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1 Introduction and Main Results

Consider the following differential equation

ẋ(t) = f(x(t)), x(0) = x0, (1.1)

where x ∈ Rn denotes the state variable of system (1.1), f : Rn → Rn is a nonlinear vector
field and x0 is the initial value of the system.

Definition 1.1 [1] The origin of system (1.1) is said to be globally finite-time stable if
for any of its solution x(t,x0), the following statements hold:
(i) Lyapunov stability: for any ε > 0, there is a δ = δ(ε) > 0 such that ‖x(t,x0)‖ < ε for
any ‖x0‖ ≤ δ and t ≥ 0.
(ii) Finite-time convergence: there exists a function T : Rn\{0} → (0,+∞), called the
settling time function, such that limt→T (x0) x(t,x0) = 0 and x(t,x0) ≡ 0 for all t ≥ T (x0).

Definition 1.2 [2] The origin of system (1.1) is said to be fixed-time stable if it is
globally finite-time stable and the settling time function T (x0) is bounded for any x0 ∈ Rn,
i.e., there exists Tmax such that T (x0) ≤ Tmax for all x0 ∈ Rn.

Lemma 1.3 [2] If there exists a continuous, positive definite and radically unbounded
function V (x(t)) : Rn → R such that any solution x(t) of system (1.1) satisfies the inequality

d

dt
V (x(t)) ≤ −

(
aV δ(x(t)) + bV θ(x(t))

)k

for a, b, δ, θ, k > 0 and δk > 1, θk < 1, then the origin of system (1.1) is fixed-time stable,
and the settling time T (x0) is upper bounded and satisfies

T (x0) ≤ T1 =
1

ak(δk − 1)
+

1
bk(1− θk)

. (1.2)
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Lemma 1.4 If there exists a continuous, positive definite and radically unbounded
function V (x(t)) : Rn → R such that any solution x(t) of system (1.1) satisfies the inequality

d

dt
V (x(t)) ≤ −µ(V (x(t)))γ+sign(V (x(t))−1), (1.3)

in which µ > 0, 1 ≤ γ < 2, then the origin of system (1.1) is globally fixed-time stable. In
addition, for any initial state x0 of system (1.1), the settling time is described as

T3 =
1

µ(2− γ)
+

1
µγ

. (1.4)

Remark 1 There have been plentiful literature investigating fixed-time synchronization
in recent years. Lemma 1.3 is the most common one to prove synchronization within a
settling time [2]–[3]. However, the special case of k = 1 in lemma 1.3 is commonly applied
to simplify the controller to be designed. In this situation, the form of Lemma 1.4 is much
simpler than that in Lemma 1.3. Furthermore, the estimated settling time is more accurate
than those in existing literature.

Consider a nonlinearly coupled complex network consisting of N nodes described by

ẋi(t) = f(xi(t)) + c

N∑
j=1

aij(g(xj(t))− g(xi(t))), i = 1, . . . , N,

where xi(t) = (xi1(t), . . . , xin(t))> denotes the state vector of node i, nonlinear function
f(xi(t)) = (f1(xi(t)), . . . , fn(xi(t)))> represents the dynamical behavior of the i-th node,
c > 0 is the coupling gain. g(xj(t)) = (g1(xj1(t)), . . . , gn(xjn(t)))> ∈ Rn is the nonlinear
coupling function. Besides, A = (aij) ∈ RN×N denotes the outer coupling matrix, in which,
aij > 0 if the i-th node can receive the information from node j; otherwise, aij = 0. In

addition, aii = 0. The Laplacian matrix L = (lij) ∈ RN×N is defined as lii =
N∑

j=1,j 6=i

aij ,

and the off-diagonal elements lij = −aij . Therefore, the controlled complex network can be
written as

ẋi(t) = f(xi(t))− c

N∑
j=1

lijg(xj(t)) + ui(t), i = 1, . . . , N. (1.5)

In this paper, complex network (1.5) is assumed to be symmetrical, the initial value is
xi(0) = xi0, i = 1, . . . , N , and complex network (1.5) is supposed to synchronize to the same
state s(t) satisfying

ṡ(t) = f(s(t)), (1.6)

in which s(t) = (s1(t), . . . , sn(t))> with initial value s(0) = s0.
Let ei(t) = xi(t)− s(t) be the error state, then one can get

ėi(t) = f(xi(t))− f(s(t))− c

N∑
j=1

lij(g(xj(t))− g(s(t))) + ui(t), i = 1, . . . , N. (1.7)
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In order to proceed further analysis, the controller is designed as

ui(t) =− kei(t)− µsgn(ei(t))|ei(t)|2γ+2sign(‖e(t)‖22−1)−1, i = 1, . . . , N, (1.8)

where the notation e(t) = (e>1 (t), . . . , e>N (t))>, sgn(ei(t)) = diag{sign(ei1(t)), . . . , sign(ein(t))},
and |ei(t)|ς = (|ei1(t)|ς , . . . , |ein(t)|ς)>, ς = 2γ + 2sign(‖e(t)‖2

2 − 1) − 1. Here γ ≥ 3
2

is re-
quired to guarantee that controller (1.8) is meaningful, thus 3

2
≤ γ < 2. Besides, µ > 0, the

feedback gains k > 0 can be determined later.
Remark 2 In existing literature, the controller is usually designed as “ui(t) = −kei(t)−

bsgn(ei(t))|ei(t)|α − csgn(ei(t))|ei(t)|β”, which consists of three terms: the first term is the
linear feedback term, the index of the second term satisfies 0 < α < 1, and that of the
last one satisfies β > 1. Controller (1.8) proposed here only contains two terms, which is
obviously more economical and practical.

(H1) The dynamical function f(·) of complex network (1.5) satisfies the usual Lipschitz
condition. That is, for ∀u, v ∈ Rn, there exists a positive constant ρ such that

(u− v)>(f(u)− f(v)) ≤ ρ(u− v)>(u− v).

(H2) As for the nonlinear function gk(·), k = 1, . . . , n, we assume that there exist

positive constants %k, such that for all x, y ∈ R, we have
gk(x)− gk(y)

x− y
≥ %k.

Theorem 1.5 Suppose that (H1) − (H2) holds. Then complex network (1.5) and
target system (1.6) will reach fixed-time synchronization with controller (1.8), if there exist
positive constants k such that

(ρ− k)INn − c(L⊗Ψ) < 0, (1.9)

where Ψ = diag{%1, . . . , %n}, ρ and %k, k = 1, . . . , n presented in (H1) and (H2), respectively.

Furthermore, the settling time is estimated as T5 =
1

2µ(2−γ)
+

1
2µ(Nn)−γγ

.

Remark 3 From Theorem 1.5, condition (1.9) can be guaranteed if k ≥ ρ based on
the non-negative eigenvalues of matrix L.

2 Numerical Example

Example 1 Theorem 1.5 is verified in this section. Consider a network consisting of
10 nodes, with the dynamics of each node being described by a three-dimensional complex
network [4], where the inner coupling matrix Γ = I3, dynamical function f(xi(t)) = −Cxi(t)+
Mh(xi(t)), h(xi(t)) = 0.5(|xi1 + 1| − |xi1− 1|, |xi2 + 1| − |xi2− 1|, |xi3 + 1| − |xi3− 1|)>, and

C =




1 0 0
0 1 0
0 0 1


 ,M =




1.25 −3.2 −3.2
−3.2 1.1 −4.4
−3.2 4.4 1.0


 ,
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L=




5 −1 −1 0 −1 −1 0 0 −1 0
−1 5 −1 −1 −1 0 0 −1 0 0
−1 −1 6 −1 −1 0 −1 0 0 −1
0 −1 −1 4 −1 −1 0 0 0 0
−1 −1 −1 −1 6 0 0 0 −1 0
−1 0 0 −1 0 6 −1 −1 −1 −1
0 0 −1 0 0 −1 4 −1 0 −1
0 −1 0 0 0 −1 −1 5 −1 −1
−1 0 0 0 −1 −1 0 −1 5 −1
0 0 −1 0 0 −1 −1 −1 −1 5




,

nonlinearly coupled function is defined as

g̃(v) =





2v1 + 0.2 sin v1,

3v2 + 0.5 cos v2,

2v3 + 0.3 sin v3.

Based on ei(t) = xi(t)− s(t), the controlled error system is

ėi(t) = −Cei(t) + M(h(xi(t))− h(s(t)))− c

N∑
j=1

lijΓ(g(xj(t))− g(s(t))) + ui(t). (2.1)

The evolution of 2-norm of the error states is shown in Panel (a) of Fig. 1. Obviously, the
error systems will not stabilize to the origin if no controllers are exerted. In the following,
we consider the controlled network (1.5).
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Figure 1 (a) Evolution of the 2-norm of the error states ‖e(t)‖2 =

√
N∑

i=1

n∑
j=1

|eij(t)|2

without controllers; (b) Evolution of error system (2.1).
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According to the definitions of f(xi(t)) and g(xi(t)), taking ρ = 7.7, Ψ = diag{1.8, 2.5, 1.7}
to satisfy (H1) and (H2), respectively. Therefore, k = 7.7 is chosen to make Eq. (1.9) hold.
The evolutions of the state variables with controller (1.8) are shown in Panel (b) with γ = 1.5
and µ = 0.1.

Panel (b) in Fig. 1 shows that stability of error network (2.1) can be realized within
t = 0.7. Actually, T ≈ 548 according to the settling time estimated in Theorem 1, which is
larger than the real synchronization time, but is smaller than the conventional estimations
[2]–[3].
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