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Abstract: Signed graphs are graphs whose edges get signs ±1 and, as for unsigned graphs,

they can be studied by means of graph matrices. For a signed graph Γ we consider the Laplacian

matrix defined as L (Γ) = D (G)−A (Γ), where D(G) is the matrix of vertex degrees of G and A(Γ)

is the signed adjacency matrix. It is well known that a connected graph Γ is balanced if and only

if the least Laplacian eigenvalues λn = 0. Therefore, if a connected graph Γ is not balanced, then

λn > 0. In this paper, we investigate how the least eigenvalue of the Laplacian of a signed graph

changes by relocating a tree branch from one vertex to another. As an application, we determine

the graph whose least laplacian eigenvalue attains the minimum among all connected unbalanced

signed graphs of fixed order and given number of pendant vertices.
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1 Introduction

A signed graph Γ is a pair (G, σ), where G = (V (G), E(G)) is a graph and σ : E(G) →
{+1,−1} is a sign function on the edges of G. The unsigned graph G of Γ is called the
underlying graph. Most of concepts defined for (unsigned) graphs are directly extendable to
signed graphs. For example, the degree of a vertex u in G, denoted by du, is also its degree
in Γ. A signed subgraph of (G, σ) is a subgraph of G with signature induced by σ. Thus if
u ∈ V (G), then Γ − u denotes the signed subgraph having G − u as the underlying graph,
while its signature is the restriction form E(G) of σ to E(G − u). If U ⊂ V (G) then Γ [U ]
denotes the signed induced subgraph arising from U , while Γ − U = Γ [V (G) \U ]. We also
write Γ− Γ [U ] instead of Γ− U . The order of Γ is the order of G and it is denoted by |Γ|.
The cycle, the path, and the complete graph all on n vertices are denoted by Cn, Pn and
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Kn, respectively. The graph G which contains only one vertex is called trivial. Otherwise,
it is called nontrivial. The girth g of G the length of a shortest cycle contained in the graph
G. A pendant vertex of G is a vertex of degree 1. A path P : v0v1 . . . vt−1vt in G is called a
pendant path if d(vi) = 2, i = 1, 2, . . . , t− 1 and d(vt) = 1. If t = 1, then v0v1 is a pendant
edge of G. If d(v0) ≥ 3, we say that P is a maximal pendant path.

Let C be a cycle in Γ, the sign of C is given by σ (C) =
∏

e∈C σ (e). A cycle whose
sign is 1 (resp. −1) is called positive (resp. negative). Clearly, a cycle is positive if and
only if it contains an even number of negative edges. A signed graph is balanced if all cycles
are positive, otherwise it is unbalanced. If all edges in Γ are positive (negative), then Γ is
denoted by (G, +) (resp. (G,−)), and we say that such a signature is all-positive (resp.,
all-negative). For Γ = (G, σ) and U ⊂ V (G), let ΓU be the signed graph obtained from Γ
by reversing the signature of the edges in the cut [U, V (G)\U ], namely σΓU (e) = −σΓ (e)
for any edge e between U and V (G)\U , and σΓU (e) = σΓ (e) otherwise. The signed graph
ΓU is said to be (signature) switching equivalent to Γ, and this is denoted by ΓU ∼ Γ.
Switching equivalent signed graphs can be considered as (switching) isomorphic graphs and
their signatures are said to be equivalent.

Signed graphs, like unsigned ones, can be studied by means of the eigenvalues of several
matrices associated to graphs. The adjacency matirx A(Γ) = (aij) of Γ is naturally defined
similarly to that of unsigned graphs by putting 1 or −1, whenever the corresponding edge
is either positive or negative, respectively. The Laplacian matrix L is defined as L : L(Γ) =
D(G)−A(Γ), where D is the diagonal matrix of vertex degrees. It is worth mentioning that
switching equivalent signed graphs have similar adjacency and Laplacian matrix. In fact, let
SU = diag (s1, s2, · · · , sn) with si = 1 for each i ∈ U ⊂ V (G), and si = −1 otherwise. We
have

A (Γ) = SUA
(
ΓU

)
SU and L (Γ) = SUL

(
ΓU

)
SU .

Conversely, if L(Γ1) and L(Γ2) are similar by a diagonal matrix with its entries are 1 or
−1, then Γ1 and Γ2 are switching equivalent. The characteristic polynomial φL (Γ, x) :=
φ (Γ, x) = det (xI − L (Γ)) is called the Laplacian characteristic polynomial of Γ. The Lapla-
cian eigenvalues λ1 (Γ) ≥ λ2 (Γ) ≥ · · · ≥ λn (Γ) ≥ 0 of Γ of order n are all real numbers,
because L(Γ) is a real semi-defined symmetric matrix.

The least Laplacian eigenvalue has a special role in the spectral theory of signed Graphs.
It is well-known that Γ is balanced, that is, Γ = (G, σ) is switching equivalent to (G, +), and
L(Γ) is similar to L(G) = D(G)−A(G), where A(G) is the adjacency matrix of the unsigned
graph G, if and only if λ (Γ) : λn (Γ) = 0. Therefore, if Γ is not balanced, then λn > 0 and
λ has been shown to be a very good measure of the graph frustration, that is the smallest
number of vertices to be deleted form Γ in order to get a balanced signed graph(see [1,2]).
The study on the signed graph has attracted a lot of attention. One can refer to [3] for
basic results on graph spectra , to [4–7] for basic results on the spectra of signed graphs, to
[8] for a possibly complete bibliography on signed graphs, and to [9] for a glossary of terms
related to signed graphs. Recently, Francesco Belardo and others studied the least Laplacian
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eigenvalue of signed graphs. He showed that among unbalanced connected signed graphs of
given order the least eigenvalue is minimal for an unbalanced triangle with a hanging path,
while the least eigenvalue is maximal for the complete graph with the all-negative sign
function, and among the unbalanced bicyclic signed graphs of given order n ≥ 5 the least
laplacian eigenvalue is minimal for signed graphs consisting of two triangles, only one of
which is unbalanced, connected by a path, in [10] and [11] respectively.

In this paper, we investigate how the least eigenvalue of the Laplacian of a signed graph
changes by relocating a tree branch from one vertex to another vertex. As an application,
we determine the graph whose least laplacian eigenvalue attains the minimum among all
connected unbalanced signed graphs of fixed order and given number of pendant vertices.

2 Main Results

We begin with some fundamental results which will be used later. For a vector x =
(x1, x2, · · · , xn)T of L(Γ), we denote by xu the entry of x at u ∈ V (G). If x is an eigenvector
of L(Γ) = L with respect to an eigenvalue λ, then we have eigenvalue equation

λxu = duxu −
∑
v∼u

σ (uv)xv for u ∈ V (G) ,

where v ∼ u means that v is adjacent to u.
The quadratic form 〈L (Γ) , x〉 can be respected as

〈L (Γ) , x〉 = xT L (Γ)x =
∑

uv∈E(G)

(xu − σ (uv) xv)
2
.

Since L(Γ) is a real symmetric matrix, by Rayleigh principle, it follows that

λ (Γ) = λn (Γ) := λn (L) = min
‖x‖=1

〈L (Γ) , x〉 .

We need to introduce an operation on graphs as the following.
Coalescence Let Γ1, Γ2 be two vertex-disjoint signed graphs, and let v1 ∈ V (Γ1),

v2 ∈ V (Γ2). The coalescence of Γ1, Γ2, denoted by Γ1(v1) ◦ Γ2(v2), is obtained from Γ1,
Γ2 by identifying v1 with v2 and forming a new vertex u. The graph Γ1(v1) ◦ Γ2(v2) is also
written as Γ1(u) ◦ Γ2(u). Suppose Γ is a connected graph and can be expressed in the form
Γ = Γ1(v1) ◦ Γ2(v2), where Γ1 and Γ2 are both nontrivial and connected, then Γ1 is called a
branch of Γ with root u. Let x be a vector defined on Γ. A branch of Γ is called zero branch
with respect to x if xv = 0 for all v in it.

Lemma 2.1 Let λ(Γ) be the least laplacian eigenvalue of Γ(G, σ) with corresponding
unit eigenvector x = (x1, x2, · · · , xn)T . If uv is a bridge, then σ(uv)xuxv ≥ 0.

Proof Suppose uv is a bridge, then G is a connected sum of two graphs G1 and G2

where V (G) = V (G1) ∪ V (G2) and E(G) differs from E(G) = E(G1) ∪ E(G2) by addition
of a single edge joining the vertex u of G1 to the vertex v of G2. If σ(uv) = 1, suppose
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xuxv < 0, let y be a valuation of Γ by
{

yw = xw, w ∈ V (G1) ;
yw = −xw, w ∈ V (G2) .

We have

〈L (Γ) , y〉 = (xu + xv)
2 +

∑
ws∈E(G1)

(xw − σ (ws) xs)
2 +

∑
ws∈E(G2)

[−xw − σ (ws) (−xs)]
2

< (|xu|+ |xv|)2 +
∑

ws∈E(G1)

(xw − σ (ws) xs)
2 +

∑
ws∈E(G2)

(xw − σ (ws) xs)
2

= (|xu|+ |xv|)2 +
∑

ws∈E(G)\uv

(xw − σ (ws)xs)
2

= λ,

contradiction. Proof of the case σ(uv) = −1 is similar, here omitted.
Next, we will give some properties of the eigenvector corresponding to the least laplacian

eigenvalue of signed graphs. Note that the signature is not relevant in trees and in general
for edges which are bridges, for the sake of simplicity, we will put a positive sign on bridges,
unless otherwise stated.

Lemma 2.2 Let Γ be a signed graph of order n with minimum degree δ, then λ(Γ) < δ.
If G contains a pendant vertex, then λ(Γ) < 1.

Proof Let x = (x1, x2, . . . , xn)T be an any nonzero unit vector in Rn. We have

λ(Γ) ≤ 〈L (Γ) , x〉 =
∑

uv∈E(G)

(xu − σ (uv) xv)
2
.

Putting x = (0, 0, . . . , 1)T , we get that λ ≤ δ. We can easily see x = (0, 0, . . . , 1)T is not an
eigenvector corresponding to λ(Γ), the inequality is strict.

Lemma 2.3 Let Γ be a signed graph which contains a tree branch T with root u. Let
x be a unit eigenvector corresponding to the least laplacian eigenvalue λ(Γ).

(i) xpxq ≥ 0, for every p, q ∈ T .
(ii) Assume that there is a vertex v ∈ T such that xv = 0. Then xw = 0 for every

w ∈ T .
(iii) Let Γ be an unbalanced signed graph and xu 6= 0, and let P = v0(u)v1 . . . vk be a

path on T , then |xv0 | = |xu| < |xv1 | < · · · < |xvk
|.

Proof Note that all edges in T are bridges, by lemma 2.1 , (i) is proved. To prove the
result (2), we consider two following cases.

Case 1 v ∈ T −u. Considering the entry of L (Γ)x at v, we have λxv = dvxv−
∑

w∼v

xw.

By (i), the result holds.
Case 2 v = u. Let y be a valuation of Γ by

{
yw = xw, w ∈ Γ\T ;
yw = −xw, w ∈ T.
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Note that ‖y‖ = 1, and 〈L (Γ) , y〉 = 〈L (Γ) , x〉. So y is also a eigenvector corresponding
to λ(Γ). Considering the entry of L (Γ)x and L (Γ) y at u, respectively. We have

∑

w∼u,w∈Γ\T
σ (uw)xw +

∑
w∈T−u

xw = 0,
∑

w∼u,w∈Γ\T
σ (uw)xw +

∑
w∈T−u

(−xw) = 0.

Thus, we have
∑

w∈T−u

xw = 0, and hence xw = 0 for for every w ∈ T .

Next, we give the proof of (iii). By Lemma 2.3, for a connected unbalanced signed graph
Γ containing a pendant vertex, we have 0 < λ(Γ) < 1. Assume that vk is a pendant vertex.
Since xu 6= 0, by (ii) we drive that all xvi

6= 0. Considering the eigenvector equation of x at
vk, we have

(λ (Γ)− 1) xvk
= −xvk−1 .

The result holds. Now suppose vi is not a pendant vertex. By the eigenvector of x at vi,

λxvi
= dvi

xvi
−

∑
w∼vi

xw,

by (i), we have
dvi

|xvi
| = λ (Γ) |xvi

|+
∣∣xvi−1

∣∣ +
∑

w∼vi,w 6=vi−1

|xw|,

which leads to, by induction,

dvi
|xvi

| >
∣∣xvi−1

∣∣ +
∑

w∼vi,w 6=vi−1

|xw| >
∣∣xvi−1

∣∣ + (dvi
− 1) |xvi

| .

Hence |xvi
| >

∣∣xvi−1

∣∣.
Next, we will discuss how the least laplacian eigenvalue changes when relocating a T

branch for one vertex to another.

T

1
Γ

1v
2v

T

1
Γ

1v
2v

Figure 1 Relocating T from v2 to v1.

Lemma2.4 Let Γ = Γ1(v2) ◦ T (u) and Γ† = Γ1(v1) ◦ T (u) be two graphs as depicted
in Fig.1, where v1, v2 are two distinct vertices of Γ1 and u is a vertex of T . Let x be a unit
eigenvector corresponding to the least laplacian eigenvalue λ(Γ). If |xv1 | ≥ |xv2 |, then

λ
(
Γ†

) ≤ λ (Γ) . (2.1)

Furthermore, if |xv1 | > |xv2 |or |xv1 | = |xv2 | > 0, the inequality is strict.



648 Journal of Mathematics Vol. 40

Proof Assume that xv1 ≥ 0. Let y be a valuation of Γ† by
{

yw = xw, w ∈ Γ1;
yw = |xw|+ xv1 − |xv2 | , w ∈ T − u.

Then for each edge wv2 ∈ E(Γ) contained in T , we have

(xw − xv2)
2 = (|xw| − |xv2 |)2 = (|xw|+ xv1 − |xv2 | − xv1)

2 = (yw − yv1)
2
.

For each edge vw ∈ E(T − u) and vw ∈ E(Γ1), we have

(xw − σ (wv) xv)
2 = (yw − σ (wv) xv)

2
.

Hence we have

〈
L

(
Γ†

)
, y

〉
=

∑

vw∈E(Γ†)

(yw − σ (wv)yv)
2 =

∑

vw∈E(Γ)

(yw − σ (wv)yv)
2 = 〈L (Γ) , x〉 .

By |xv1 | ≥ |xv2 |, we have

‖y‖2 =
∑

v∈V (Γ†)

y2
v ≥

∑

v∈V (Γ)

x2
v = 1.

All results lead to

λ
(
Γ†

) ≤
〈
L

(
Γ†

)
, y

〉

‖y‖2 ≤ 〈
L

(
Γ†

)
, y

〉
= 〈L (Γ) , x〉 = λ (Γ) .

Suppose that the equality holds, then |xv1 | = |xv2 | and y is an eigenvector of λ
(
Γ†

)
. Con-

sidering the eigenvector equations of x and y, respectively, both at v2, we have

dT
u xu =

∑
v∼u,v∈T−u

xv, (2.2)

where dT
u = |{v : v ∼ u, v ∈ T − u}|.

If |xv1 | > |xv2 |, the inequality (2.1) is strict. So we suppose |xv1 | = |xv2 | > 0. If
λ

(
Γ†

)
= λ (Γ), by (2.2) and lemma 2.3, we will have a contradiction. So inequality is also

strict. The proof is completed.
We denote the class of unbalanced unicyclic signed graphs of order n with girth g and

k ≥ 1 pendant vertices by Uk
n(g, σ). In order to simplify the notation, we choose to represent

any graph Γ in Uk
n(g, σ) with all positive edges other than the edge pq which is lying on

the unique cycle of Γ. Denote by Uk
n (g, σ, l; l1, l2, · · · , lk) ∈ Uk

n(g, σ) the graph of order n

obtained by coalescing Pl with a cycle Cg by identifying one of its end vertices with some
vertex of Cg, and also coalescing this Pl with each of paths Pli(i = 1, 2, . . . , k) by identifying
its other end vertex with one of the vertices of Pli , where l ≥ 1, li ≥ 2(i = 1, 2, . . . , k).
If l1 = l2 = · · · = lk = 2, Uk

n (g, σ, l; l1, l2, · · · , lk) is denoted by Uk
n(g) (up to switching
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 g

p

q
v

C
2

v

1
v

kv

u

t

s

Figure 2 Uk
n(g).

equivalence, the graph is unique, see Fig 2, thin and thick edges represent positive and
negative edges, respectively).

To achieve the goal, some useful results will be introduced. For more details, one can
refer to [10].

Lemma 2.5 ( Theorem 2.2, [10]) Let Γ = (G, σ) be a signed graph, and let Γ′ be
obtained from Γ by deleting the edge rs ∈ E(G) with sign σ(rs) and by adding the edge
rt ∈ E(G) with sign σ(rt). Let x = (x1, x2, · · · , xn)T be an eigenvector related to λ(Γ). If

(σ (rt) xt − σ (rs) xs) (σ (rt) xt + σ (rs) xs − 2xr) ≤ 0,

then λ (Γ′) ≤ λ (Γ). Furthermore, λ (Γ′) = λ (Γ) if and only if xr = σ (rs) xs = σ (rt) xt.
Proposition 2.6 ( Proposition 2.3, [10]) Let Γ be a signed graph and Γ′ switching

equivalent via the state matrix S. If x is an eigenvector of λ for Γ, then Sx is the corre-
sponding eigenvector of λ for Γ′.

Lemma 2.7 ( Lemma 4.4, [10]) Let Γ ∈ Uk
n(g, σ) and x = (x1, x2, . . . , xn)T be an

eigenvector corresponding to λ(Γ). If σ is taken such that all edges are positive with the
exception of the pq which minimizes |xpxq|, then x can be chosen such that

(1) xv ≥ 0 for all v ∈ Γ.
(2) if xpxq = 0 then either xp or xq is non-zero.
(3) if xpxq > 0 then xv > 0 for all v ∈ Γ.
In view of the above results and the proof Lemma 4.2 in [10], it deserves to be mentioned

that state matrix is a diagonal matrix with values in {1,−1}, then the eigenvectors after
switching just change in the signs of the components corresponding to the switched vertices.
The moduli of the eigenvector components are invariant with respect to switching. Let pq be
the edge which minimizes |xpxq|, then the corresponding eigenvector x = (x1, x2, . . . , xn)T

to λ(Γ), for any Γ ∈ Uk
n(g, σ) , satisfied

(1) there exists at most one component of x on the cycle is zero.
(2) if |xpxq| > 0. then |xv| > 0 for all v ∈ Γ.
Theorem 2.8 Among all graphs in Uk

n(g, σ), the unique, up to switching equivalence,
which minimizes the least Laplacian eigenvalue is Uk

n(g).
Proof Let Γ be the signed graph which minimizes the least Laplacian eigenvalue in

Uk
n(g, σ), x be a unit eigenvector corresponding to λ(Γ) and Cg be the unique cycle of Γ. Γ

can be considered from Cg by identifying each w ∈ Cg with one vertex of some tree Tw of
order nw, where

∑
w∈Cg

nw = n. Note that if Tw is trivial, nw = 1.
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We assert that each nontrivial tree Tw is a nonzero branch with respect to x.
Otherwise, by lemma 2.3 (ii), there exists a nontrivial tree Tw attached at w, w ∈ Cg,

such that xw = 0. By lemma 2.4, relocating the tree Tw from w to v for which |xv| 6= 0, we
obtain a signed graph in Uk

n(g, σ) with smaller least Laplacian eigenvalue.
Tp and Tq are trivial.
If xp = 0, xq 6= 0, as above the proof Tp is trivial. Let s be another vertex adjacent to

p, considering the the eigenvector equation at p, we have λxp = 2xp + xq − xs, which leads
to xq = xs. If Tq is nontrivial, relocating the tree Tq from q to s for which |xq| = |xs| > 0,
we obtain a signed graph in Uk

n(g, σ) with smaller least Laplacian eigenvalue, contradiction.
If |xpxq| > 0, by its minimum variance, there exits a vertex w on the cycle satisfied |xw| ≥
max {|xp| , |xq|}, say |xp|. Relocating the tree Tp from p to w, we obtain a signed graph in
Uk

n(g, σ) with smaller least Laplacian eigenvalue, contradiction.
All maximal pendant paths are attached at the same vertex u.
Otherwise, there exist two maximal pendant paths, say P and P ′, attached at p and

p′, respectively. Since P ′ is maximal pendant path, we have d (p′) ≥ 3. Assume that
|xp| ≥ |xp′ | > 0. Then, by lemma 2.4, we will arrive at a new graph still in Uk

n(g, σ) but with
smaller least Laplacian eigenvalue by relocating P ′ from p′ to p.

Therefore, Γ, up to switching equivalence, is obtained from a unbalanced signed Cg by
attaching one path at some vertex of Cg, or Γ = Uk

n (g, σ, l; l1, l2, · · · , lk). Next we only
consider the case k ≥ 2 and show that l1 = l2 = · · · = lk = 2. Suppose that li ≥ 3, for
some i. Let Pli = (u)v1 . . . vli , by lemma 2.3 and the above discussion, 0 < |xv1 | <

∣∣xvli−1

∣∣.
Relocating some Plj other than Pli from v1 to vli−1, by lemma 2.4, a new graph with smaller
least Laplacian eigenvalue in Uk

n(g, σ) is obtained, contradiction.
In the sequel，the signature such that the sole negative edge corresponds to the cycle

edge pq minimizing the product of the least eigenvector components (on the cycle) is denoted
by Uk

n (g). Furthermore, λ(Uk
n (g)) has a nonnegative eigenvector. Without loss of generality,

we take xp ≤ xq, so that xv > 0 for all v ∈ Uk
n (g)− p.

Lemma 2.9 With respect to g ≥ 3 and k ≥ 1, we have

λ
(
Uk−1

n (g)
)

< λ
(
Uk

n (g)
)
, λ

(
Uk

n (g − 1)
)

< λ
(
Uk

n (g)
)
.

Proof The graph Uk
n (g) the sole negative edge corresponds to the cycle edge pq

minimizing the product of the least eigenvector components is depicted in Fig 2. From the
proof of Theorem 2.8, we have Tp and Tq are trivial.

Let x be a unit eigenvalue corresponding to λ
(
Uk

n (g)
)
. Replacing the edge vv1 by v1v2,

we arrive at a new graph Γ̃ ∈ Uk
n(g, σ), and by lemma 2.4, (note that |xv| < |xv1 | ), we have

λ
(
Γ̃
)

< λ
(
Uk

n (g)
)
. So, by Theorem 2.8, we have

λ
(
Uk−1

n (g)
) ≤ λ

(
Γ̃
)

< λ
(
Uk

n (g)
)

= λ
(
Uk

n (g)
)
.

For the second result, g ≥ 4, we assert that xu > xs ≥ xt or xu > xt ≥ xs. Otherwise,
relocating Tu from u to s or t, we arrive at a switching equivalent graph with smaller the least
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Laplacian eigenvalue, contradiction. We consider the case xu > xt ≥ xs. Deleting the edge su

and adding the edge st, we arrive at a new graph Uk
n (g − 1), and (xt − xu) (xt + xu − 2xs) <

0. So we have
λ

(
Uk

n (g − 1)
)

< λ
(
Uk

n (g)
)

= λ
(
Uk

n (g)
)
.

Theorem 2.10 (Interlacing [14]) Let Γ = (G, σ) be a signed graph and Γ− e be the
signed graph obtained from Γ by deleting the edge e. Then

λ1 (Γ) ≥ λ1 (Γ− e) ≥ λ2 (Γ− e) ≥ · · · ≥ λn (Γ)≥ λn (Γ− e) .

The main result of this section is as the following.
Theorem 2.11 Among all unbalanced signed connected graphs of order n and k ≥ 1

pendant vertices, the unique, up to switching equivalence, which minimizes the least Lapla-
cian eigenvalue is Uk

n (3).
Proof Let Γ be a graph which minimizes the least Laplacian eigenvalue. Since Γ is

unbalanced, then Γ contains at least an induced negative cycle, say Cg. Let Γ′ be a connected
unicyclic spanning subgraph of Γ, which contains the unique cycle Cg and all pendant edges
of Γ. The signed graph Γ̂ ∈ Uk′

n (g, σ) is switching equivalent to Γ′, k′ ≥ k. By lemmas above,
we have

λ
(
Uk

n (3)
) ≤ λ

(
Uk

n (g)
) ≤ λ

(
Uk′

n (g)
)
≤ λ(Γ̂) = λ (Γ′) ≤ λ (Γ) . (2.3)

So Uk
n (3) is a signed graph, which minimizes the the least Laplacian eigenvalue.
Next, we will prove that the minimizer among connected unbalanced graphs of order n

and k ≥ 1 pendant vertices is just Uk
n (3). By lemma 2.9 and Theorem 2.8, λ (Γ) = λ (Γ′) =

λ
(
Γ̂
)

= λ
(
Uk

n (3)
)

implies k = k′, g = 3 and Γ′ is switching equivalent to Uk
n (3), and

denoted by Uk
n (3′). So Γ can be obtained form Uk

n (3′) by adding edges. By the definition
of Γ′, it suffices to derive a contradiction when Γ = Uk

n (3′)+uv, where uv is an edge joining
a vertex of C3 and a vertex of Pl, or two vertices of Pl. Let x = (x1, x2, · · · , xn)T be a unit
eigenvector corresponding to λ (Γ). Then

λ (Γ) = 〈L (Γ) , x〉 =
〈
L

(
Uk

n (3′)
)
, x

〉
+ (xu − σ (uv) xv)

2

≥ λ
(
Uk

n (3′)
)

+ (xu − σ (uv) xv)
2 ≥ λ

(
Uk

n (3′)
)
.

Since λ (Γ) = λ
(
Uk

n (3′)
)
, and x is an eigenvector for λ

(
Uk

n (3′)
)

, we have that xu − σ (uv)xv =
0, namely |xu| = |xv|. By Proposition 3.5, there exists a state matrix S satisfied the vector
x′ = Sx = (x′1, x

′
2, · · · , x′n)T belonging to λ

(
Uk

n (3)
)
. Hence |x′u| = |x′v|. By Lemma 2.3,

Lemma 2.7 and the proof of Lemma 2.9, contradiction, and we are done.
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给定悬挂点的非平衡符号图的最小拉普拉斯特征值

汪赛1,2 ,王登银2, 田凤雷3

(1.中国矿业大学徐海学院, 江苏 徐州 221116)

(2.中国矿业大学数学学院, 江苏 徐州 221116)

(3.曲阜师范大学管理学院, 山东 日照 276826)

摘要: 符号图是边赋值为±1 的一类图. 设符号图Γ的拉普拉斯矩阵为L (Γ) = D (G) − A (Γ)，这

里D(G)表示度矩阵, A(Γ) 表示符号图的邻接矩阵. Γ是平衡的当且仅当最小拉普拉斯特征值λn = 0. 因此

当Γ非平衡时λn > 0. 本文研究了非平衡符号图的最小拉普拉斯特征值问题. 利用图特征值的嫁接方法, 获

得了给定悬挂点非平衡符号图的最小拉普拉斯特征值, 并且刻画了达到最小特征值的极图.
关键词: 符号图; 拉普拉斯; 最小特征值
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