Vol. 41 (2021) No. 5

Sturm-Liouville 算子的一维奇异扰动的逆特征值问题

吴雪雯

(西北工业大学数学与统计学院, 陕西 西安 710072)

摘要: 本文研究了 Sturm-Liouville 算子的一维奇异扰动的逆特征值的问题. 利用 Sturm-Liouville 算子的逆谱理论中的方法, 获得了由 Sturm-Liouville 算子及其一维扰动的谱可以重构势函数的结果, 推广了实数列成为扰动后算子的谱的充要条件的结论.

关键词: 逆问题; Sturm-Liouville 算子; 一维扰动

MR(2010) 主题分类号: 34L05; 34A55

中图分类号: O175.1

文献标识码: A 文章编号: 0255-7797(2021)05-0435-05

1 引言

考虑方程

$$Ly := -y'' + q(x)y + \delta(x) \int_0^1 \delta(x)y dx = \lambda y$$
 (1.1)

带有边值条件

$$y'(0) = y(1) = 0 (1.2)$$

其中 $q(x) \in L^2(0,1)$, $\delta(x)$ 是狄拉克函数. 这里算子 L 是自伴的并且是 Sturm-Liouville 算子 $L_0y := -y'' + q(x)y$ 带有边值条件 (1.2) 的一个一维奇异扰动. 由文献 [1] 知, 算子 L_0 在 $L^2(0,1)$ 上是自伴的且下半有界, 它的谱由特征值组成.

本文的目的是通过运用 Sturm-Liouville 算子的逆谱理论 (见文献 [1]), 由算子 L_0 及 L 的谱重构 (1.1) 中的势函数 q(x). 然而, 方程 (1.1) 的初值问题无法直接解出. 结合文献 [2] 中的方法, 我们研究的逆问题可以由 Sturm-Liouville 算子的逆谱理论有效地解决.

Sturm-Liouville 算子的一维扰动的谱问题 [2-5] 中已有所研究. 关于逆问题, 扰动项是属于 $L^2(0,1)$ 中函数的算子已被考虑过, 例如文献 [6,7]. 由文献 [2], 我们知道扰动项的函数可以为奇异函数. 我们的文章考虑的算子 L_0 的扰动项是 $\delta(x)$. 通过运用文献 [2] 中的方法, 我们得到了算子 L 的特征值函数, 这为我们之后考虑的逆问题提供了一个必要的准备. 关于其它的 Sturm-Liouville 算子的一维扰动的逆问题, 见文献 [8,9].

本文的主要结论是, 已知算子 L_0 的谱为 $\{\lambda_n\}_{n=0}^{\infty}$, 如果一列实数列 $\{\mu_n\}_{n=0}^{\infty}$ 满足一个交替性质及渐近式, 则存在势函数 q(x) 使得算子 L 的谱是 $\{\mu_n\}_{n=0}^{\infty}$. 下一节我们将陈述这个主要结论及证明, 并且给出重构 q(x) 的具体算法.

2 预备知识

首先我们提及一些需要用到的预备知识,参见文献 [2, P8-10].

*收稿日期: 2020-09-28 接收日期: 2021-04-14

作者简介:吴雪雯 (1991-),女,辽宁,博士,主要研究方向:谱与反谱理论.

引入关于算子 L_0 的如下的线性赋范空间 $H_{\pm 1}(L_0)$. 定义 $H_{\pm 1}(L)$ 是 $D(L^{1/2})$ 以

$$||\varphi||_{H_{+1}} = ||(L_0 + 1)^{1/2}\varphi||_{L^2(0,1)}$$

为范数的线性赋范空间, 易知, $H_{+1}(L_0)$ 是完备的; $H_{-1}(L)$ 是 $L^2(0,1)$ 以

$$||\varphi||_{H_{-1}} = ||(L_0 + 1)^{-1/2}\varphi||_{L^2(0,1)}$$

为范数后完备化得到的线性赋范空间. $H_{+1}(L_0)$ 和 $H_{-1}(L_0)$ 是对偶的, ϕ 在 $H_{+1}(L_0)$ 中的对偶函数 η 由 $l_{\phi}(\eta)=\int_0^1\phi(x)\eta(x)dx$ 给出.

由 Sobolev 估计我们得到, 对于任意函数 $y \in H_{+1}(L_0)$ 有

$$|y(0)|^2 \le c(y, (L_0 + 1)y),$$

即 $\delta(x) \in H_{-1}(L_0)$. 令 $b \in H_{+1}(L_0)$ 上的二次型, 定义如下

$$b(\eta_1, \eta_2) = \overline{\eta_1(0)} \eta_2(0).$$

我们便可得到由 $L_0 + b$ 作为二次型且满足 $H_{\pm 1}(L) = H_{\pm 1}(L_0)$ 的自伴算子 L, 我们将算子 L 记为 (1.1) 的形式.

如果 Δ 是 \mathbb{R} 上的有界子区间, $E_{\Delta}(L_0)$ 是 $H_{-1}(L_0)$ 到 $H_{+1}(L_0)$ 上 L_0 . 的谱映射, 那么我们能定义一个如下的谱测度:

$$\mu_{L_0}(\Delta) = (\delta, E_{\Delta}(L_0)\delta).$$

令

$$F(z) = (\delta, (L_0 - z)^{-1}\delta) \equiv \int \frac{d\mu_{L_0}(x)}{x - z}.$$
 (2.1)

3 主要结论及其证明

在下面的引理中, 我们将给出算子 L 的谱及特征值函数.

引理 2.1 算子 L 的谱由简单的实特征值 $\{\mu_n\}_{n=0}^{\infty}$ 组成. 算子 L 的特征值函数是

$$\Delta(\lambda) = \Delta_0(\lambda)(F(\lambda + i0) + 1), \tag{3.1}$$

其中 $\Delta_0(\lambda)$ 是算子 L_0 的特征值函数.

证由(2.1)和[1,p15]知,

$$F(z) = G(0, 0, z) (3.2)$$

其中 G(x,y,z) 是 L_0 的 Green 函数. 由 [1, p15,p29], G(0,0,z) 是算子 L_0 的 Weyl 函数并且 是有简单极点的亚纯函数, 其极点为 $z = \lambda_n, n \ge 0$. 对于 $\lambda \in \mathbb{R} \setminus \{\lambda_n\}_{n=0}^{\infty}$, 有

$$F(\lambda + i0) = F(\lambda)$$

和

$$\frac{dF(\lambda + i0)}{d\lambda} = \int \frac{d\mu(y)}{(\lambda - y)^2} < \infty. \tag{3.3}$$

值得注意的是 L_0 的谱由简单的实特征值 $\{\lambda_n\}_{n=0}^\infty$ 组成. 再由 [2] 中的定理 I.6, 有

$$Im F(\lambda + i0) = \begin{cases} \infty, \lambda \in \{\lambda_n\}_{n=0}^{\infty}, \\ 0, \lambda \in \mathbb{R} \setminus \{\lambda_n\}_{n=0}^{\infty}, \end{cases}$$

因此, 由 (6) 和 [2] 中的定理 II.2, L 的谱由实特征值 $\{\mu_n\}_{n=0}^{\infty}$ 组成并且

$$\{\mu_n\}_{n=0}^{\infty} = \{\lambda \in \mathbb{R} | F(\lambda + i0) + 1 = 0\}.$$
 (3.4)

(3.3) 意味着 $F(\lambda + i0)$ 在 $\mathbb{R} \setminus \{\lambda_n\}_{n=0}^{\infty}$ 上是单调递增的. 再由文献 [1,p29-30], 有

$$\lim_{\lambda \to \lambda_n^-} F(\lambda + i0) = +\infty, \tag{3.5}$$

$$\lim_{\lambda \to \lambda_n^+} F(\lambda + i0) = -\infty \tag{3.6}$$

和

$$\lim_{\lambda \to -\infty} F(\lambda + i0) = 0. \tag{3.7}$$

因此, $F(\lambda + i0) + 1$ 在 $(-\infty, \lambda_0)$ 上没有零点且在 $(\lambda_n, \lambda_{n+1})$ 上恰有一个零点. 这就意味着

$$\lambda_n < \mu_n < \lambda_{n+1},\tag{3.8}$$

即算子 L 的特征值是简单的. 因此, 由 (3.4), 要证明 $\Delta(\lambda)$ 是算子的特征值函数即证明 $\Delta(\lambda) = 0$ 当且仅当 $F(\lambda + i0) + 1 = 0$.

易知, $F(\lambda + i0) + 1 = 0 \Rightarrow \Delta(\lambda) = 0$. 下面我们证明 $\Delta(\lambda) = 0 \Rightarrow F(\lambda + i0) + 1 = 0$. 假设 $\Delta(x_0) = 0$, $x_0 \in \mathbb{R}$. 如果 $F(x_0 + i0) + 1 \neq 0$, 则 $\Delta_0(x_0) = 0$, 即, $x_0 = \lambda_k$, $k \geq 0$. 由 [1] 中的定理 1.1.2, $\Delta_0(\lambda)$ 的零点是简单的, 有

$$\dot{\Delta}_0(\lambda_k) \neq 0.$$

其中 $\dot{\Delta_0} = \frac{d\Delta_0(\lambda)}{d\lambda}$. 由假设 $\Delta(x_0) = 0$, 我们有

$$\frac{\Delta(\lambda_k)}{\dot{\Delta}_0(\lambda_k)} = 0. \tag{3.9}$$

由 [1] 中的定理 1.4.6, $\frac{\dot{\Delta_0}(\lambda_k)}{\Delta(\lambda_k)}$ 是 [1] 中 (1.1.17) 定义的权数且不能是无穷, 这与 (3.9) 矛盾. 我们有 $F(x_0+i0)+1=0$, 引理得证. 本文的主要结论如下:

定理 2.2 令 $\{\lambda_n\}_{n=0}^{\infty}$ 是 L_0 的谱. 一列实数列 $\{\mu_n\}_{n=0}^{\infty}$ 成为算子 L 的谱的充要条件是 (3.8) 和

$$\sqrt{\mu_n} = (\frac{1}{2} + n)\pi + \frac{\int_0^1 q(\tau)d\tau - 2}{2n\pi} + \frac{\kappa_n}{n}, \kappa_n \in l_2.$$
 (3.10)

成立.

证 必要性 令 $s = \sqrt{\lambda} = \alpha + \beta i$ 并且 $\beta > 0$. 由引理 2.1, 定义如 (3.1) 的 $\Delta(\lambda)$ 是算子 L 的特征值函数. 由 (3.2) 和文献 [1] 中的定理 1.1.3, 我们得到如下 $\Delta(\lambda)$ 渐近式

$$\Delta(\lambda) = \cos s - \frac{\sin s}{s} + \frac{1}{s} \int_0^1 q(\tau) \sin\{s(1-\tau)\} \cos s\tau d\tau + O(\frac{\exp(|\beta|)}{s^2}). \tag{3.11}$$

由 Rouche 定理, 对于充分大的 n, 在 $\Gamma_n(\varepsilon) = \{\rho : |\rho - (\frac{\pi}{2} + n\pi)| \le \varepsilon\}$ 中恰好存在 $\Delta(\lambda)$ 的一个零点, 记为 $s_n = \sqrt{\mu_n}$. 因为 $\varepsilon > 0$ 是任意的, 有

$$s_n = \frac{\pi}{2} + n\pi + \varepsilon_n, \ \varepsilon_n = o(1), n \to \infty.$$
 (3.12)

将 (3.12) 代入到 (3.11) 中得到

$$\left(\frac{\pi}{2} + n\pi + \varepsilon_n\right)\cos\left(\frac{\pi}{2} + n\pi + \varepsilon_n\right) + \left(\frac{1}{2}\int_0^1 q(\tau)d\tau - 1\right)\sin\left(\frac{\pi}{2} + n\pi + \varepsilon_n\right) + \kappa_n = 0, \kappa_n \in l_2.$$
 (3.13)

则 $\varepsilon_n = O(\frac{1}{n})$. 再由 (3.13), 我们得到

$$\varepsilon_n = \frac{\int_0^1 q(\tau)d\tau - 2}{2n\pi} + \frac{\kappa_n}{n},$$

即 (3.10) 成立. 进一步用文献 [1] 中定理 1.1.4 的相同的方法, 得到

$$\Delta(\lambda) = \prod_{n=0}^{\infty} \frac{\mu_n}{(\frac{\pi}{2} + n\pi)^2} (1 - \frac{\lambda}{\mu_n}). \tag{3.14}$$

充分性 由己知数列 $\{\lambda_n,\mu_n\}_{n=0}^{\infty}$, 我们构造如下函数 $w(\lambda)$ 通过

$$w(\lambda) = \frac{\Delta(\lambda)}{\Delta_0(\lambda)},$$

其中 $\Delta(\lambda)$ 由 (3.14) 得到并且

$$\Delta_0(\lambda) = \prod_{n=0}^{\infty} \frac{\lambda_n}{(\frac{\pi}{2} + n\pi)^2} (1 - \frac{\lambda}{\lambda_n}).$$

由 (3.10)),易知,对于固定的 λ , $\Delta(\lambda)$ 收敛. 由文献 [1] 中的定理 1.1.4, $\Delta_0(\lambda)$ 是算子 L_0 的特征值函数. 由 (3.8) 和文献 [10] 中的定理 2.1,函数 $w(\lambda)$ 是 Herglotz 函数. 由文献 [10] 中的 Herglotz 表示定理, $w(\lambda)$ 有如下表达式

$$w(\lambda) = 1 - \sum_{n=0}^{\infty} \frac{a_n}{\lambda - \lambda_n},$$

并且 a_n 可由如下公式计算得到

$$a_n = \frac{\Delta(\lambda_n)}{\dot{\Delta_0}(\lambda_n)},$$

其中 $\dot{\Delta_0}(\lambda) = \frac{d\Delta_0(\lambda)}{d\lambda}$.

由文献 [1] 中的定理 1.5.2, 我们需要找到 $\frac{1}{a_n}$ 的渐近式. 由渐近式 (3.10) 和文献 [1] 中的定理 1.5.2, 存在一个算子 $\tilde{L}_0y:=-y''+q_0(x)y(q_0(x)\in L^2(0,1)$ 并且 $q_0(x)$ 不唯一. 带有边值条件 y'(0)+y(0)=y(1)=0 使得算子 \tilde{L}_0 的谱是 $\{\mu_n\}_{n=0}^\infty$, 则 $\Delta(\lambda)$ 是算子 \tilde{L}_0 的特征值函数. 再由文献 [1] 中的 (1.1.15) 和 (1.1.29), 我们能得到

$$\Delta(\lambda_n) = (-1)^{n+1} + O(\frac{1}{n}).$$

由文献 [1] 中引理 1.1.1,有 $\dot{\Delta}_0(\lambda_n) = (-1)^{n+1}\frac{\pi}{2} + \frac{\kappa_{n1}}{n}, \{\kappa_{n1}\} \in l_2$. 因此,我们得到 $\frac{1}{a_n} = \frac{\pi}{2} + \frac{\kappa_{n2}}{n}, \{\kappa_{n2}\} \in l_2$. 由文献 [1] 中的定理 1.5.2,存在函数 $q(x) \in L_2(0,1)$ 使得算子 L 的谱是 $\{\mu_n\}_{n=0}^{\infty}$. 充分性得证.

参考文献

- [1] Freiling G, Yurko V. Inverse sturm-liouville problems and their applications[M]. New York: Nova Science Publishers. 2001.
- [2] Simon B. Spectral analysis of rank one perturbations and applications[A]. Feldman J, Froese R, Rosen L M. CRM proceedings and lecture notes Vol.8[C]. Rhode Island: American Mathematical Society, 1995: 109 - 149.
- [3] Bourget O, Cortes V, Rio R, Fernandez C. Resonances under rank-one perturbations[J]. Journal of Mathematical Physics, 2017, 58(9): 093502.
- [4] Freitas P. A nonlocal Sturm-Liouville eigenvalue problem[J]. Proceedings of the Royal Society of Edinburgh Section A Mathematics, 1994, 124(1): 169–188.
- [5] Gesztesy F, Simon B. Rank one perturbations at infinite coupling[J]. Journal of Functional Analysis, 1995, 128(1): 245–252.
- [6] Albeverio S, Hryniv R O, Nizhnik L P. Inverse spectral problems for non-local Sturm-Liouville operators[J]. Inverse Problems, 2007, 23(2): 523–535.
- [7] Nizhnik L P. Inverse eigenvalue problems for nonlocal Sturm-Liouville operators[J]. Methods of Functional Analysis and Topology. 2009, 15(1): 41–47.
- [8] Nizhnik L P. Inverse nonlocal Sturm-Liouville problem[J]. Inverse Problems, 2010, 26(12): 635–684.
- [9] Zolotarev V A. Direct and inverse problems for an operator with nonlocal potential[J]. Russian Academy of Sciences Sbornik Mathematics, 2012, 203(12): 1785–1807.
- [10] Gesztesy F, Simon B. On the determination of a potential from three spectra[J]. Transactions of the American Mathematical Society, 1997, 189(2): 85–92.

INVERSE EIGENVALUE PROBLEMS FOR STURM-LIOUVILLE OPERATORS WITH SINGULAR RANK ONE PERTURBATIONS

WU Xue-wen

(School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China)

Abstract: This paper is concerned with the inverse eigenvalue problem for Sturm-Liouville operators with singular rank one perturbations. The result that the potential function can be reconstructed from the spectra of a Sturm-Liouville operator and the perturbation is obtained, by applying the method in the inverse spectral theory of Sturm-Liouville differential operators. The conclusion about a necessary and sufficient condition for a sequence of real numbers to be the spectrum of the perturbation is generalized.

Keywords: inverse problem; Sturm-Liouville operator; rank one perturbation **2010 MR Subject Classification:** 34L05; 34A55