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Abstract: In this paper, we study the tilting comodules over trivial extensions of coalgebras.
On the basis of the tilting theory, we get the upper bound of the global dimension of trivial
extensions of coalgebras, and then we obtain the equivalent condition for one comodule to be a
tilting comodules over trivial extensions of coalgebras. These results generalize the conclusion of
tilting modules.
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1 Introduction

The trivial extensions of algebras play an important role in ring theory and representa-
tion theory of algebras, especially in triangular matrix rings and triangular matrix algebras.
In 1975, Fossum [1] made a systematic and comprehensive summary of the trivial extensions
of abelian categories and algebras. On the basis of tilting theory, in 1985, Miyachi [2] ob-
tained the equivalent condition of tilting modules over the trivial extensions of artin algebras,
and applied it to the triangular matrix algebras. Dually, the trivial extensions of coalgebras,
triangular matrix coalgebras [3] and especially the category of comodules over the triangular
matrix coalgebras have attracted extensive attension of scholars at home and abroad. In
2008, Zhu [4] gave the definition and properties of trivial extensions of coalgebras. In 1998,
Wang [5] defined the concepts of classical tilting comodules for comodule categories. In 1999,
Wang [6] introduced the concepts of tilting comodules and tilting injective comodules over
coalgebras. In particular, he proved that each tilting comodule induces a torsion theory.
In 2001, Simson [7] defined the concepts of cotilting comodules and he hoped to develop
a (co)tilting theory for comodule categories. In 2008, Simson [8] introduced the notion of
an f-cotilting comodule and a cotilting procedure for coalgebras, and constructed a pair of
cotilting functors of Brenner-Butler type for coalgebras. In 2010, Kosakowska and Simson
[9] gave the definition of triangular matrix coalgebras and studied its properties. In 2016,
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Fu [10] gave the equivalent condition of tilting comodules over the triangular matrix coalge-
bras. In 1999, Asensio [11] introduced Gorenstein injective comodules as a generalization of
injective comodules. Inspired by this, we aim to generalize the triangular matrix coalgebras
and obtain the bound of the global dimension of trivial extensions of coalgebras, and con-
struct the tilting comodules and Gorenstein injective comodules over the trivial extensions

of coalgebras as well.

2 Preliminaries

Let K be a fixed field, and C be a K-coalgebra. M denotes the category of right
C-comodules. Suppose that M, in addition to being a left C-comodule with structure map
pr M Xm_q ®myg], is also a right C-comodule with structure map p, : m — Xm @mp,
and that (id.®p,)p; = (p®id.)p,. Let C&M = {(¢,m)|c € C,m € M}, with componentwise
addition and multiplication given, elementwise, by (¢, m)(¢,m’) = (cc’,em’ +mc). C e M
is made into a coalgebra in [4] by defining comultiplication A : C®& M — (COM)@(Cd M)
and the counit ¢ : C & M — k as follows:

A(C7 m) = E(C(l), 0)(0(2), 0) + E(m[_l],O)(O, m[o]) + E(O,m[g])(m[l],O) €: (C, m) — EC(C)

which is called the trivial extension of C' by M, denoted by I' = C' x M.

Definition 2.1 [12] A right C-comodule X is quasi-finite, if dimCom,(F, M) < oo for
all finite dimensional comodule F'.

Remark Unless otherwise specified, this thesis is all conducted under the condition
of quasi-finite comodules.

Definition 2.2 [12] If M is a quasi-finite right C-comodule, we denote by h.(M, —) the
left adjoint functor of —0O.M, and we have h.(M, N) = lim DCom,.(Ny, M), where {N,}, is
the family of finite dimensional subcomodules of N. -

Definition 2.3 Let F = —0,M : M® — M be a left exact endofunctor and M be a
C-bicomodule. We define the left trivial extension of M by F, denoted by F x M.

(1) An object in F x M is a right C-comodule morphism « : X — XO,M such that
the compositionX — XO.M oB:M, X0O.MO,.Mis zero. i.e., (ad.M)oa =0.

(2) fa: X — XO.M and 8:Y — YO.M are objects in F x MY, then a morphism
~v:a — 3 is a morphism v : X — Y such that the diagram

X —=X0O.M (2.1)

’Y\L l'yli\u]\/f
B

Y —YOM

is commutative.

(3) Composition in (—0.M) x M is just composition in M.

Definition 2.4 Let G = h.(M,—) : M® — M be a right exact endofunctor and M
be a C-bicomodule. We define the right trivial extension of M¢ by G, denoted by M x G.
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(1) An object in MY x G is a right C-comodule morphism « : h.(M, X) — X such
that the composition o h.(M,«) = 0.

(2) If a : he(M,X) — X and 3 : h(M,Y) — Y are objects in M® x G, then a
morphism v : « — ( is a morphism « : X — Y such that the diagram

he(M, X) —> X (2.2)
hc(Mﬁ)l lv
he(M,Y) L~y

is commutative.

(3) Composition in M® x G is just composition in M.

From [1, Proposition 1.1 and Corollary 1.2], we have the following characterizations of
M x ho(M,—) and (-O.M) x MC.

Proposition 2.5 M% x h,(M,—) and (—0.M) x M are abelian categories.

Proposition 2.6 (1) A sequence of objects in M x h.(M, —) are exact if and only if
the sequence of codomains is exact;

(2) A sequence of objects in (—O.M) x M are exact if and only if the sequence of
domains is exact.

The next two definitions 2.7 and 2.8 come from [1].

Definition 2.7 For the endofunctor —O.M : MY — MY, there are pairs of adjoint

functors

z U
MC — (—O0.M) x M — Mc (2.3)
K H
which satisfy the relations KH = tdyc,UZ = idpc. They are defined on objects and
morphisms as follows:
(1) The functor H : M¢ — (—=O,M) x M is defined on objects by

i

H(X): XOMe& X —2 X0,MOM & XO,M

and on morphisms by
[aDCM 0]

H(a): H(X) H(X").

(2) The functor U : (=O.M) x M® — M is defined on objects by U(a : X —
X0O.M) = domain(er) = X and on morphisms by U(y : @ — ) = v : X — Y, where
G6:Y —-YOM.

(3) The zero functor Z : MY — (—=0,M) x M is defined on objects by Z(X) =0 :
X — X0O.M and on morphisms by Z(v: X —Y)=~:a— (3, where 5:Y — YO.M.

(4) The kernel functor K : (—=O0.M) x M — M is defined on objects by K(a: X —
XO.M) = kera and on morphisms by K(y: a — 3) = |kera, where §:Y — YO M.

Dually, we have the following notions.
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Definition 2.8 For the endofunctor h.(M,—) : M — MY, there are pairs of adjoint

functors

MC %% ME  ho(M,—) %% ME (2.4)

which satisfy the relations
CT =idpe,UZ = idpc.

They are defined on objects and morphisms as follows.
(1) The functor T : M — MY x h.(M,—) is defined on objects by

b

T(X) : he(M, X) @ ho(M, h(M, X)) —— X @ ho(M, X)

and on morphisms by

« 0
0 he(M, o)
[N

T(a) : T(X) T(X').

(2) The functor U : MY x h.(M,—) — M is defined on objects by U(a : h.(M, X) —
X) = codom(a) = X and on morphisms by U(y : @« — ) = v : X — Y, where 3 :
he(M,Y) =Y.

(3) The zero functor Z : MY — MY x h.(M,—) is defined on objects by Z(X) =0 :
he(M,X) — X and on morphisms by Z(y: X - Y)=~:a — 3, where §: ho(M,Y) = Y.

(4) The cokernel functor C' : MY x h.(M,—) — M is defined on objects by C(« :
he(M,X) — X) = cokera and on morphisms by K(v:a — ) =7 |cokera-

By Corollary 1.6 in [1], we have the following conclusions.

Proposition 2.9 By the Definition 2.7 and 2.8, we have the following.

(1) (1,U),(C, 2),(U,H), (Z,K) are adjoint pairs;

(2) Functors K, H are left exact, T', C are right exact and Z, U are exact;

(3) If P is projective in MY (resp. : MY x h.(M,—)), then T(P) (resp. : C(P)) is
projective in M€ x h.(M, —)) (resp. : M®). Consequently, 7 is projective in M x h.(M, —)
if and only if C(7) is projective in MY and m = T(C(n));

(4) If E is injective in M (resp. : (—0.M) x M%), then H(E) (resp. : K(E)) is
injective in (—0.M) x M (resp. : M®). Consequently, € is injective in (—=O,M) x MY if
and only if K (e) is injective in M and e = H (K (e)).

Definition 2.10 [6] A right C-comodule T, is called a tilting comodule if

(1) there is an exact sequence 0 — Ty — T3 — C — 0 with T; € AddT = {M |
M & M! =T% for some cardinal X} fori=1,2;

(2) ExztX(TX,T) =0 for any cardinal X;

(3) inj.dim T, < 1.

Definition 2.11 [6] Let T, be a tilting comodule. A right C-comodule X is called tilting
injective relative to T, if Com,.(—, X) preserves the exactness of sequence in CogenT = {M €
MC |0 — M — T for some cardinal X}.
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Definition 2.12 [11] A right C-comodule M is called Gorenstein injective if there
exists an exact sequence

E=.. . E?2EFE 'S E'SE .

of injective right C-comodules with M 2 ker(E® — E') and such that the functor Com.(E, —)
leaves it exact for any injective right C-comodule E.
Definition 2.13 [13] A right C-comodule M is called Gorenstein coflat if there exists
an exact sequence
E=-—E?—>FE'">E"-FE'— ...

of injective right C-comodules with M = ker(E° — E') and such that the functor —0.Q
leaves it exact for any projective left C-comodule Q.
Definition 2.14 [14] For any right C-comodule M € M the injective dimension of M

denoted by id.M, is defined as the least number n, such that there is one injective resolution
O—-M-—-FEy—---—F —FE,—0

and there is no shorter injective resolution for M. If there exists no such n, we say that the
injective dimension of M is infinite, id.M = oc.
Definition 2.15 [14] The (right)global dimension of the coalgebra C' is defined as

rgl.dimC = sup{id.M; M € M°}.

Similarly, one may have the definition of left global dimension of C.

3 Bounds for the Global Dimension of ' =C x M

In this section, by the concept of functors in Definition 2.7, we will get the upper bound
of the global dimension of T'.

Lemma 3.1 Let C be a semiperfect coalgebra and M be a C-bicomodule. Then the
trivial extension of C' by M is also semiperfect.

Proof By the assumption, C is a semiperfect coalgebra that is the category M¢ has
enough projectives. By [1, Proposition 1.11 and Proposition 1.13], we have the categories
MEC X h(M, =), (—=0.M) x M and MM those are all isomorphic. So we only need to
prove that the category M x h.(M, —) has enough projectives. Suppose P is projective in
M and that o — o” is an epimorphism in M® x h.(M,—). Let D = M x h.(M,—),
then we have

Comp (TP, a) Comp (TP, a")

L

Com e (P, Ua) — Compc (P, Ua”).

But Ua — Ucq"” is an epimorphism. Since P is projective in MY, it follows that the
homomorphism Comp (TP, a) — Comp (TP, ") is surjective. Thus, we have that TP is a
projective right C' x M-comodule (more details see [1, Corollary 1.6 and Corollary 1.7]).
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Lemma 3.2 Let C be a semiperfect coalgebra, M be a C-bicomodule and I' = C' x M
be a trivial extension of C' by M. Let X € M®. Then

idr Z(X) < 1+ max{idp Z(Q 1(X)), idp Z(M)}.

Proof Let a: X — E be an injective envelope of X with cokernel Q7! (X). Then we
have a short exact sequence of I'-comodules:

0 X EO.M & E EO.M & Q' (X)

| | |

0— Xo0.M —= FO.MO.M & EO.M — EO.MO.M ¢ Q1 (X)0.M —0
where the middle term is an injective I'-comodule. Then we get
idrZ(X) < 1+idp(FO.M @ Q' (X) - EO.MO.M & Q' (X)0.M).
Next, we have the following exact commutative diagram

0

EO.M EOM @ Q7 '(X)

| | |

0 — EO.MO.M — EO.MOM & Q1 (X)0,M — Q7 (X)0,M — 0

0

and so we obtain

idp(EO.M @ Q;Y(X) - FO.MO.M & Q. H(X)0O.M)
< max{idrZ(EO.M),idrZ(Q; (X))}

It follows from idrZ(FO.M) < idrZ(M) that
idrZ(X) < 1+ max{idprZ(Q71 (X)), idr Z(M)}.

Proposition 3.3 Let C be a semiperfect coalgebra, M be a C-bicomodule and I' =
C x M be a trivial extension of C' by M. Then

gl.dimI’ < gl.dimC + idr Z(M) + 1.
Proof Let X be a right C-comodule. We will first prove that
1drZ(X) <id. X +idrZ(M) + 1.

If id.X = oo, then the result follows.
Assume that id.X = n. Applying Lemma 3.2 first to Z(X) and then to Z(Q; (X)), we
get
idr Z(X) < 2 + max{idp Z(Q;%(X)), idp Z(M)}.
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Continuing in this fashion, we obtain
idr Z(X) < n+ max{idr Z(2."(X)),idr Z(M)},

idp Z(Q,"(X)) < 1+ max{idpZ(Q; "Y(X)),idp Z(M)} = 1+ idp Z(M).

Hence
idrZ(X) < n+ 1 +idr Z(M) = id X + idp Z(M) + 1.
By the definition of global dimension of a coalgebra, we have idr Z(X) < gl.dimC+idrZ(M )+
1. Furthermore, we get
gl.dimI’ < gl.dimC + idr Z(M) + 1.
Corollary 3.4 Let C be a semiperfect coalgebra, M be a C-bicomodule and I' = C'x M
be a trivial extension of C by M. If id.M = idprZ (M), then

gl.diml’ <2 - gl.dimC + 1.

Proof It follows from idrZ(M) = id.M < gl.dimC and Proposition 3.3.

4 Tilting Comodules over I' = C' x M

In this section, we shall study tilting comodules over the trivial extension of a coalgebra
C by a bicomodule M.

Lemma 4.1 Let C be a semiperfect coalgebra, M be a coflat left C-comodule and
r=CxM. If XeM®and 0 — X - Iy - I, — I, — --- is an injective resolution of
X in M, then 0 — XO.I' - [,0.I' - ,O.I — IL,O.JI — --- is an injective resolution of
X0O.I in M.

Proof It follows from [15, Proposition 1] that I;0.I" is an injective I'-comodule.

Theorem 4.2 Let C be a semiperfect coalgebra, M be a coflat left C-comodule and
I'=Cx M. If X is a tilting right C-comodule and X0O_.M is cogenerated by X, then XO.I'
is a tilting right I'-comodule.

Proof Firstly, since X is a tilting right C-comodule, it follows that inj.dimX < 1.

Then we get an injective resolution of X as follows.
0—-X—1,—1, —0 (4.1)
where Iy, I are injective right C-comodules. Hence, we have an exact sequence
0—Xxoorl -0 —nol —0 (4.2)

which is an injective resolution of XO.I', where I,0O.I" and I;0.I" are injective I'-comodules.
Thus, inj.dim(X0O.T) < 1.
Secondly, applying the functor Comp(XO.I', —) on the exact sequence (4.2), we have
the following long exact sequence
0 — Comp(XO.I', XO.I') — Comp(XO.T, [,O.T) — Comp(XO.I', [,O.T) —
Exti(XO. I, X0OI) — Exth(XO.I, 1,0 — Exti (X0, LOJI) — ---



290 Journal of Mathematics Vol. 41

Since IO, I" and I;0.I" are both injective I'-comodules, we obtain that
Exti(X0O.I, [,0.I) = Exti (X0, [,0T) = 0.
By the adjoint isomorphism, we have

Comp(X0O.I', XO.I') 2 Com,(hr(I', XO.I'), X) = Com.(XO.I', X),
Comp(XO,T, I,0.I) & Com, (hr (T, XO,T), Ip) = Com,(XO,T, I),
Comp(XO.I', [;O.T) = Com.(hr (", XO.I'), I) = Com.(XO.T, I}).

Applying the functor Com.(XO.I', —) on the exact sequence (4.1), we have the following

long exact sequence
0 — Com.(X0O.I, X) — Com.(X0O.I, Ij) — Com.(XO.I',I;) —
Ext!(XO.T,X) — Ext/(XO.T,I) — Ext!(XO.I,L) — -
Because [y and I; are injective, we obtain that Fzt!(XO.I,Iy) = Extl(XO.[I,1;) = 0.
Next, it suffices to prove that Extl(XO.I', X) = 0. Since inj.dimX < 1, it follows by [16,
Corollary 2.12] that there exist the following isomorphisms:
Extl(X0.I,X) = DCom.(r 'X,X0O.T),
DCom.(77'X,X) = Extl(X,X)=0,
DCom,(77'X, X0O.M) = Ext)(XO.M,X)=0.

Therefore, we have

DCom,(77'X, X0, ') = DCom.(r'X, X @ (XO.M))
DCom, (7' X, X)IDCom,(r ' X, XO,M) = 0.

That is, Fzt! (X0, X) = 0 and we know that the functor Com.(XO.I', —) leaves the
sequence (4.1) exact. Hence, we obtain that the functor Comp(XO.I', —) keeps the sequence
(4.2) exact. Indeed, by the above adjoint isomorphism and the functor Com.(XO.T', —)

leaves the sequence (4.1) exact, we have the following commutative diagram:

Comp(X 0., I,0I") — Comp(X0O.I', [;0.I') —> Exth(X0.T, XO.I)

: i: |

Com.(XO.I', I;) —— Com,.(X0O.TI', Iy) 0

It is easy to get the following exact sequence
0 — Comrp(X0O.I', XO.I') — Comp(XO.I, [,O.I') - Comp(XO.I', ;O.T) — 0.

So Eztl(XO.I', X0O.TI) = 0.
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Finally, since X is a right C'-comodule, there exists an exact sequence
0—-X,— X, —-C—0,
where X, X, € AddX. Applying the exact functor —O.I", we get the short exact sequence
0— X,0.I— X,0I —Cco.I — 0,

where X;0.T, X,0O,I' € Add(XO,I).

Therefore, XO.I is a tilting I'-comodule.

Lemma 4.3 Let C be a semiperfect coalgebra, M be a coflat left C-comodule and
I'=C x M. Then the functor H : M — (—0.M) x M is exact.

Proof Assume that there is an exact sequence 0 — X — Y — Z — 0 in MC.

Applying the exact functor —O.I" on the above sequence, we have that the exact sequence
0—-XxoJl-YOI—-ZO0J0I —0
is equivalent to the exact sequence
0o—-XOMeX—-=YOMeY —-Z0O0M® Z — 0.

By Proposition 2.6, we get an exact sequence in (—0.M) x M:

XO.Me X YOMaeY ZOMe Z

l | |

Xo.Mo.Me X0 M>——YOMOMepYO.M—Z0MO.M ® Z0O_.M.

That is, we obtain a short exact sequence 0 — H(X) — H(Y) — H(Z) — 0 in (—O.M) x
MCE. Thus, the functor H : M® — (—=0.M) x M is exact.

Lemma 4.4 Let C be a semiperfect coalgebra, M be a coflat left C-comodule and
I' = C x M. If the functor H : M% — (=0,M) x M is fully faithfull and X is a tilting
right C-comodule, then

(1) the sequence 0 — H(X,) — H(X;) — H(C) — 0 is exact in (—=0.M) x M if and
only if 0 — X5 — X; — C — 0 is exact in MY, where X; € AddX for i =1,2;

(2) Exth(H(X)A, H(X)) = 0 if and only if Ext}(X*, X) = 0;

(3) inj.dimH (X) = inj.dimX <1

Proof (1) The proof follows from that H and U are exact functors.

(2) By the assumption, X is a tilting right C-comodule and inj.dimX < 1. Then there
exists an injective resolution

0—-X—Ey—E —0. (4.3)

of X, where Ey, E; are injective right C-comodules. If Ezt!(X* X) = 0, then applying

covariant functor Com.(X*, —) on the exact sequence (4.3), we get the exact sequence

0 — Com. (X%, X) — Com.(X*, Ey) — Com.(X* E;) — 0.
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Applying the exact functor H on the sequence (4.3), there exists an injective resolution
0— H(X)— H(Ey) — H(E;) — 0 (4.4)

of H(X) in (—=O.M) x M since the functor H preserves injective comodules. Applying the

covariant functor Comp(H(X)*, —) on the sequence (4.4), we have the long exact sequence

0 — Comp(H(X)*, H(X)) — Comp(H(X)* H(E,)) — Comp(H(X)* H(E,)) —
Extp(H(X)A H(X)) — Extp(H(X)* H(Ey)) — BExtp(H(X)» H(E,)) — ---

Since H(Ey) and H(E;) are injective, Ext:(H(X)* H(Ey)) = Exti(H(X)* H(E,)) = 0.
We know that Com,.(X*, Ey) — Com.(X?*, E,) is an epimorphism and the functor H is fully
faithful, then Comr(H (X)*, H(Ey)) — Comr(H(X)*, H(E))) is also an epimorphism. Thus
Exth(H(X)* H(X)) = 0. Similarly, if Extl(H(X), H(X)) = 0, then Ext}(X* X) =0
since the functor U is exact.

(3) Firstly, we prove that inj.dimH (X) < inj.dimX. By the assumption, X is a tilting
right C-comodule and inj.dimX < 1. Then there exists an injective resolution 0 — X —
Ey — E; — 0 of X, where Ey, E; are injective right C'-comodules. Since the functor H is
exact, it follows that inj.dimH (X) < inj.dimX.

Next, we prove that inj.dimX < inj.dimH (X). Assume that inj.dimH(X) = n < oco.

There is a short exact sequence
0— X 2% Ey— Ky— 0,
where Ej is an injective envelope of X and Ky = cokerag. Then we have an exact sequence
0 — H(X) — H(E) — H(Ko) — 0

since the functor H is exact. Continuing in this fashion, we could take a monomorphism
a1 : Ko — FE1, where F; is an injective envelope of Ky and K; = cokera;. Applying the

exact functor H on the exact sequence
0—-X%E,— E, — K, —0.
We obtain an exact sequence

Since inj.dimH (X) = n < oo, till step n we obtain an exact sequence

0— H(X)— H(Ey) - HE,) — -+ — H(E,_1) — HK,_1) — 0,

where H(E,_1) is an injective right I'-comodule. Then applying the functor U on the above

sequence, we get an exact sequence

0 X—-FE—E —.---—F,_1—-K,1—0.
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Thus, we have inj.dimX < n = inj.dimH (X). So inj.dimX = inj.dimH (X).

Theorem 4.5 Let C be a semiperfect coalgebra, M be a coflat left C-comodule and
I' = C x M. If the functor H : M® — (—=0O.M) x M€ is fully faithfull, then X is a tilting
right C-comodule if and only if H(X) is a tilting right I-comodule.

Proof By Lemma 4.4, the sufficiency is easy to know.

Conversely, we assume that X is a right C-comodule and H(X) is a tilting right I'-
comodule. By the assumption, there exists an exact sequence 0 — H(X;) — H(X;) —
H(C) — 0in (—0.M) x MY, where X; € AddX for i = 1,2. Since the functor U is exact,
we obtain that there exists an exact sequence 0 — X, — X; — C' — 0 in M.

By the assumption, inj.dimH(X) < 1 and the exact functor H preserves injectives, it

follows that there is an exact sequence
0— H(X)— H(Ey) — H(E;) — 0

in (—O,M) x M®, where E, and E; are injective in M®. Then applying the exact functor

U on the above sequence, we get an exact sequence
0—-X—FEy—FEF —0

in M. Thus, we have inj.dimX < 1.

Since H(X) is a tilting right T'-comodule, we have Exti(H(X)*, H(X)) = 0. It is easy
to obtain that Comp(H(X)*, H(Ey)) — Comp(H(X), H(E;)) is an epimorphism. Since
the functor H is fully faithful, U is exact and left adjoint to H, we have that Com.(X*, E;) —
Com,(X*?, E) is also an epimorphism. Thus, we have Extl(X*, X) = 0.

Lemma 4.6 Let C be a semiperfect coalgebra, M be a coflat left C-comodule and
I'=C x M. Then

(1) If L € CogenX, then LO.I" € Cogen(XO.I');

(2) If L € CogenX, then H(L) € CogenH (X).

Proof (1) Since L € CogenX, there exists an index set A such that the sequence
0 - L — X" is exact. Then we get an exact sequence 0 — LO.I — XAO.T since the
functor —0O.I" is exact. Since the functor —O.I" preserves products, it follows that the
sequence 0 — LO.I' — (XO.I)" is also exact. Thus, LO.I' € Cogen(X0O.I).

(2) If L € CogenX, then there exists an index set A such that the sequence 0 — L — X
is exact. Applying the exact functor H, we get an exact sequence 0 — H (L) — H(X?%).
The functor H is left exact and preserves products, since it has left adjoint. It follows that
the sequence 0 — H(L) — H(X)" is exact. Thus, H(L) € CogenH (X).

Theorem 4.7 Let C be a semiperfect coalgebra, M be a coflat left C-comodule
and I' = C' x M. The functor H : M® — (=O.M) x MY is fully faithfull and XO.M is
cogenerated by X. Then

(1) X is a tilting injective right C-comodule if and only if H(X) is a tilting injective
right I'-comodule;
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(2) If X is a tilting injective right C-comodule, then XO_.T" is a tilting injective right
I'-comodule.

Proof (1) X is a tilting injective right C-comodule if and only if Extl(L,X) = 0
for any L € CogenX (see [6, Proposition 3.2]). By Lemma 4.6 and Lemma 4.4(2), for
any L € CogenX, Ext!(L,X) = 0 if and only if Fztl.(H(L),H(X)) = 0 for any H(L) €
CogenH (X). And by [6, Proposition 3.2] again, we know that X is a tilting injective right
C-comodule if and only if H(X) is a tilting injective right T'-comodule.

(2) It follows from Theorem 4.2 that if 7" is a tilting right C-comodule, then 70T
is a tilting right I'-comodule. Since X is a tilting injective right C-comodule, it follows
that the functor Com.(—, X) leaves exact in CogenT'. It suffices to prove that the functor

Comrp(—, XO.I') leaves exact in Cogen(TO.I"). We take an exact sequence
0=D—E—F—0 (4.5)
of right I'-comodules in Cogen(TO,.I'). Since Cogen(TO.I') = ker Ext:(—,TO.T'), we obtain
Extl.(D,TO.I") & Exth(E,TO.T) & Exti(F,TO.T) = 0.
Applying the functor Comr(—, TO.T") on the sequence (4.5), we obtain a short exact sequence
0 — Comr(F,T0.I) — Comp(F,TO.I') — Comrp(D,T0O.I) — 0.
It follows from adjoint isomorphism that

Comr (D, T0O.I") = Com.(hr(I', D),T) = Com.(D,T),
Comr(F,T0.I") = Com,(hr(I', E),T) = Com.(E,T),
Comp(F,T0.I") = Com.(hr(I', F),T) = Com.(F,T).

Thus, we get a short exact sequence
0 — Com.(F,T) — Com.(E,T) — Com.(D,T) — 0

where D, E, F € CogenT. Applying the functor Comr(—, XO.T") on the sequence (4.5), we

have the long exact sequence

0 —Comr(F,X0.I) — Comrp(F, X0O.I) — Comp(D, XO.I') —
Exth(F,X0I') — Exti(E,X0.T) — Exth(D, XOI) — - --

It follows from adjoint isomorphism that

Comr(D, X0O.I") = Com.(hr (T, D), X) = Com.(D, X),
Comr(E, X0O.I") = Com.(hr(T', E), X) = Com.(E, X),
Comr(F, X0O.I') = Com.(hr(T, F), X) = Com.(F, X).
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Since the functor Com.(—,X) leaves exact in CogenT, it follows that Comr(—, XO.I')
leaves the sequence (4.5) exact. That is, Comp(—, XO.I') leaves the sequence exact in
Cogen(TO.T"). Thus, XO.I is a tilting injective right I'-comodule relative to TO.T.

5 Gorenstein Injective Comodules over I' = C' x M

In this section, we construct Gorenstein injective comodules over I' = C'x M and obtain
the equivalent condition for a comodule to be a Gorenstein injective I'-comodule.

Proposition 5.1 Let C be a semiperfect coalgebra, M be a coflat left C'-comodule and
I'=Cwx M. If X is a Gorenstein injective right C-comodule, then XO_.I" is a Gorenstein
injective right I'-comodule.

Proof By the assumption, X is a Gorenstein injective right C'-comodule, then there

exists an exact sequence
E=... o2 B LB S B ...

of injective right C-comodules with X & ker(E° — E') and such that the functor Com,(E, —)
leaves it exact for any injective right C-comodule E. Applying the exact functor —O.I" on

the sequence &, we get the following exact sequence:

’

E=...-F*0I'-E'0l'-EOl—EOL—---

where each E'0.T is an injective I'-comodule. Next, we prove that the functor Comp (W, —)
is applied on the sequence £ and leaves exact for any injective T-comodule W. It follows

from adjoint isomorphism that
Comp(W, E‘O.T") = Come (hr (L, W), E*) = Come(W, EY).

Since W is an injective I'-comodule, W can be represented by w : W — WO.M. By
the definition of an injective comodule, if we have a monomorphism ~ : a — ([, where
a: N — NOM and 8 : N' — N'O.M, then for any morphism o : @ — w, there exists
a morphism 7 : § — w, such that 0 = 7v. It is easy to see that W is also an injective
C-comodule. Therefore, Comp(W,—) applied on the sequence &’ leaves exact since the
functor Com, (W, —) leaves £ exact. Finally, since X = ker(E° — E%), it follows that
X0O.I & ker(E° — EYO.I' & ker(E°O0.I' - E'O.T"). Thus XO.I' is a Gorenstein injective
I'-comodule.

Proposition 5.2 Let C be a semiperfect coalgebra, M be a coflat left C-comodule
and I' = C x M. Then X is a Gorenstein injective right C-comodule if and only if H(X) is
a Gorenstein injective right I'-comodule.

Proof Let X be a Gorenstein injective right C-comodule, then there exists an exact
sequence

E=-. -5 E?2FE 'S E'S BV
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of injective right C-comodules with X = ker(E° — E') and such that the functor Com,(E, —)
leaves it exact for any injective right C'-comodule E. By Lemma 4.3 and Proposition 2.9,

we have an exact sequence
HE& =---—HE?*)—-HE"') — HE") - HE") — -

where each H(E?) is injective in (—0,M) x M® and H(X) = H(ker(E° — E')), since the
functor H : MY — (=0.M) x M is exact and preserves injectivity.

Next, we prove that the functor Com(_g, ar)xac (€, —) preserves the sequence H (&)
exact for any injective object € € (—0O,M) x M. Tt follows from Proposition 2.9 that

Com_onryume (€6 H(E)) = Com(—s, ansme (H(K (), H(E))
>~ Compmc(UH(K(€)),E) = Compaqe (K (€),E).

Since Com e (K (€), €) is exact, where K (€) in M€ is injective, Com_g_arwme (€, H(E)) is
exact. Thus, H(X) € (—0.M) x M¢ is Gorenstein injective.
Conversely, if H(X) € (—0.M) x M is Gorenstein injective, there exists an exact

sequence of injective comodules:
F=---—HFE? —-HKE"') - HE") - HE") — -

where each H(E') is an injective right I'-comodule with H(X) = ker(H(E®) — H(E"))
and such that the functor Com_g,ar) e (€, —) leaves it exact for any injective object € €
(—0.M) x M. Applying the exact functor U on the sequence F, we obtain an exact
sequence

UF)=—-E?*-E'-E"-E"— ...

and X & ker(EY — E'). Next, we prove that the functor Compc (K (€), —) preserves the
sequence U(F) exact for any injective object € € (—=0.M) x M and so K(e) € MY is

injective. By Proposition 2.9, we have
Com e (K (€),U(F)) = Com(—a,myxme (H(K(€)), F) = Com(—ao,m)ume (€, F).

Since Com_g_aryxurc (€, F) is exact, it follows that Com e (K (€), U(F)) is also exact. Thus,
X is a Gorenstein injective right C-comodule.

Corollary 5.3 Let C be a semiperfect coalgebra, M be a coflat left C'-comodule and
I'=C x M. Then XO.I is a Gorenstein injective right I'-comodule if and only if XO.I" is
a Gorenstein coflat right I'-comodule.

Proof It follows from [13, Proposition 3.4] and Lemma 3.1.
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