used the Cauchy-Schwarz inequality, exchanged the order of summation and
used the property (2.19).

If κ > 0 in (3.42), we apply the Cauchy-Schwarz inequality to have

‖un‖2 ≤ ‖u0‖2 + 2κ

n∑
k=1

‖uk‖
k∑

j=1

θ
(k)
k−j‖uj‖+ 2

n∑
k=1

‖uk‖‖
k∑

j=1

θ
(k)
k−jf

j‖, for 1 ≤ n ≤ N.

(3.45)

Similar to (3.44) by selecting n0 (0 ≤ n0 ≤ n) such that ‖un0‖ = max0≤k≤n

∥∥uk
∥∥, one has

‖un0‖2 ≤
∥∥u0

∥∥ ‖un0‖+ 2κ‖un0‖
n0∑

k=1

‖uk‖
k∑

j=1

θ
(k)
k−j + 2‖un0‖

n0∑
k=1

‖
k∑

j=1

θ
(k)
k−jf

j‖. (3.46)

Eliminating a ‖un0‖ for both sides of (3.46), we further have

‖un‖ ≤ ‖un0‖ ≤
∥∥u0

∥∥ + 2κτk

n0∑
k=1

∥∥uk
∥∥ + 2

n0∑
k=1

‖
k∑

j=1

θ
(k)
k−jf

j‖

≤
∥∥u0

∥∥ + 2κτk

n∑
k=1

∥∥uk
∥∥ + 2

n∑
k=1

‖
k∑

j=1

θ
(k)
k−jf

j‖,
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where we use the facts n0 ≤ n and
k∑

j=1

θ
(k)
k−j = τk. Taking the maximum time-step size τ ≤ 1

4κ

in the above inequality, we finally arrive at

‖un‖ ≤ 2
∥∥u0

∥∥ + 4κτk

n−1∑
k=1

∥∥uk
∥∥ + 4

n∑
k=1

‖
k∑

j=1

θ
(k)
k−jf

j‖

≤ 2
∥∥u0

∥∥ + 4κτk

n−1∑
k=1

∥∥uk
∥∥ + 4

n∑
j=1

‖f j‖
n∑

k=j

θ
(k)
k−j

= 2
∥∥u0

∥∥ + 4κτk

n−1∑
k=1

∥∥uk
∥∥ + 4

n∑
j=1

p
(n)
n−j‖f j‖.

The Grönwall inequality in Lemma 3.7 directly produces the result (3.38). The proof is
complete.

3.3 Convergence Analysis of the Discrete Scheme

Set en := u(tn, x)− un(x) (n ≥ 1). From (1.4), the error function is governed by

D2e
n = ∆en + κen + ηn, for 1 ≤ n ≤ N, (3.47)

where ηn := D2u(tn)− ut(tn)(1 ≤ n ≤ N) denotes the truncation error.

Lemma 3.9 Denote

Gl := −1
2

∫ tl

tl−1

(t− tl−1)2uttt dt, 1 ≤ l ≤ N,

Rj := −1
2
b
(j)
1 τj−1

∫ tj

tj−1

(2(t− tj−1) + τj−1)uttt dt, 2 ≤ j ≤ N,

R1 :=
1

2τ1

∫ t1

0

t2uttt dt− 1
τ1

∫ t1

0

tutt dt.

(3.48)

The truncation error ηj := D2u(tj) − ut(tj) (1 ≤ j ≤ N) can be expressed by the following
form

ηj =
j∑

l=1

b
(j)
j−lG

l + Rj , 1 ≤ j ≤ N. (3.49)

Moreover, we have the follwing estimate

2
n∑

k=1

‖
k∑

j=1

θ
(k)
k−jη

j‖ ≤ 2
n∑

k=1

‖Gk‖+ 2
n∑

k=1

p
(k)
n−k‖Rk‖

≤4τ

∫ t1

0

‖utt‖dt +
n∑

k=1

τ2
k

∫ tk

tk−1

‖uttt‖dt + 2tn max
1≤k≤n

τk

∫ tk

tk−1

‖uttt‖dt. (3.50)
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Proof By using the Taylor’s expansion (see [16]), one has

ηj =
1
2
b
(j)
0 Gj +

1
2
b
(j)
1 Gj−1 − 1

2
b
(j)
1 τj−1

∫ tj

tj−1

(2(t− tj−1) + τj−1)uttt dt

=
j∑

l=1

b
(j)
j−lG

l − 1
2
b
(j)
1 τj−1

∫ tj

tj−1

(2(t− tj−1) + τj−1)uttt dt

=
j∑

l=1

b
(j)
j−lG

l + Rj , 2 ≤ j ≤ N,

where the property of BDF2 kernels (1.2) that b
(j)
k = 0 for k ≥ 2 is used. For j = 1, using

the Taylor’s expansion again, one has

η1 =
u(t1)− u(0)

τ1

− ut(t1) = −b
(1)
0

∫ t1

0

tutt dt

= b
(1)
0 G1 +

1
2τ1

∫ t1

0

t2uttt dt− 1
τ1

∫ t1

0

tutt dt

= b
(1)
0 G1 + R1.

Hence, the equality (3.49) holds.
From (3.49), we now estimate

2
n∑

k=1

‖
k∑

j=1

θ
(k)
k−jη

j‖ ≤ 2
n∑

k=1

‖Gk‖+ 2
n∑

k=1

‖
k∑

j=1

θ
(k)
k−jR

j‖

≤ 2
n∑

k=1

‖Gk‖+ 2
n∑

k=1

p
(k)
n−k‖Rk‖, (3.51)

where the last inequality uses (2.19). Note that Gl, Rj can be bounded by

‖Gl‖ ≤ τ2
l

2

∫ tl

tl−1

‖uttt‖dt, 1 ≤ l ≤ n , (3.52)

‖Rj‖ ≤ 2rj + 1
2rj + 2

τj

∫ tj

tj−1

‖uttt‖dt

≤ τj

∫ tj

tj−1

‖uttt‖dt, 2 ≤ j ≤ n.

Noting
∑n

k=1 p
(n)
n−k = tn in (2.27) and p

(n)
n−1 ≤ 2τ in (2.28), we have

n∑
k=1

p
(n)
n−k‖Rk‖ =

n∑
k=2

p
(n)
n−k‖Rk‖+ p

(n)
n−1‖R1‖

≤
n∑

k=1

p
(n)
n−kτj

∫ tj

tj−1

‖uttt‖dt + p
(n)
n−1

∫ t1

0

‖utt‖dt

≤ tn max
1≤k≤n

τk

∫ tk

tk−1

‖uttt‖dt + 2τ

∫ t1

0

‖utt‖dt. (3.53)

Inserting (3.52) and (3.53) into (3.51), we have the inequality (3.54). The proof is complete.
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Theorem 3.10 Let u(t, x) be the exact solution to problem (1.1). If the condi-
tion A1 holds, then the discrete solution un to BDF2 scheme (1.4) has the second-order
convergence in the L2-norm. If κ > 0 and the maximum time-step size τ < 1/(4κ), it holds

‖u(tn)− un‖ ≤2 exp
(
4κtn−1

)
(

∥∥u(0)− u0
∥∥ + 4τ

∫ t1

0

‖utt‖dt +
n∑

k=1

τ2
k

∫ tk

tk−1

‖uttt‖dt

+2tn max
1≤k≤n

τk

∫ tk

tk−1

‖uttt‖dt

)
, for 1 ≤ n ≤ N. (3.54)

If κ ≤ 0, it holds

‖u(tn)− un‖ ≤
∥∥u(0)− u0

∥∥ + 4τ

∫ t1

0

‖utt‖dt +
n∑

k=1

τ2
k

∫ tk

tk−1

‖uttt‖dt

+ 2tn max
1≤k≤n

τk

∫ tk

tk−1

‖uttt‖dt, for 1 ≤ n ≤ N. (3.55)

Proof From Theorem 3.8 that if κ > 0 and the maximum time step τ ≤ 1
4κ

, it holds

‖u(tn)− un‖≤ 2 exp
(
4κtn−1

)(∥∥u(0)− u0
∥∥ + 2

n∑
k=1

‖
k∑

j=1

θ
(k)
k−jf

j‖
)

for 1 ≤ n ≤ N. (3.56)

If κ ≤ 0, it holds

‖u(tn)− un‖ ≤
∥∥u(0)− u0

∥∥ + 2
n∑

j=1

‖
k∑

j=1

θ
(k)
k−jf

j‖. for 1 ≤ n ≤ N. (3.57)

The direct application of Lemma 3.9 to (3.56) and (3.57) produces the error estimates (3.54)
and (3.55), respectively. The proof is complete.

Remark 1 For the error estimate of problem (1.1) with κ = 0, Becker [1] gives an
estimate for 0 < rk < 2+

√
13

3
≈ 1.868, which is improved to 0 < rk < 1.91 in [3] later.

By choosing different rk, the fact Γn in (1.5) can be bounded [16, pp. 175], unbounded [2,
Remark 4.1] or zero. Recently, Liao and Zhang [11] give an improved estimate

‖u(tn)− un‖≤2 exp
(
4κtn−1

)( ∥∥u0−u0
∥∥+2tn

∫ t1

0

‖utt‖dt+3tn max
1≤k≤n

τk

∫ tk

tk−1

‖uttt‖dt
)

(3.58)

with 0 ≤ rk ≤ 3.561. One can see that the right-hand-side second term in (3.58) has the
first-order convergence when tn is large. If they expect to have the second-order convergence,
they need an extra restriction condition |Rp| ≤ N0 ¿ N with the index set defined by (1.6).
A similar error estimate is given in [18] with 0 < rk <

√
2 + 1.

Our result in Theorem 3.10 shows the sharp second-order convergence under 0 < rk ≤
4.8645. And the second-order convergence is robust, which means the convergence order
remains valid for any time step satisfying the ratio 0 < rk ≤ rmax ≈ 4.864. As far as we
know, it is a pioneer paper to clarify the robust and sharp second-order convergence under
the new ratio 0 < rk ≤ 4.864.



486 Journal of Mathematics Vol. 41

Table 1 Numerical accuracy on random time mesh for κ = 0
N e(N) Order τ max rk

32 1.5345e-04 – 5.9985 e-02 16.754
64 3.7947e-05 2.0157 2.9585e-02 42.059
128 9.4821e-06 2.0007 1.4825e-02 86.0224
256 2.3648e-06 2.0035 7.4163e-03 167.412

Table 2 Numerical accuracy on random time mesh for κ = 4
N e(N) Order τ max rk

32 1.9048e-04 – 6.2473e-02 104.606
64 4.7853e-05 1.9930 2.7617e-02 10.0333
128 1.1964e-05 1.9999 1.4900e-02 48.278
256 3.0186e-06 1.9867 7.9698e-03 430.559

4 Numerical Experiment

We now report two examples to investigate the convergence order of BDF2 scheme (1.4)
with variable time-steps. In the simulations, we set the computational domain Ω = (0, 2)2,
final time T = 1, the number of spatial mesh M chosen by M = N . By taking

f = (π2/2− κ− 1) exp(−t) sin(πx/2) sin(πy/2),

we can construct an exact solution to problem (1.1) as a benchmark solution in the form of

u = exp(−t) sin(πx/2) sin(πy/2).

The time meshes are constructed by the random time-steps τk = Tχk/C, where C =∑N

k=1 χk and χk is randomly drawn from the uniform distribution on (0, 1). In each run,
the discrete L2-norm at the final time T = 1

e(N) = h

√ ∑
1≤i,j≤M

(u(xi, yj , T )− uN
h (xi, yj))2

is recorded in Tables 1 and 2, in which we also list the maximum time-step τ and maximum
adjacent time-step ratio. The numerical rate of convergence is calculated by

Order = log2(e(N)/e(2N)).

From the current data and more tests not listed here, we see that the BDF2 scheme is
robustly stable and convergent in the second order, which is consistent with our theoretical
analysis. Due to the time step is randomly chosen without any constrain condition, one
can see the first-step BDF1 does not bring the loss of accuracy, which again implies the
effectiveness of our analysis.

5 Conclusion

With the applications of DCC and DOC kernels, we present the stability and conver-
gence analysis of BDF2 scheme with variable time-steps under condition A1. We extend
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the adjacent time step to a new ratio rk := τk/τk−1 ≤ rmax = 4.8645, and obtain the robust
and sharp second-order convergence without the extra constrained condition on ratios in
[11]. Our convergence results shows that the BDF1 scheme for first step is enough to have
the globally optimal second-order convergence. This conclusion removes the doubt of the
choice of the first level solution with first-order accuracy. Numerical results are provided to
demonstrate the theoretical analysis.

The technique developed in this work can be extended to a family of multi-step schemes
with variable time-steps for the stability and convergence analysis. The main challenge is
how to explore the useful properties of DOC and DCC kernels, and multi-step schemes’s
kernels.
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线性反应扩散方程的时间变步长BDF2格式的最优误差估计

张继伟1, 赵成超2

(1. 武汉大学数学与统计学院; 计算科学湖北省重点实验室, 湖北 武汉 430072)
(2. 北京计算科学研究中心应用与计算数学部,北京 100193)

摘要: 虽然时间变步长的两步向后差分公式(BDF2)在模拟多尺度动力学具有重要的价值和广泛的
应用, 但其稳定性和收敛性分析仍不完整. 在本工作中, 我们重新讨论了线性反应扩散问题的BDF2格式.
利用[11]中离散正交卷积(DOC)核的技巧, 引入离散互补卷积(DCC)核的概念, 我们证明了在相邻时间步
长比条件0 < rk := τk/τk−1 ≤ rmax ≈ 4.8645下, BDF2格式是无条件稳定的且具有二阶收敛率. 我们的
分析表明, 二阶收敛性是最优且鲁棒的. 鲁棒性指对于任意满足0 < rk := τk/τk−1 ≤ rmax ≈ 4.8645 的
时间步长, BDF2格式仍保持二阶收敛性, 并不需要额外的时间步长比限制条件. 此外, 我们的分析还表明,
当0 < rk ≤ 4.8645时, 用BDF1(即Euler格式)计算第一步数值解u1 不会导致全局二阶精度的损失. 最后, 我
们给出了数值例子来佐证本文理论分析.
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