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Abstract: In this paper, we study the tilting comodules over trivial extensions of coalgebras.

On the basis of the tilting theory, we get the upper bound of the global dimension of trivial

extensions of coalgebras, and then we obtain the equivalent condition for one comodule to be a

tilting comodules over trivial extensions of coalgebras. These results generalize the conclusion of

tilting modules.
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1 Introduction

The trivial extensions of algebras play an important role in ring theory and representa-
tion theory of algebras, especially in triangular matrix rings and triangular matrix algebras.
In 1975, Fossum [1] made a systematic and comprehensive summary of the trivial extensions
of abelian categories and algebras. On the basis of tilting theory, in 1985, Miyachi [2] ob-
tained the equivalent condition of tilting modules over the trivial extensions of artin algebras,
and applied it to the triangular matrix algebras. Dually, the trivial extensions of coalgebras,
triangular matrix coalgebras [3] and especially the category of comodules over the triangular
matrix coalgebras have attracted extensive attension of scholars at home and abroad. In
2008, Zhu [4] gave the definition and properties of trivial extensions of coalgebras. In 1998,
Wang [5] defined the concepts of classical tilting comodules for comodule categories. In 1999,
Wang [6] introduced the concepts of tilting comodules and tilting injective comodules over
coalgebras. In particular, he proved that each tilting comodule induces a torsion theory.
In 2001, Simson [7] defined the concepts of cotilting comodules and he hoped to develop
a (co)tilting theory for comodule categories. In 2008, Simson [8] introduced the notion of
an f-cotilting comodule and a cotilting procedure for coalgebras, and constructed a pair of
cotilting functors of Brenner-Butler type for coalgebras. In 2010, Kosakowska and Simson
[9] gave the definition of triangular matrix coalgebras and studied its properties. In 2016,
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Fu [10] gave the equivalent condition of tilting comodules over the triangular matrix coalge-
bras. In 1999, Asensio [11] introduced Gorenstein injective comodules as a generalization of
injective comodules. Inspired by this, we aim to generalize the triangular matrix coalgebras
and obtain the bound of the global dimension of trivial extensions of coalgebras, and con-
struct the tilting comodules and Gorenstein injective comodules over the trivial extensions
of coalgebras as well.

2 Preliminaries

Let K be a fixed field, and C be a K-coalgebra. MC denotes the category of right
C-comodules. Suppose that M , in addition to being a left C-comodule with structure map
ρl : m 7→ Σm[−1]⊗m[0], is also a right C-comodule with structure map ρr : m 7→ Σm[0]⊗m[1]

and that (idc⊗ρr)ρl = (ρl⊗idc)ρr. Let C⊕M = {(c,m)|c ∈ C,m ∈ M}, with componentwise
addition and multiplication given, elementwise, by (c,m)(c′,m′) = (cc′, cm′ + mc′). C ⊕M

is made into a coalgebra in [4] by defining comultiplication ∆ : C⊕M → (C⊕M)⊗(C⊕M)
and the counit ε : C ⊕M → k as follows:

∆(c,m) = Σ(c(1), 0)(c(2), 0) + Σ(m[−1], 0)(0,m[0]) + Σ(0,m[0])(m[1], 0) ε : (c,m) 7→ εc(C)

which is called the trivial extension of C by M , denoted by Γ = C nM.

Definition 2.1 [12] A right C-comodule X is quasi-finite, if dimComc(F, M) < ∞ for
all finite dimensional comodule F .

Remark Unless otherwise specified, this thesis is all conducted under the condition
of quasi-finite comodules.

Definition 2.2 [12] If M is a quasi-finite right C-comodule, we denote by hc(M,−) the
left adjoint functor of −2cM , and we have hc(M, N) = lim

−→
DComc(Nλ,M), where {Nλ}λ is

the family of finite dimensional subcomodules of N .
Definition 2.3 Let F = −2cM : MC →MC be a left exact endofunctor and M be a

C-bicomodule. We define the left trivial extension of MC by F , denoted by F oMC .

(1) An object in F oMC is a right C-comodule morphism α : X → X2cM such that
the compositionX

α−→ X2cM
α2cM−−−−→ X2cM2cM is zero. i.e., (α2cM) ◦ α = 0.

(2) If α : X → X2cM and β : Y → Y 2cM are objects in F oMC , then a morphism
γ : α → β is a morphism γ : X → Y such that the diagram

X

γ

²²

α // X2cM

γ2cM

²²
Y

β // Y 2cM

(2.1)

is commutative.
(3) Composition in (−2cM)oMC is just composition in MC .
Definition 2.4 Let G = hc(M,−) : MC →MC be a right exact endofunctor and M

be a C-bicomodule. We define the right trivial extension of MC by G, denoted by MC nG.
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(1) An object in MC n G is a right C-comodule morphism α : hc(M, X) → X such
that the composition α ◦ hc(M, α) = 0.

(2) If α : hc(M, X) → X and β : hc(M, Y ) → Y are objects in MC n G, then a
morphism γ : α → β is a morphism γ : X → Y such that the diagram

hc(M, X)

hc(M,γ)

²²

α // X

γ

²²
hc(M, Y )

β // Y

(2.2)

is commutative.
(3) Composition in MC nG is just composition in MC .
From [1, Proposition 1.1 and Corollary 1.2], we have the following characterizations of

MC n hc(M,−) and (−2cM)oMC .
Proposition 2.5 MC n hc(M,−) and (−2cM)oMC are abelian categories.
Proposition 2.6 (1) A sequence of objects in MC n hc(M,−) are exact if and only if

the sequence of codomains is exact;
(2) A sequence of objects in (−2cM) oMC are exact if and only if the sequence of

domains is exact.
The next two definitions 2.7 and 2.8 come from [1].
Definition 2.7 For the endofunctor −2cM : MC → MC , there are pairs of adjoint

functors

MC
Z // (−2cM)oMC

K
oo

U // Mc

H
oo (2.3)

which satisfy the relations KH = idMC , UZ = idMC . They are defined on objects and
morphisms as follows:

(1) The functor H : MC → (−2cM)oMC is defined on objects by

H(X) : X2cM ⊕X

[
0 0

1 0

]

−−−−→ X2cM2cM ⊕X2cM

and on morphisms by

H(α) : H(X)

[
α2cM 0

0 α

]

−−−−−−−→ H(X ′).

(2) The functor U : (−2cM) oMC → MC is defined on objects by U(α : X →
X2cM) = domain(α) = X and on morphisms by U(γ : α → β) = γ : X → Y , where
β : Y → Y 2cM .

(3) The zero functor Z : MC → (−2cM) oMC is defined on objects by Z(X) = 0 :
X → X2cM and on morphisms by Z(γ : X → Y ) = γ : α → β, where β : Y → Y 2cM .

(4) The kernel functor K : (−2cM)oMC →MC is defined on objects by K(α : X →
X2cM) = kerα and on morphisms by K(γ : α → β) = γ |kerα, where β : Y → Y 2cM .

Dually, we have the following notions.
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Definition 2.8 For the endofunctor hc(M,−) : MC →MC , there are pairs of adjoint
functors

MC
T // MC n hc(M,−)
U

oo
C // MC

Z
oo (2.4)

which satisfy the relations

CT = idMC , UZ = idMC .

They are defined on objects and morphisms as follows.
(1) The functor T : MC →MC n hc(M,−) is defined on objects by

T (X) : hc(M, X)⊕ hc(M, hc(M, X))

[
0 0

1 0

]

−−−−→ X ⊕ hc(M, X)

and on morphisms by

T (α) : T (X)

[
α 0

0 hc(M, α)

]

−−−−−−−−−→ T (X ′).

(2) The functor U : MC nhc(M,−) →MC is defined on objects by U(α : hc(M, X) →
X) = codom(α) = X and on morphisms by U(γ : α → β) = γ : X → Y , where β :
hc(M, Y ) → Y .

(3) The zero functor Z : MC →MC n hc(M,−) is defined on objects by Z(X) = 0 :
hc(M, X) → X and on morphisms by Z(γ : X → Y ) = γ : α → β, where β : hc(M, Y ) → Y .

(4) The cokernel functor C : MC n hc(M,−) → MC is defined on objects by C(α :
hc(M, X) → X) = cokerα and on morphisms by K(γ : α → β) = γ |cokerα.

By Corollary 1.6 in [1], we have the following conclusions.
Proposition 2.9 By the Definition 2.7 and 2.8, we have the following.
(1) (T,U), (C, Z), (U,H), (Z, K) are adjoint pairs;
(2) Functors K, H are left exact, T , C are right exact and Z, U are exact;
(3) If P is projective in MC (resp. : MC n hc(M,−)), then T (P ) (resp. : C(P )) is

projective in MCnhc(M,−)) (resp. : MC). Consequently, π is projective in MCnhc(M,−)
if and only if C(π) is projective in MC and π ∼= T (C(π));

(4) If E is injective in MC (resp. : (−2cM) oMC), then H(E) (resp. : K(E)) is
injective in (−2cM)oMC (resp. : MC). Consequently, ε is injective in (−2cM)oMC if
and only if K(ε) is injective in MC and ε ∼= H(K(ε)).

Definition 2.10 [6] A right C-comodule Tc is called a tilting comodule if
(1) there is an exact sequence 0 → T2 → T1 → C → 0 with Ti ∈ AddT = {M |

M ⊕M ′
i = T X for some cardinal X} for i = 1, 2;

(2) Ext1c(T
X , T ) = 0 for any cardinal X;

(3) inj.dim Tc ≤ 1.
Definition 2.11 [6] Let Tc be a tilting comodule. A right C-comodule X is called tilting

injective relative to Tc if Comc(−, X) preserves the exactness of sequence in CogenT = {M ∈
MC | 0 → M → T X for some cardinal X}.



No. 4 Tilting comodules over trivial extensions of coalgebras 287

Definition 2.12 [11] A right C-comodule M is called Gorenstein injective if there
exists an exact sequence

E ≡ · · · → E−2 → E−1 → E0 → E1 → · · ·

of injective right C-comodules with M ∼= ker(E0 → E1) and such that the functor Comc(E,−)
leaves it exact for any injective right C-comodule E.

Definition 2.13 [13] A right C-comodule M is called Gorenstein coflat if there exists
an exact sequence

E ≡ · · · → E−2 → E−1 → E0 → E1 → · · ·
of injective right C-comodules with M ∼= ker(E0 → E1) and such that the functor −2cQ

leaves it exact for any projective left C-comodule Q.
Definition 2.14 [14] For any right C-comodule M ∈MC the injective dimension of M

denoted by idcM , is defined as the least number n, such that there is one injective resolution

0 → M → E0 → · · · → E1 → En → 0

and there is no shorter injective resolution for M . If there exists no such n, we say that the
injective dimension of M is infinite, idcM = ∞.

Definition 2.15 [14] The (right)global dimension of the coalgebra C is defined as

rgl.dimC = sup{idcM ;M ∈MC}.

Similarly, one may have the definition of left global dimension of C.

3 Bounds for the Global Dimension of Γ = C nM

In this section, by the concept of functors in Definition 2.7, we will get the upper bound
of the global dimension of Γ.

Lemma 3.1 Let C be a semiperfect coalgebra and M be a C-bicomodule. Then the
trivial extension of C by M is also semiperfect.

Proof By the assumption, C is a semiperfect coalgebra that is the category MC has
enough projectives. By [1, Proposition 1.11 and Proposition 1.13], we have the categories
MC n hc(M,−), (−2cM)oMC and MCnM those are all isomorphic. So we only need to
prove that the category MC n hc(M,−) has enough projectives. Suppose P is projective in
MC and that α → α′′ is an epimorphism in MC n hc(M,−). Let D = MC n hc(M,−),
then we have

ComD(TP, α)

∼=
²²

// ComD(TP, α′′)

∼=
²²

ComMC (P, Uα) // ComMC (P, Uα′′).

But Uα → Uα′′ is an epimorphism. Since P is projective in MC , it follows that the
homomorphism ComD(TP, α) → ComD(TP, α′′) is surjective. Thus, we have that TP is a
projective right C nM -comodule (more details see [1, Corollary 1.6 and Corollary 1.7]).
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Lemma 3.2 Let C be a semiperfect coalgebra, M be a C-bicomodule and Γ = C nM

be a trivial extension of C by M . Let X ∈MC . Then

idΓZ(X) ≤ 1 + max{idΓZ(Ω−1
c (X)), idΓZ(M)}.

Proof Let α : X → E be an injective envelope of X with cokernel Ω−1
c (X). Then we

have a short exact sequence of Γ-comodules:

0 // X

²²

// E2cM ⊕ E

²²

// E2cM ⊕ Ω−1
c (X)

²²

// 0

0 // X2cM // E2cM2cM ⊕ E2cM // E2cM2cM ⊕ Ω−1
c (X)2cM // 0

where the middle term is an injective Γ-comodule. Then we get

idΓZ(X) ≤ 1 + idΓ(E2cM ⊕ Ω−1
c (X) → E2cM2cM ⊕ Ω−1

c (X)2cM).

Next, we have the following exact commutative diagram

0 // E2cM

²²

// E2cM ⊕ Ω−1
c (X)

²²

// Ω−1
c (X)

²²

// 0

0 // E2cM2cM // E2cM2cM ⊕ Ω−1
c (X)2cM // Ω−1

c (X)2cM // 0

and so we obtain

idΓ(E2cM ⊕ Ω−1
c (X) → E2cM2cM ⊕ Ω−1

c (X)2cM)

≤ max{idΓZ(E2cM), idΓZ(Ω−1
c (X))}.

It follows from idΓZ(E2cM) ≤ idΓZ(M) that

idΓZ(X) ≤ 1 + max{idΓZ(Ω−1
c (X)), idΓZ(M)}.

Proposition 3.3 Let C be a semiperfect coalgebra, M be a C-bicomodule and Γ =
C nM be a trivial extension of C by M . Then

gl.dimΓ ≤ gl.dimC + idΓZ(M) + 1.

Proof Let X be a right C-comodule. We will first prove that

idΓZ(X) ≤ idcX + idΓZ(M) + 1.

If idcX = ∞, then the result follows.
Assume that idcX = n. Applying Lemma 3.2 first to Z(X) and then to Z(Ω−1

c (X)), we
get

idΓZ(X) ≤ 2 + max{idΓZ(Ω−2
c (X)), idΓZ(M)}.
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Continuing in this fashion, we obtain

idΓZ(X) ≤ n + max{idΓZ(Ω−n
c (X)), idΓZ(M)},

idΓZ(Ω−n
c (X)) ≤ 1 + max{idΓZ(Ω−(n+1)

c (X)), idΓZ(M)} = 1 + idΓZ(M).

Hence
idΓZ(X) ≤ n + 1 + idΓZ(M) = idcX + idΓZ(M) + 1.

By the definition of global dimension of a coalgebra, we have idΓZ(X) ≤ gl.dimC+idΓZ(M)+
1. Furthermore, we get

gl.dimΓ ≤ gl.dimC + idΓZ(M) + 1.

Corollary 3.4 Let C be a semiperfect coalgebra, M be a C-bicomodule and Γ = CnM

be a trivial extension of C by M . If idcM = idΓZ(M), then

gl.dimΓ ≤ 2 · gl.dimC + 1.

Proof It follows from idΓZ(M) = idcM ≤ gl.dimC and Proposition 3.3.

4 Tilting Comodules over Γ = C nM

In this section, we shall study tilting comodules over the trivial extension of a coalgebra
C by a bicomodule M .

Lemma 4.1 Let C be a semiperfect coalgebra, M be a coflat left C-comodule and
Γ = C nM . If X ∈ MC and 0 → X → I0 → I1 → I2 → · · · is an injective resolution of
X in MC , then 0 → X2cΓ → I02cΓ → I12cΓ → I22cΓ → · · · is an injective resolution of
X2cΓ in MΓ.

Proof It follows from [15, Proposition 1] that Ii2cΓ is an injective Γ-comodule.
Theorem 4.2 Let C be a semiperfect coalgebra, M be a coflat left C-comodule and

Γ = CnM . If X is a tilting right C-comodule and X2cM is cogenerated by X, then X2cΓ
is a tilting right Γ-comodule.

Proof Firstly, since X is a tilting right C-comodule, it follows that inj.dimX ≤ 1.
Then we get an injective resolution of X as follows.

0 → X → I0 → I1 → 0 (4.1)

where I0, I1 are injective right C-comodules. Hence, we have an exact sequence

0 → X2cΓ → I02cΓ → I12cΓ → 0 (4.2)

which is an injective resolution of X2cΓ, where I02cΓ and I12cΓ are injective Γ-comodules.
Thus, inj.dim(X2cΓ) ≤ 1.

Secondly, applying the functor ComΓ(X2cΓ,−) on the exact sequence (4.2), we have
the following long exact sequence

0 → ComΓ(X2cΓ, X2cΓ) → ComΓ(X2cΓ, I02cΓ) → ComΓ(X2cΓ, I12cΓ) →
Ext1Γ(X2cΓ, X2cΓ) → Ext1Γ(X2cΓ, I02cΓ) → Ext1Γ(X2cΓ, I12cΓ) → · · ·
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Since I02cΓ and I12cΓ are both injective Γ-comodules, we obtain that

Ext1Γ(X2cΓ, I02cΓ) = Ext1Γ(X2cΓ, I12cΓ) = 0.

By the adjoint isomorphism, we have

ComΓ(X2cΓ, X2cΓ) ∼= Comc(hΓ(Γ, X2cΓ), X) ∼= Comc(X2cΓ, X),
ComΓ(X2cΓ, I02cΓ) ∼= Comc(hΓ(Γ, X2cΓ), I0) ∼= Comc(X2cΓ, I0),
ComΓ(X2cΓ, I12cΓ) ∼= Comc(hΓ(Γ, X2cΓ), I1) ∼= Comc(X2cΓ, I1).

Applying the functor Comc(X2cΓ,−) on the exact sequence (4.1), we have the following
long exact sequence

0 → Comc(X2cΓ, X) → Comc(X2cΓ, I0) → Comc(X2cΓ, I1) →
Ext1c(X2cΓ, X) → Ext1c(X2cΓ, I0) → Ext1c(X2cΓ, I1) → · · ·

Because I0 and I1 are injective, we obtain that Ext1c(X2cΓ, I0) = Ext1c(X2cΓ, I1) = 0.
Next, it suffices to prove that Ext1c(X2cΓ, X) = 0. Since inj.dimX ≤ 1, it follows by [16,
Corollary 2.12] that there exist the following isomorphisms:

Ext1c(X2cΓ, X) ∼= DComc(τ−1X, X2cΓ),

DComc(τ−1X, X) ∼= Ext1c(X, X) = 0,

DComc(τ−1X, X2cM) ∼= Ext1c(X2cM, X) = 0.

Therefore, we have

DComc(τ−1X, X2cΓ) = DComc(τ−1X, X ⊕ (X2cM))

= DComc(τ−1X, X)ΠDComc(τ−1X, X2cM) = 0.

That is, Ext1c(X2cΓ, X) = 0 and we know that the functor Comc(X2cΓ,−) leaves the
sequence (4.1) exact. Hence, we obtain that the functor ComΓ(X2cΓ,−) keeps the sequence
(4.2) exact. Indeed, by the above adjoint isomorphism and the functor Comc(X2cΓ,−)
leaves the sequence (4.1) exact, we have the following commutative diagram:

ComΓ(X2cΓ, I02cΓ)

∼=
²²

// ComΓ(X2cΓ, I12cΓ)

∼=
²²

// Ext1Γ(X2cΓ, X2cΓ)

²²
Comc(X2cΓ, I1) // Comc(X2cΓ, I0) // 0

It is easy to get the following exact sequence

0 → ComΓ(X2cΓ, X2cΓ) → ComΓ(X2cΓ, I02cΓ) → ComΓ(X2cΓ, I12cΓ) → 0.

So Ext1Γ(X2cΓ, X2cΓ) = 0.
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Finally, since X is a right C-comodule, there exists an exact sequence

0 → X2 → X1 → C → 0,

where X1, X2 ∈ AddX. Applying the exact functor −2cΓ, we get the short exact sequence

0 → X22cΓ → X12cΓ → C2cΓ → 0,

where X12cΓ, X22cΓ ∈ Add(X2cΓ).
Therefore, X2cΓ is a tilting Γ-comodule.
Lemma 4.3 Let C be a semiperfect coalgebra, M be a coflat left C-comodule and

Γ = C nM . Then the functor H : MC → (−2cM)oMC is exact.
Proof Assume that there is an exact sequence 0 → X → Y → Z → 0 in MC .

Applying the exact functor −2cΓ on the above sequence, we have that the exact sequence

0 → X2cΓ → Y 2cΓ → Z2cΓ → 0

is equivalent to the exact sequence

0 → X2cM ⊕X → Y 2cM ⊕ Y → Z2cM ⊕ Z → 0.

By Proposition 2.6, we get an exact sequence in (−2cM)oMC :

X2cM ⊕X

²²

// // Y 2cM ⊕ Y

²²

// // Z2cM ⊕ Z

²²
X2cM2cM ⊕X2cM // // Y 2cM2cM ⊕ Y 2cM // // Z2cM2cM ⊕ Z2cM.

That is, we obtain a short exact sequence 0 → H(X) → H(Y ) → H(Z) → 0 in (−2cM)o
MC . Thus, the functor H : MC → (−2cM)oMC is exact.

Lemma 4.4 Let C be a semiperfect coalgebra, M be a coflat left C-comodule and
Γ = C nM . If the functor H : MC → (−2cM) oMC is fully faithfull and X is a tilting
right C-comodule, then

(1) the sequence 0 → H(X2) → H(X1) → H(C) → 0 is exact in (−2cM)oMC if and
only if 0 → X2 → X1 → C → 0 is exact in MC , where Xi ∈ AddX for i = 1, 2;

(2) Ext1Γ(H(X)Λ,H(X)) = 0 if and only if Ext1c(X
Λ, X) = 0;

(3) inj.dimH(X) = inj.dimX ≤ 1
Proof (1) The proof follows from that H and U are exact functors.
(2) By the assumption, X is a tilting right C-comodule and inj.dimX ≤ 1. Then there

exists an injective resolution
0 → X → E0 → E1 → 0. (4.3)

of X, where E0, E1 are injective right C-comodules. If Ext1c(X
Λ, X) = 0, then applying

covariant functor Comc(XΛ,−) on the exact sequence (4.3), we get the exact sequence

0 → Comc(XΛ, X) → Comc(XΛ, E0) → Comc(XΛ, E1) → 0.
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Applying the exact functor H on the sequence (4.3), there exists an injective resolution

0 → H(X) → H(E0) → H(E1) → 0 (4.4)

of H(X) in (−2cM)oMC since the functor H preserves injective comodules. Applying the
covariant functor ComΓ(H(X)Λ,−) on the sequence (4.4), we have the long exact sequence

0 → ComΓ(H(X)Λ,H(X)) → ComΓ(H(X)Λ,H(E0)) → ComΓ(H(X)Λ,H(E1)) →
Ext1Γ(H(X)Λ,H(X)) → Ext1Γ(H(X)Λ,H(E0)) → Ext1Γ(H(X)Λ,H(E1)) → · · ·

Since H(E0) and H(E1) are injective, Ext1Γ(H(X)Λ,H(E0)) = Ext1Γ(H(X)Λ,H(E1)) = 0.
We know that Comc(XΛ, E0) → Comc(XΛ, E1) is an epimorphism and the functor H is fully
faithful, then ComΓ(H(X)Λ,H(E0)) → ComΓ(H(X)Λ,H(E1)) is also an epimorphism. Thus
Ext1Γ(H(X)Λ,H(X)) = 0. Similarly, if Ext1Γ(H(X)Λ,H(X)) = 0, then Ext1c(X

Λ, X) = 0
since the functor U is exact.

(3) Firstly, we prove that inj.dimH(X) ≤ inj.dimX. By the assumption, X is a tilting
right C-comodule and inj.dimX ≤ 1. Then there exists an injective resolution 0 → X →
E0 → E1 → 0 of X, where E0, E1 are injective right C-comodules. Since the functor H is
exact, it follows that inj.dimH(X) ≤ inj.dimX.

Next, we prove that inj.dimX ≤ inj.dimH(X). Assume that inj.dimH(X) = n < ∞.
There is a short exact sequence

0 → X
α0−→ E0 → K0 → 0,

where E0 is an injective envelope of X and K0 = cokerα0. Then we have an exact sequence

0 → H(X) → H(E0) → H(K0) → 0

since the functor H is exact. Continuing in this fashion, we could take a monomorphism
α1 : K0 → E1, where E1 is an injective envelope of K0 and K1 = cokerα1. Applying the
exact functor H on the exact sequence

0 → X
α0−→ E0 → E1 → K1 → 0.

We obtain an exact sequence

0 → H(X)
H(α0)−−−−→ H(E0) → H(E1) → H(K1) → 0.

Since inj.dimH(X) = n < ∞, till step n we obtain an exact sequence

0 → H(X) → H(E0) → H(E1) → · · · → H(En−1) → H(Kn−1) → 0,

where H(En−1) is an injective right Γ-comodule. Then applying the functor U on the above
sequence, we get an exact sequence

0 → X → E0 → E1 → · · · → En−1 → Kn−1 → 0.
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Thus, we have inj.dimX ≤ n = inj.dimH(X). So inj.dimX = inj.dimH(X).
Theorem 4.5 Let C be a semiperfect coalgebra, M be a coflat left C-comodule and

Γ = C nM . If the functor H : MC → (−2cM)oMC is fully faithfull, then X is a tilting
right C-comodule if and only if H(X) is a tilting right Γ-comodule.

Proof By Lemma 4.4, the sufficiency is easy to know.
Conversely, we assume that X is a right C-comodule and H(X) is a tilting right Γ-

comodule. By the assumption, there exists an exact sequence 0 → H(X2) → H(X1) →
H(C) → 0 in (−2cM)oMC , where Xi ∈ AddX for i = 1, 2. Since the functor U is exact,
we obtain that there exists an exact sequence 0 → X2 → X1 → C → 0 in MC .

By the assumption, inj.dimH(X) ≤ 1 and the exact functor H preserves injectives, it
follows that there is an exact sequence

0 → H(X) → H(E0) → H(E1) → 0

in (−2cM)oMC , where E0 and E1 are injective in MC . Then applying the exact functor
U on the above sequence, we get an exact sequence

0 → X → E0 → E1 → 0

in MC . Thus, we have inj.dimX ≤ 1.
Since H(X) is a tilting right Γ-comodule, we have Ext1Γ(H(X)Λ,H(X)) = 0. It is easy

to obtain that ComΓ(H(X)Λ,H(E0)) → ComΓ(H(X)Λ,H(E1)) is an epimorphism. Since
the functor H is fully faithful, U is exact and left adjoint to H, we have that Comc(XΛ, E0) →
Comc(XΛ, E1) is also an epimorphism. Thus, we have Ext1c(X

Λ, X) = 0.
Lemma 4.6 Let C be a semiperfect coalgebra, M be a coflat left C-comodule and

Γ = C nM . Then
(1) If L ∈ CogenX, then L2cΓ ∈ Cogen(X2cΓ);
(2) If L ∈ CogenX, then H(L) ∈ CogenH(X).
Proof (1) Since L ∈ CogenX, there exists an index set Λ such that the sequence

0 → L → XΛ is exact. Then we get an exact sequence 0 → L2cΓ → XΛ2cΓ since the
functor −2cΓ is exact. Since the functor −2cΓ preserves products, it follows that the
sequence 0 → L2cΓ → (X2cΓ)Λ is also exact. Thus, L2cΓ ∈ Cogen(X2cΓ).

(2) If L ∈ CogenX, then there exists an index set Λ such that the sequence 0 → L → XΛ

is exact. Applying the exact functor H, we get an exact sequence 0 → H(L) → H(XΛ).
The functor H is left exact and preserves products, since it has left adjoint. It follows that
the sequence 0 → H(L) → H(X)Λ is exact. Thus, H(L) ∈ CogenH(X).

Theorem 4.7 Let C be a semiperfect coalgebra, M be a coflat left C-comodule
and Γ = C nM . The functor H : MC → (−2cM) oMC is fully faithfull and X2cM is
cogenerated by X. Then

(1) X is a tilting injective right C-comodule if and only if H(X) is a tilting injective
right Γ-comodule;
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(2) If X is a tilting injective right C-comodule, then X2cΓ is a tilting injective right
Γ-comodule.

Proof (1) X is a tilting injective right C-comodule if and only if Ext1c(L,X) = 0
for any L ∈ CogenX (see [6, Proposition 3.2]). By Lemma 4.6 and Lemma 4.4(2), for
any L ∈ CogenX, Ext1c(L,X) = 0 if and only if Ext1Γ(H(L),H(X)) = 0 for any H(L) ∈
CogenH(X). And by [6, Proposition 3.2] again, we know that X is a tilting injective right
C-comodule if and only if H(X) is a tilting injective right Γ-comodule.

(2) It follows from Theorem 4.2 that if T is a tilting right C-comodule, then T2cΓ
is a tilting right Γ-comodule. Since X is a tilting injective right C-comodule, it follows
that the functor Comc(−, X) leaves exact in CogenT . It suffices to prove that the functor
ComΓ(−, X2cΓ) leaves exact in Cogen(T2cΓ). We take an exact sequence

0 → D → E → F → 0 (4.5)

of right Γ-comodules in Cogen(T2cΓ). Since Cogen(T2cΓ) = kerExt1Γ(−, T2cΓ), we obtain

Ext1Γ(D, T2cΓ) ∼= Ext1Γ(E, T2cΓ) ∼= Ext1Γ(F, T2cΓ) = 0.

Applying the functor ComΓ(−, T2cΓ) on the sequence (4.5), we obtain a short exact sequence

0 → ComΓ(F, T2cΓ) → ComΓ(E, T2cΓ) → ComΓ(D, T2cΓ) → 0.

It follows from adjoint isomorphism that

ComΓ(D, T2cΓ) ∼= Comc(hΓ(Γ, D), T ) ∼= Comc(D, T ),
ComΓ(E, T2cΓ) ∼= Comc(hΓ(Γ, E), T ) ∼= Comc(E, T ),
ComΓ(F, T2cΓ) ∼= Comc(hΓ(Γ, F ), T ) ∼= Comc(F, T ).

Thus, we get a short exact sequence

0 → Comc(F, T ) → Comc(E, T ) → Comc(D, T ) → 0

where D, E, F ∈ CogenT . Applying the functor ComΓ(−, X2cΓ) on the sequence (4.5), we
have the long exact sequence

0 →ComΓ(F, X2cΓ) → ComΓ(E, X2cΓ) → ComΓ(D, X2cΓ) →
Ext1Γ(F, X2cΓ) → Ext1Γ(E, X2cΓ) → Ext1Γ(D, X2cΓ) → · · ·

It follows from adjoint isomorphism that

ComΓ(D, X2cΓ) ∼= Comc(hΓ(Γ, D), X) ∼= Comc(D, X),
ComΓ(E, X2cΓ) ∼= Comc(hΓ(Γ, E), X) ∼= Comc(E, X),
ComΓ(F, X2cΓ) ∼= Comc(hΓ(Γ, F ), X) ∼= Comc(F, X).
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Since the functor Comc(−, X) leaves exact in CogenT , it follows that ComΓ(−, X2cΓ)
leaves the sequence (4.5) exact. That is, ComΓ(−, X2cΓ) leaves the sequence exact in
Cogen(T2cΓ). Thus, X2cΓ is a tilting injective right Γ-comodule relative to T2cΓ.

5 Gorenstein Injective Comodules over Γ = C nM

In this section, we construct Gorenstein injective comodules over Γ = CnM and obtain
the equivalent condition for a comodule to be a Gorenstein injective Γ-comodule.

Proposition 5.1 Let C be a semiperfect coalgebra, M be a coflat left C-comodule and
Γ = C nM . If X is a Gorenstein injective right C-comodule, then X2cΓ is a Gorenstein
injective right Γ-comodule.

Proof By the assumption, X is a Gorenstein injective right C-comodule, then there
exists an exact sequence

E ≡ · · · → E−2 → E−1 → E0 → E1 → · · ·

of injective right C-comodules with X ∼= ker(E0 → E1) and such that the functor Comc(E,−)
leaves it exact for any injective right C-comodule E. Applying the exact functor −2cΓ on
the sequence E , we get the following exact sequence:

E ′ ≡ · · · → E−22cΓ → E−12cΓ → E02cΓ → E12cΓ → · · ·

where each Ei2cΓ is an injective Γ-comodule. Next, we prove that the functor ComΓ(W,−)
is applied on the sequence E ′ and leaves exact for any injective Γ-comodule W . It follows
from adjoint isomorphism that

ComΓ(W,Ei2cΓ) ∼= ComC(hΓ(Γ,W ), Ei) ∼= ComC(W,Ei).

Since W is an injective Γ-comodule, W can be represented by ω : W → W2cM . By
the definition of an injective comodule, if we have a monomorphism γ : α → β, where
α : N → N2cM and β : N ′ → N ′2cM , then for any morphism σ : α → ω, there exists
a morphism τ : β → ω, such that σ = τγ. It is easy to see that W is also an injective
C-comodule. Therefore, ComΓ(W,−) applied on the sequence E ′ leaves exact since the
functor Comc(W,−) leaves E exact. Finally, since X ∼= ker(E0 → E1), it follows that
X2cΓ ∼= ker(E0 → E1)2cΓ ∼= ker(E02cΓ → E12cΓ). Thus X2cΓ is a Gorenstein injective
Γ-comodule.

Proposition 5.2 Let C be a semiperfect coalgebra, M be a coflat left C-comodule
and Γ = C nM . Then X is a Gorenstein injective right C-comodule if and only if H(X) is
a Gorenstein injective right Γ-comodule.

Proof Let X be a Gorenstein injective right C-comodule, then there exists an exact
sequence

E ≡ · · · → E−2 → E−1 → E0 → E1 → · · ·
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of injective right C-comodules with X ∼= ker(E0 → E1) and such that the functor Comc(E,−)
leaves it exact for any injective right C-comodule E. By Lemma 4.3 and Proposition 2.9,
we have an exact sequence

H(E) ≡ · · · → H(E−2) → H(E−1) → H(E0) → H(E1) → · · ·

where each H(Ei) is injective in (−2cM)oMC and H(X) ∼= H(ker(E0 → E1)), since the
functor H : MC → (−2cM)oMC is exact and preserves injectivity.

Next, we prove that the functor Com(−2cM)oMC (ε,−) preserves the sequence H(E)
exact for any injective object ε ∈ (−2cM)oMC . It follows from Proposition 2.9 that

Com(−2cM)oMC (ε,H(E)) ∼= Com(−2cM)oMC (H(K(ε)),H(E))
∼= ComMC (UH(K(ε)), E) ∼= ComMC (K(ε), E).

Since ComMC (K(ε), E) is exact, where K(ε) in MC is injective, Com(−2cM)oMC (ε,H(E)) is
exact. Thus, H(X) ∈ (−2cM)oMC is Gorenstein injective.

Conversely, if H(X) ∈ (−2cM) oMC is Gorenstein injective, there exists an exact
sequence of injective comodules:

F ≡ · · · → H(E−2) → H(E−1) → H(E0) → H(E1) → · · ·

where each H(Ei) is an injective right Γ-comodule with H(X) ∼= ker(H(E0) → H(E1))
and such that the functor Com(−2cM)oMC (ε,−) leaves it exact for any injective object ε ∈
(−2cM) oMC . Applying the exact functor U on the sequence F , we obtain an exact
sequence

U(F) ≡ · · · → E−2 → E−1 → E0 → E1 → · · ·
and X ∼= ker(E0 → E1). Next, we prove that the functor ComMC (K(ε),−) preserves the
sequence U(F) exact for any injective object ε ∈ (−2cM) oMC and so K(ε) ∈ MC is
injective. By Proposition 2.9, we have

ComMC (K(ε), U(F)) ∼= Com(−2cM)oMC (H(K(ε)),F) ∼= Com(−2cM)oMC (ε,F).

Since Com(−2cM)oMC (ε,F) is exact, it follows that ComMC (K(ε), U(F)) is also exact. Thus,
X is a Gorenstein injective right C-comodule.

Corollary 5.3 Let C be a semiperfect coalgebra, M be a coflat left C-comodule and
Γ = C nM . Then X2cΓ is a Gorenstein injective right Γ-comodule if and only if X2cΓ is
a Gorenstein coflat right Γ-comodule.

Proof It follows from [13, Proposition 3.4] and Lemma 3.1.
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[11] Asensio M J, Lópezramos J A,Torrecillas B. Gorenstein coalgebras[J]. Acta Mathematica Hungarica,

1999, 85(1-2): 187–198.

[12] Takeuchi M, Iwahori N. Morita theorems for categories of comodules[J]. Journal of the Faculty of

Science the University of Tokyo.sect A Mathematics, 1977, 24(3): 629–644.

[13] Meng Fanyun. (Weakly) Gorenstein injective and (weakly) Gorenstein coflat comodules[J]. Studia

Scientiarum Mathematicarum Hungarica, 2012, 49(1): 106–119.
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平凡扩张余代数上的倾斜余模
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摘要: 本文研究了平凡扩张余代数上的倾斜余模. 在倾斜理论的基础上, 首先得到了平凡扩张余代数

整体维数的上界, 然后获得了平凡扩张余代数上的倾斜余模的等价条件. 这些结果推广了倾斜模的结论.
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