STRONGLY QUASI-NIL CLEAN 2×2 MATRICES OVER COMMUTATIVE LOCAL RINGS

HU Die, YIN Xiao-bin, SHA Ling-yu

(Department of Mathematics, Anhui Normal University, Wuhu 241002, China)

Abstract: In this paper, we determine when a 2×2 matrix over a commutative local ring is strongly quasi-nil clean. We provide an effective answer to this question by using the characteristic equation of the matrix. This conclusion enrichs and generalizes the theory of strongly quasi-nil clean rings.

Keywords:strongly quasi-nil clean element; matrix; local ring2010 MR Subject Classification:15A12; 16U99; 16S50Document code:AArticle ID:0255-7797(2021)04-0311-05

1 Introduction

Throughout this paper, rings are associative with identity. Let R be a ring. The set of all units and the Jacobson radical of R are denoted by U(R) and J(R), respectively. The symbol $M_n(R)$ stands for the $n \times n$ matrix ring over R whose identity element is written as I_n . The commutant and double commutant of $a \in R$ are denoted respectively by $\operatorname{comm}(a) = \{x \in R : ax = xa\}$ and $\operatorname{comm}^2(a) = \{x \in R : yx = xy \text{ for any } y \in \operatorname{comm}(a)\}.$

Rings in which every element is the sum of certain special elements were frequently studied in ring theory. A ring R is called strongly clean if all of its elements are a sum of an idempotent and a unit which commutes (see [1]). Following Diesl [2], a ring R is strongly nil clean if for every element a of R, there exists $e^2 = e \in R$ and a nilpotent $b \in R$ such that a = e + b and $e \in \text{comm}(a)$. Chen et al. [3] introduced the concept of a perfect J-clean ring. A ring R is perfectly J-clean if for each $a \in R$, there exists $e^2 = e \in \text{comm}^2(a)$ such that $a - e \in J(R)$. Recall that $a \in R$ is quasi-nilpotent if $1 - ax \in U(R)$ for any $x \in \text{comm}(a)$, and the set of all quasi-nilpotent elements of R is denoted by R^{qnil} . It is clear that all nilpotent elements and J(R) are contained in R^{qnil} . As a generalization of strongly nil clean rings and perfectly J-clean rings, Cui and Yin [4] introduced the notion of strongly quasi-nil clean rings. A ring R is strongly quasi-nil clean if for every $a \in R$ there exists $e^2 = e \in \text{comm}^2(a)$ such that $a - e \in R^{\text{qnil}}$, it was shown that $M_n(R)$ was not strongly quasi-nil clean for any ring R and any $n \ge 2$.

^{*} **Received date:** 2020-10-12 **Accepted date:** 2021-02-22

Foundation item: Supported by Anhui Provincial Natural Science Foundation (2008085MA06) and the Key Project of Anhui Education Committee (gxyqZD2019009).

Biography: Hu Die (1994 –), female, born at Fuyang Anhui, postgraduate, major in ring theory. Corresponding author: Yin Xiaobin

In this paper, we determine when a single matrix $A \in M_2(R)$ is strongly quasi-nil clean where R is a commutative local ring. It is shown that over a commutative local ring R, a matrix $A \in M_2(R)$ is strongly quasi-nil clean if and only if either $A \in (M_2(R))^{\text{qnil}}$ or $I_2 - A \in (M_2(R))^{\text{qnil}}$ or the equation $x^2 - (\text{tr}A)x + \text{det}A = 0$ has a root in J(R) and a root in 1 + J(R).

2 Main Results

We begin with some primary facts, which will be used freely.

Lemma 2.1 [4, Proposition 2.1] Let R be a ring and $u \in U(R)$. Then

- (1) $a \in R^{\text{qnil}}$ is strongly quasi-nil clean.
- (2) $a \in R$ is strongly quasi-nil clean if and only if so is $u^{-1}au$.
- (3) $a \in U(R)$ is strongly quasi-nil clean if and only if $1 a \in R^{\text{qnil}}$.

According to [5], an element $a \in R$ is called quasipolar if there exists $p^2 = p \in R$ such that $p \in \text{comm}^2(a)$, $a + p \in U(R)$, and $ap \in R^{\text{qnil}}$. Any idempotent p satisfying the above conditions is called a spectral idempotent of a, which is uniquely determined by the element of a, and is denoted by a^{π} . By [4, Proposition2.3], every strongly quasi-nil clean element is quasipolar. In addition, if a = e + q is a strongly quasi-nil expression of $a \in R$, then a is quasipolar with 1 - e the spectral idempotent.

Corollary 2.2 Let R be a ring and $A \in M_2(R)$. Then A is quasi-nilpotent if and only if A is quasipolar and $A^{\pi} = I_2$.

Let R be a commutative ring. For a square matrix $A \in M_2(R)$, the notation detA and trA denoted the determinant and the trace of A, respectively.

Lemma 2.3 [6, Lemma4.1] Let R be a commutative local ring. The following statements are equivalent for $A \in M_2(R)$.

- (1) $A \in (M_2(R))^{\text{qnil}}$.
- (2) det $A \in J(R)$ and tr $A \in J(R)$.
- (3) $A^2 \in J(M_2(R)).$

Lemma 2.4 [7, Lemma4.4] Let R be a commutative local ring and $E \in M_2(R)$. Then $E^2 = E$ if and only if E is one of the cases of the following statements:

- (1) E = 0 or $E = I_2$.
- (2) $E = \begin{pmatrix} a & b \\ c & 1-a \end{pmatrix}$ with $bc = a a^2$.

It is easy to see that A is a unit if and only if det $A \in U(R)$, A is quasinilpotent if and only if det $A \in J(R)$ and tr $A \in J(R)$. Naturally we may consider the case of det $A \in J(R)$ and tr $A \in U(R)$.

Proposition 2.5 Let R be a commutative local ring and $A \in M_2(R)$ satisfies that $A \notin (M_2(R))^{\text{qnil}}$ and $\det A \in J(R)$. The following statements are equivalent.

(1) A is strongly quasi-nil clean.

(2) A is similar to a matrix $\begin{pmatrix} j & 0 \\ 0 & u \end{pmatrix}$ with $j \in J(R), u \in 1 + J(R)$.

(3) The characteristic equation of A, $x^2 - \text{tr}Ax + \text{det}A = 0$ has a root in J(R) and a root in 1 + J(R).

Proof (1)=(2) Assume that A is strongly quasi-nil clean. It is clear that $tr A \in U(R)$. By Lemma 2.4, we may let $E \doteq I_2 - A^{\pi} = \begin{pmatrix} a & b \\ c & 1-a \end{pmatrix} \in M_2(R)$, where $bc = a - a^2$. As R is local, either $a \in U(R)$ or $1 - a \in U(R)$. Let $U_1 = \begin{pmatrix} b & a \\ -a & c \end{pmatrix}$ and $U_2 = \begin{pmatrix} a-1 & b \\ c & 1-a \end{pmatrix}$. Since $det U_1 = a$, $det U_2 = a - 1$, we have at least one of U_1 and U_2 which is invertible. We may as well suppose that U_1 is invertible. We write $B = (b_{ij}) = U_1^{-1}AU_1$. Then B is strongly quasi-nil clean with $E' \doteq I_2 - B^{\pi} = U_1^{-1}EU_1 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. As $E' \in \text{comm}(B)$, we have $b_{12} = b_{21} = 0$, which implies that B is diagonal. Since $det B = det A \in J(R)$ and $tr B = tr U_1^{-1}AU_1 = tr A \in U(R)$, so $b_{11} \in J(R), b_{22} \in U(R)$ or $b_{11} \in U(R), b_{22} \in J(R)$. We may as well suppose that it is the first case. Let $b_{11} = j \in J(R)$ and $b_{22} = u \in U(R)$. From Lemma 2.4, we have $E' = \begin{pmatrix} x & y \\ z & 1-x \end{pmatrix}$, where $yz = x - x^2$. Then BE' = E'B implies that y = z = 0, so $x = x^2$ is an idempotent. Since R is local, it follows that x = 0 or x = 1. If x = 1, we have $B - E' = \begin{pmatrix} j & 0 \\ 0 & u \end{pmatrix} \in U(M_2(R)) \bigcap (M_2(R))^{qnil} = \emptyset$. Hence x = 0 and $B - E' = \begin{pmatrix} j & 0 \\ 0 & u \end{pmatrix} \in J(R), u \in 1 + J(R)$.

 $(2) \Rightarrow (3)$ is clear.

 $(3) \Rightarrow (1)$ Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(R)$ with $\operatorname{tr} A \in U(R)$ and $\det A \in J(R)$. Assume that λ_1 and λ_2 are two roots of the equation $x^2 - (\operatorname{tr} A)x + \det A = 0$, where $\lambda_1 \in J(R), \lambda_2 \in 1 + J(R)$. We note that $\operatorname{tr} A \in U(R)$. So we may let $a \in U(R)$. We write $V = \begin{pmatrix} b & a-\lambda_1 \\ \lambda_1-a & c \end{pmatrix}$. Then $V \in U(M_2(R))$ because of $\det V = bc - (a - \lambda_1)(\lambda_1 - a) = \operatorname{atr} A + (\lambda_1^2 - 2a\lambda_1 - \det A) \in U(R)$. Since $\lambda_1^2 - (\operatorname{tr} A)\lambda_1 + \det A = 0$, we have $V^{-1}AV = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \doteq B$. We assume that $\lambda_2 = 1 + j$ for some $j \in J(R)$. Writing $E = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, then $E^2 = E$ and $B = E + \begin{pmatrix} \lambda_1 & 0 \\ 0 & j \end{pmatrix} \in ((M_2(R)))^{\operatorname{qnil}}$. For any $C = (c_{ij}) \in M_2(R)$, if CB = BC, then $c_{12} = c_{21} = 0$, so EC = CE. Thus $E \in \operatorname{comm}^2(B)$. Therefore B is strongly quasi-nil clean. By Lemma 2.1, A is strongly quasi-nil clean.

As a consequence of the above results, we obtain the following conclusion about 2×2 matrixes over commutative local rings to be strongly quasi-nil clean.

Theorem 2.6 Let R be a commutative local ring and let $A \in M_2(R)$. Then A is strongly quasi-nil clean if and only if one of the following statements holds:

(1) $A \in (M_2(R))^{\text{qnil}}$ or $I_2 - A \in (M_2(R))^{\text{qnil}}$.

(2) The equation $x^2 - (trA)x + detA = 0$ has a root in J(R) and a root in 1 + J(R). Combining Theorem 2.6 with Lemma 2.3, we have the following corollary:

Corollary 2.7 Let R be a commutative local ring. The following are equivalent for $A \in M_2(R)$:

(1) $A \in M_2(R)$ is strongly quasi-nil clean.

(2) One of the following statements holds:

(i) $A^2 \in J(M_2(R))$ or $(I_2 - A)^2 \in J(M_2(R))$.

(*ii*) The equation $x^2 - (trA)x + detA = 0$ has a root in J(R) and a root in 1 + J(R)

Corollary 2.8 Let R be a commutative local ring and $A \in M_2(R)$. If A is strongly quasi-nil clean, then one of the following statements holds:

(1) A is quasipolar and $A^{\pi} = 0$ or $A^{\pi} = I_2$.

No. 4

(2) A is quasipolar and A^{π} is similar to a matrix $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

By Theorem 2.6, we can figure out all strongly quasi-nil clean elements of a ring $M_2(\mathbb{Z}_2)$. **Example 2.9** Let $R = M_2(\mathbb{Z}_2)$. Then all elements of R are strongly quasi-nil except for $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$.

For a ring R, we use $T_n(R)$ to denote the $n \times n$ upper triangular matrix ring over R.

Corollary 2.10 Let R be a commutative local domain with J(R) = 2R and $R/J(R) \cong \mathbb{Z}_2$. The following are equivalent for $A \in M_2(R)$:

(1) A is strongly quasi-nil clean.

(2) $A \in (M_2(R))^{\text{qnil}}$ or $I_2 - A \in (M_2(R))^{\text{qnil}}$ or there exists some $u \in U(R)$ such that $(\text{tr}A)^2 - 4 \det A = u^2$.

Proof If A and $I_2 - A$ are all not in $(M_2(R))^{\text{qnil}}$, then $\text{tr}A \in U(R)$ and $\det A \in J(R)$. Since $R/J(R) \cong \mathbb{Z}_2$, U(R) = -1 + J(R). By [8, Theorem 2.13], $x^2 - (\text{tr}A)x + \det A = 0$ is solvable in R if and only if $(\text{tr}A)^2 - 4\det A = u^2$ for some $u \in U(R)$. By Theorem 2.6, we complete the proof.

It follows from Corollary 2.7.

Corollary 2.11 Let R be a commutative local ring and $A = \begin{pmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{pmatrix} \in M_2(R)$. The following statements are equivalent:

- (1) A is strongly quasi-nil clean.
- (2) One of the following holds:
 - (i) $a_{11}, a_{22} \in 1 + J(R)$ or $a_{11}, a_{22} \in J(R)$.
 - (*ii*) One of a_{11} and a_{22} is in J(R), and the other is in 1 + J(R).

Let R be a commutative local ring. By Corollary 2.11, the matrix $A = \begin{pmatrix} j_1 & x \\ 0 & j_2 \end{pmatrix} \in M_2(R)$ where $j_1, j_2 \in J(R)$ and $x \in R$ is strongly quasi-nil clean.

For $a \in R$, we recall that an element $a \in R$ is said to be perfectly J-clean [3] if there exists $e^2 = e \in \text{comm}^2(a)$ such that $a - e \in J(R)$. A ring R is called perfectly J-clean if every element in R is perfectly J-clean. We use l_a and r_a to denote the abelian group endomorphisms of R given by left and right multiplication by a, respectively. Following [9], a local ring R is called bleached if $l_u - r_j$ and $l_j - r_u$ are both surjective for any $j \in J(R)$ and any $u \in U(R)$. Commutative local rings are well-known examples of bleached local rings. In [10, Example 4.4], the author demonstrated that over a bleached local ring R, $(T_2(R))^{\text{qnil}} = J(T_2(R))$.

Corollary 2.12 If R is a bleached local ring. Then $A \in T_2(R)$ is strongly quasi-nil clean if and only if A is perfectly J-clean.

proposition 2.13 Let R be a ring. The following statements are equivalent:

- (1) R is local and strongly quasi-nil clean.
- (2) R is perfectly J-clean with the only idempotents 0 and 1.

Proof (1) \Rightarrow (2) Clearly, 0 and 1 are the only idempotents of R. Since R is local, R is quasipolar and $R^{\text{quil}} = J(R)$. Whence R is perfectly J-clean.

(2) \Rightarrow (1) Since R is perfectly J-clean, R/J(R) is boolean by [3, Theorem 4.1]. It follows that $R/J(R) \cong \mathbb{Z}_2$ from the only trivial idempotent 0 and 1 of R. Thus R is local.

References

- Nicholson W K. Strongly clean rings and Fitting's lemma[J]. Comm. Algebra, 1999, 27(8): 3583– 3592.
- [2] Diesl A. Nil clean rings[J]. J. Algebra, 2013, 383: 197–211.
- [3] Chen H Y, Halicioglu S, Kose H. Decompositions of 2 × 2 matrices over local rings[J]. Publ. Mat., 2016, 100(114): 287–298.
- [4] Cui J, Yin X B. A Generalization of strongly nil clean rings[J]. Algebra Colloq., 2018, 25(04): 585–594.
- [5] Koliha J J, Patricio P. Elements of rings with equal spectral idempotents[J]. J. Austral. Math. Soc., 2002, 72(1): 137–152.
- [6] Cui J, Chen J L. Pseudopolar matrix rings over local rings[J]. J. Algebra Appl., 2014, 13(03): 135109.
- [7] Cui J, Chen J L. A class of quasipolar rings[J]. Comm. Algebra, 2012, 40(12): 4471–4482.
- [8] Cui J, Chen J L. When is a 2 × 2 matrix ring over a commutative local ring quasipolar[J]. Comm. Algebra, 2011, 39(9): 3212–3221.
- Borooah G, Diesl A J, Dorsey T J. Strongly clean triangular matrix rings over local rings[J]. J. Algebra Appl., 2007, 312(2): 773–797.
- [10] Wang Z, Chen J L. Pseudo drazin inverses in associative rings and Banach algebras[J]. Linear Algebra Appl., 2012, 437(6): 1332–1345.

交换局部环上的强拟诣零clean 2×2 矩阵

胡 蝶, 殷晓斌, 沙玲玉

(安徽师范大学数学与统计学院,安徽 芜湖 241002)

摘要: 本文研究了交换局部环上的2阶矩阵的强拟诣零clean性,利用矩阵的特征方程的方法,给出了 交换局部环上的2阶矩阵是强拟诣零clean的具体判别方法,所得结果丰富并推广了强拟诣零clean的研究. 关键词: 强拟诣零clean元;矩阵;局部环

MR(2010)主题分类号: 15A12; 16U99; 16S50 中图分类号: O153.3