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1 Introduction

Moving grids method has important applications in a variety of physical and engineering
areas such as solid and fluid dynamics, combustion, heat transfer, material science, etc.
This method is more efficient than the fixed grids and does not increase computing cost.
We usually apply the finite element methods to the spatial domain, but choose difference
methods with respect to the time variable for solving evolution partial differential equations.
At the same time, different meshes of domain are used at different time level.

Several moving grids techniques were studied. Such as [1] considered the moving grids
finite element method; [2] and [3] constructed and analyzed this method for the oil-water
two-phase displacement problem; [4–8] analyzed the parabolic, Stokes problems, parabolic
integro-differential equations, generalized nerve conductive equations and fractional diffusion
equations with moving grids nonconforming finite element scheme respectively. But the
analysis in the above studies relies on the regular condition or quasi-uniform assumption for
meshes.

The Klein-Gordon equation is the most basic equation used in relativistic quantum me-
chanics and quantum field theory to describe a spin-zero particle. The equation is closely
related to the physical problem and plays an important role in the study of soliton. In [9],
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authors studied the existence of a unique global solution under the condition that the param-
eter is small enough. In [10], a display difference scheme was established for one-dimensional
Klein-Gordon equation of unbounded region, and the results of stability and convergence of
the scheme were obtained by the energy analysis method. In [11], the numerical solution of
one-dimensional Klein-Gordon equation was studied. However, the finite element method
for the Klein-Gordon equation is rare.

In this paper, we mainly focus on the convergence theory, the finite element method
of moving grids is introduced, and the Crank-Nicolson discrete scheme of the nonlinear
Klein-Gordon equation is analyzed without requiring the subdivision to satisfy the regular
hypothesis, and the corresponding optimal error estimation of the moving grid approach is
derived. It is worth mentioning that, in the usual finite element method of moving meshes, it
is necessary to use the Riesz projection to approximate the solution of the original problem,
and this paper makes use of the particularity of the element structure, that is, u− Πu and
the elements in the finite element space are orthogonal in the sense of energy mode, and the
Riesz projection is used to simplify the proof process of the previous documents.

2 Element Construction

For the sake of convenience, like [12], let Ω ⊂ R2 be a rectangular domain with boundary
∂Ω parallel to the x-axis or y-axis in the plane, Let Γh be a family of rectangular subdivisions,
i.e., Ω =

⋃
K∈Γh

K. For the general element K, we denote the lengths of edges parallel to x-axis

and y-axis by 2hx and 2hy, respectively, and the barycenter of element K by (xK , yK), the
four vertices of K are a1 = (xK−hx, yK−hy), a2 = (xK+hx, yK−hy), a3 = (xK+hx, yK+hy)
and a4 = (xK − hx, yK + hy), respectively, and the four edges are li = aiai+1 (i = 1, 2, 3, 4
(mod 4)), hK = max

K∈Γh

{hx, hy}, h = max
K∈Γh

hK .

Let K̂ = [−1, 1] × [−1, 1] be reference element on the ξ − η plane, the four vertices of
K̂ are â1 = (−1,−1), â2 = (1,−1), â3 = (1, 1) and â4 = (−1, 1), respectively, l̂i = âiâi+1

(i = 1, 2, 3, 4 (mod4)) be the four edges of K̂.
We define the finite element (K̂, P̂ ,

∑̂
) (see [13])

∑̂
= {v̂1, v̂2, v̂3, v̂4, v̂5}, P̂ = span{1, ξ, η, ϕ(ξ), ϕ(η)},

where v̂i = 1

|l̂i|
∫

l̂i
v̂dŝ, i = 1, 2, 3, 4, v̂5 = 1

|K̂|
∫

K̂
v̂dξdη, ϕ(t) = 1

2
(3t2 − 1).

∀v̂ ∈ H1(K̂), interpolation functions Π̂v̂ can be expressed as

Π̂v̂ = v̂5 +
1
2
(v̂2 − v̂4)ξ +

1
2
(v̂3 − v̂1)η +

1
2
(v̂2 + v̂4 − 2v̂5)ϕ(ξ) +

1
2
(v̂3 + v̂1 − 2v̂5)ϕ(η). (2.1)

Lemma 2.1 [14] The interpolation operator Π̂ defined as (2.1) has the anisotropic
property, i.e., for all φ̂ ∈ H2(K̂) and α = (a1, a2), when |α| = 1, there holds

‖D̂α(φ̂− Π̂cφ̂)‖0,K̂ ≤ C|D̂αφ̂|1,K̂ . (2.2)
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Here and later, we use C denotes a positive constant real number independent of hK

and hK

ρK
, possibly different at different occurrences.

Define the affine mapping FK : K̂ → K by
{

x = xK + hxξ,

y = yK + hyη.
(2.3)

Then ∀K ∈ Γh, the associated finite element spaces Vh can be defined as

Vh = {vh|v̂ = vh|K ◦ FK ∈ P̂ ,

∫

F

[vh]ds = 0, F ⊂ ∂K}, (2.4)

where [vh] stands for the jump of vh across the edge F if F is an internal edge, and it is
equal to vh itself if F belongs to ∂Ω.

We define the following interpolations Π over spaces Vh as

Π : H2(Ω) → Vh,Π|K = ΠK = Π̂ ◦ F−1
K .

It is easy to show, ‖ · ‖h = (
∑

K∈Th

| · |21,K)
1
2 is the norm over Vh.

3 The Moving Grids Approximation of Crank-Nicolson Discretization

Scheme

We consider the nonlinear Klein-Gordon equation





utt + αut − γ4u + g(u) = f(X, t), (X, t) ∈ Ω× (0, T ],
u(X, 0) = u0(X), X ∈ Ω,

ut(X, 0) = ϕ0(X), X ∈ Ω,

u(X, t) = ut(X, t) = 0, (X, t) ∈ ∂Ω× (0, T ],

(3.1)

where X = (x, y), α > 0, γ > 0, g(u) satisfies the Lipschitz continuous conditionon on the
variable u ,and has the second order bounded partial derivative.

Let ut = Q, (3.1) is equivalent to the following question




∂Q

∂t
+ αQ− γ4u + g(u) = f(X, t), (X, t) ∈ Ω× (0, T ],

∂u

∂t
= Q, (X, t) ∈ Ω× [0, T ],

u(X, 0) = u0(X), X ∈ Ω,

Q(X, 0) = ϕ0(X), X ∈ Ω,

u(X, t) = Q(X, t) = 0, (X, t) ∈ ∂Ω× (0, T ].

(3.2)

The variational formulation for problem (3.2) is written as: ∀v ∈ H1
0 (Ω),





(
∂Q

∂t
, v) + (αQ, v) + a(u, v) + (g(u), v) = (f, v),

(
∂u

∂t
, v) = (Q, v),

(u(0)− u0, v) = 0,

(Q(0)− ϕ0, v) = 0,

(3.3)
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where u(0) = u(X, 0), Q(0) = Q(X, 0), a(u, v) = γ
∫
Ω
∇u∇vdX.

Then the approximation problem corresponding to (3.3) reads as: find uh, Qh ∈ Vh,∀vh ∈
Vh, such that





(
∂Qh

∂t
, vh) + (αQh, vh) + ah(uh, vh) + (g(uh), vh) = (f, vh),

(
∂uh

∂t
, vh) = (Qh, vh),

(uh(0)−Πu0, vh) = 0,

(Qh(0)−Πϕ0, vh) = 0,

(3.4)

where ah(uh, vh) = γ
∑
K

∫
K
∇uh · ∇vhdX.

In this section we apply the idea of moving grids to problem (3.4) and develop the
Crank-Nicolson discretization scheme for anisotropic finite element. Let 0 = t0 < t1 < · · · <
tN = T be a partition of the time interval [0,T], 4t = T

N
, tn = n4t (n = 0, 1, 2, · · · , N),

V h
n = {v(X, tn); v ∈ Vh}. We choose the approximating space S of u(X, t) in the following

way: the approximation solution uh(X, t) ∈ S is the piecewise linear function with respect to
the time subdivisions 0 = t0 < t1 < · · · < tN = T based on uh(x, tn) ∈ V h

n (n = 0, 1, 2, · · ·, N).
Now, we introduce the Crank-Nicolson discretization scheme of anisotropic finite element

to determine the function values uh
n = uh(X, tn) as follows

(ûh
0 − u0, vh) = 0, ∀vh ∈ V h

1 for n = 0, (3.5)

(Q̂h
0 −Q0, vh) = 0, ∀vh ∈ V h

1 for n = 0, (3.6)

(ûh
n − uh

n, vh) = 0, ∀vh ∈ V h
n+1 for n > 0, (3.7)

(Q̂h
n −Qh

n, vh) = 0, ∀vh ∈ V h
n+1 for n > 0, (3.8)

(Qh
n+1−Q̂h

n, vh)+(αQh
n+ 1

2
, vh)4t+ah(uh

n+ 1
2
, vh)4t+(g(un+ 1

2
), vh)4t = (fn+ 1

2
, vh)4t, ∀vh ∈ V h

n+1,

(3.9)

(
uh

n+1 − ûh
n

4t
, vh) = (

Qh
n+1 + Q̂h

n

2
, vh), (3.10)

where uh
n = uh(X, tn), uh

n+ 1
2

=
1
2
(ûh

n+uh
n+1), Qh

n+ 1
2

=
1
2
(Q̂h

n+Qh
n+1), fn+ 1

2
=

1
2
(f(X, tn)+

f(X, tn+1)). (3.7), (3.8) implies that ûh
n = uh

n, Q̂h
n = Qh

n when V h
n = V h

n+1. Furthermore,
(3.7), (3.8) is a L2-projection modification scheme for the former space when the two spaces
V h

n and V h
n+1 have different meshes or different interpolation functions. (3.9) is the general

trapezoid difference scheme. We get ûh
n, Q̂h

n from uh
n, Qh

n in (3.7), (3.8) and get uh
n+1, Q

h
n+1

from ûh
n, Q̂h

n in (3.9), (3.10). So by partial differential equation theory uh
n and Qh

n can be
determined uniquely through (3.5)–(3.10).

4 Error Estimates

The main error between the solution u(X, t) and the approximation solution uh(X, t)
consists of three parts: the interpolation error with respect to the finite element method,
the difference error with respect to the time, and the error of moving grids.
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Lemma 4.1 [13] For anisotropic meshes, ∀u ∈ H2(Ω), then we have
∣∣∣
∑
K

∫

∂K

∂u

∂n
· vhds

∣∣∣ ≤ Ch|u|2‖vh‖h, ∀ vh ∈ Vh, (4.1)

here and later n = (nx, ny) denotes the outward unit normal vector to ∂K.
Lemma 4.2 [13] ∀u ∈ H1(Ω), there hold ah(u−Πu, vh) = 0, ∀vh ∈ Vh.

Lemma 4.3 [13] ‖vh‖0 ≤ C‖vh‖h, ∀ vh ∈ Vh.

Lemma 4.4 Let un = u(X, tn), ∀vh ∈ V h
n+1,then there holds

(Qn+1−Qn, vh)+(αQn+ 1
2
, vh)4t+ah(un+ 1

2
, vh)4t+(g(un+ 1

2
), vh)4t = (fn+ 1

2
, vh)4t+En(vh),

(4.2)
where

|En(vh)| ≤ C[(
∫ tn+1

tn

‖∂2f

∂t2
‖2
0dτ)

1
2 + (

∫ tn+1

tn

‖∂2Q

∂t2
‖2
0dτ)

1
2 (4.3)

+(
∫ tn+1

tn

‖∂2u

∂t2
‖2
1dτ)

1
2 + (

∫ tn+1

tn

‖∂2u

∂t2
‖2
0dτ)

1
2 ](4tn)

5
2 ‖vh‖h + Ch4t‖vh‖h.

Proof From (3.2), for all v ∈ V h
n+1,

(Qn+1 −Qn, vh) + (
∫ tn+1

tn

αQdτ, vh) + ah(
∫ tn+1

tn

udτ, vh) + (
∫ tn+1

tn

g(u)dτ, vh)

= (
∫ tn+1

tn

fdτ, vh) +
∫ tn+1

tn

Γh(u, vh)dτ.

(4.4)

Combining (4.2) and (4.4), we get

En(vh) = (
∫ tn+1

tn

(f − fn+ 1
2
)dτ, vh)− (

∫ tn+1

tn

α(Q−Qn+ 1
2
)dτ, vh)− ah(

∫ tn+1

tn

(u− un+ 1
2
)dτ, vh)

−(
∫ tn+1

tn

(g(u)− g(un+ 1
2
))dτ, vh) +

∫ tn+1

tn

Γh(u, vh)dτ,

(4.5)
where Γh(u, vh) =

∑
K

∫
∂K

∂u
∂n

vhds.

By Cauchy-Schwartz inequality and one-dimensional linear interpolation theory, we de-
duce that

|(
∫ tn+1

tn

(f − fn+ 1
2
)dτ, vh)| ≤ C|(

∫ tn+1

tn

∂2f

∂t2
(4t)2dτ, vh)| ≤ C(

∫ tn+1

tn

‖∂2f

∂t2
‖2
0dτ)

1
2 (4t)

5
2 ‖vh‖h.

Similarly,

|(
∫ tn+1

tn

α(Q−Qn+ 1
2
)dτ, vh)| ≤ C(

∫ tn+1

tn

‖∂2Q

∂t2
‖2
0dτ)

1
2 (4t)

5
2 ‖vh‖h,

|ah(
∫ tn+1

tn

(u− un+ 1
2
)dτ, vh)| ≤ C(

∫ tn+1

tn

‖∂2u

∂t2
‖2
1dτ)

1
2 (4t)

5
2 ‖vh‖h,

|(
∫ tn+1

tn

(g(u)− g(un+ 1
2
))dτ, vh)| ≤ C(

∫ tn+1

tn

‖∂2u

∂t2
‖2
0dτ)

1
2 (4t)

5
2 ‖vh‖h.
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Applying Lemma 4.1,we obtain

|
∫ tn+1

tn

Γh(u, vh)dτ | ≤ C(u)h4t‖vh‖h.

Then (4.3 ) comes from the combination of above inequalities. Let

∇ξ0 = 0, ∇η0 = 0, λ0 = 0, θ0 = 0
ξn = uh

n −Πnun, ηn = un −Πnun, n = 1, 2, · · · , N,

ξ̂n = ûh
n −Πn+1un, η̂n = un −Πn+1un, n = 0, 1, 2, · · · , N,

λn = Qh
n −ΠnQn, θn = Qn −ΠnQn, n = 1, 2, · · · , N,

λ̂n = Q̂h
n −Πn+1Qn, θ̂n = Qn −Πn+1Qn, n = 0, 1, 2, · · · , N.

Theorem 4.1 For the approximate solution uh
n, Qh

n and the solution un, Qn of (3.5)−
(3.10), the following optimal error estimate holds

max
1≤n≤N

(‖Qh
n −Qn‖2

0 + ‖uh
n − un‖2

h) ≤ C(h2 + (4t)4). (4.6)

Proof By definitions of ξn, ηn, λn, θn, combining (3.9) and (4.2), we have for all vh ∈
V h

n+1,

(λn+1 − λ̂n, vh) + (αλn+1+λ̂n

2
, vh)4t + ah( ξn+1+ξ̂n

2
, vh)4t + (g(uh

n+ 1
2
)− g(un+ 1

2
), vh)4t

= (θn+1 − θ̂n, vh) + (α θn+1+θ̂n

2
, vh)4t + ah(ηn+1+η̂n

2
, vh)4t− En(vh).

(4.7)
Applying Lemma 4.2, we obtain ah(ηn+1+η̂n

2
, vh)4t = 0. By (3.10), we have

λn+1 + λ̂n

2
=

ξn+1 − ξ̂n

4t
+ Πn+1(

un+1 − un

4t
− Qn+1 + Qn

2
). (4.8)

Substituting (4.8) into (4.7) with vh = λn+1 + λ̂n, we deduce that

‖λn+1‖2
0 − ‖λ̂n‖2

0 + α
2
‖λn+1 + λ̂n‖2

04t + ‖ξn+1‖2
h − ‖ξ̂n‖2

h

= (θn+1 − θ̂n, λn+1 + λ̂n) + (α θn+1+θ̂n

2
, λn+1 + λ̂n)4t− (g(uh

n+ 1
2
)− g(un+ 1

2
), λn+1 + λ̂n)4t

+ah(ξn+1 + ξ̂n,Πn+1(
un+1−un

4t
− Qn+1+Qn

2
))4t− En(λn+1 + λ̂n).

(4.9)
Applying Cauchy-Schwartz inequality and Young inequality to yield

|(θn+1 − θ̂n, λn+1 + λ̂n)| ≤ ‖θn+1 − θ̂n‖0‖λn+1 + λ̂n‖0

≤ C
‖θn+1−θ̂n‖20

4t
+ C‖λn+1 + λ̂n‖2

04t

≤ Ch2

∫ tn+1

tn

‖∂Q

∂t
‖2
1dτ + C(‖λn+1‖2

0 + ‖λ̂n‖2
0)4t,

(4.10)
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|(α θn+1+θ̂n

2
, λn+1 + λ̂n)4t| ≤ C‖θn+1 + θ̂n‖0‖λn+1 + λ̂n‖04t

≤ Ch44t + α
8
‖λn+1 + λ̂n‖2

04t.
(4.11)

Using Lemmas 4.3, we deduce that

|(g(uh
n+ 1

2
)− g(un+ 1

2
), λn+1 + λ̂n)4t| ≤ C‖uh

n+ 1
2
− un+ 1

2
‖0‖λn+1 + λ̂n‖04t

≤ C(‖ξn+ 1
2
‖+ ‖ηn+ 1

2
‖0‖λn+1 + λ̂n‖0)4t

≤ C(‖∇ξn+1‖2
0 + ‖∇ξn‖2

0)4t + Ch44t +
α

8
‖λn+1 + λ̂n‖2

04t. (4.12)

|ah(ξn+1 + ξ̂n,Πn+1(
un+1 − un

4t
− Qn+1 + Qn

2
))4t|

≤ ‖∇(ξn+1 + ξ̂n)‖0‖∇Πn+1(
un+1 − un

4t
− Qn+1 + Qn

2
)‖04t

≤ C‖∇(ξn+1 + ξ̂n)‖0‖∇
∫ tn+1

tn

(
∂u

∂t
−Qn+ 1

2
)dτ‖0

≤ C (‖∇ξn+1‖2
0 + ‖∇ξ̂n‖2

0)4t + C(
∫ tn+1

tn

‖∂2Q

∂t2
‖2
1dτ)(4t)4. (4.13)

By (4.3) and Young inequality, we have

|En(λn+1 + λ̂n)| ≤ C(
∫ tn+1

tn

(‖∂2u

∂t2
‖2
0 + ‖∂2Q

∂t2
‖2
0 + ‖∂2f

∂t2
‖2
0 + ‖∂2u

∂t2
‖2
1)dτ)(4t)4

+
α

8
‖λn+1 + λ̂n‖2

04t + Ch24t +
α

8
‖λn+1 + λ̂n‖2

04t.

(4.14)

Substituting (4.10)− (4.14) into (4.9), we get

(1− C4t)(‖λn+1‖2
0 + ‖ξn+1‖2

h)− (1 + C4t)(‖λ̂n‖2
0 + ‖ξ̂n‖2

h) ≤ Ch2

∫ tn+1

tn

‖∂Q

∂t
‖2
1dτ + φn,

(4.15)
where

φn = C(
∫ tn+1

tn

(‖∂2u

∂t2
‖2
0 + ‖∂2Q

∂t2
‖2
0 + ‖∂2f

∂t2
‖2
0 + ‖∂2u

∂t2
‖2
1)dτ)(4t)4 + Ch24t + Ch44t.

On the other hand, by (3.8), we obtain

(λ̂n − λn, vh) = (θ̂n − θn, vh), ∀ vh ∈ V h
n+1. (4.16)

Choosing vh = λ̂n into (4.16), applying ε-Cauchy inequality to yield

‖λ̂n‖2
0 ≤

1
1− ε

‖λn‖2
0 +

1
(1− ε)ε

‖θ̂n − θn‖2
0. (4.17)

Similarly, by (3.7), we obtain

‖ξ̂n‖2
0 ≤

1
1− ε

‖ξn‖2
0 +

1
(1− ε)ε

‖η̂n − ηn‖2
0. (4.18)
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Substituting (4.17)− (4.18) into (4.15), we get

(1− ε)(1− C4t)
1 + C4t

(‖λn+1‖2
0 + ‖ξn+1‖2

h)− (‖λn‖2
0 + ‖ξn‖2

h)

≤ Ch2

∫ tn+1

tn

‖∂Q

∂t
‖2
1dτ + φn +

1
ε
‖θ̂n − θn‖2

0 +
1
ε
‖η̂n − ηn‖2

0.
(4.19)

When there is no change between the two layers of the meshes,

1− C4t

1 + C4t
(‖λn+1‖2

0 + ‖ξn+1‖2
h)− (‖λn‖2

0 + ‖ξn‖2
h) ≤ Ch2

∫ tn+1

tn

‖∂Q

∂t
‖2
1dτ + φn. (4.20)

We use M to represent the number of mesh changes and assume that M is a bounded
number independent of h and 4t . Assume that the former M -level mesh changes, and the
N −M layer mesh does not change, we have

(1− ε)(1− C4t)
1 + C4t

(‖λn+1‖2
0 + ‖ξn+1‖2

h)− (‖λn‖2
0 + ‖ξn‖2

h) (4.21)

≤ Ch2

∫ tn+1

tn

‖∂Q

∂t
‖2
1dτ + φn +

1
ε
‖θ̂n − θn‖2

0 +
1
ε
‖η̂n − ηn‖2

0, n = 1, 2, · · · ,M − 1,

1− C4t

1 + C4t
(‖λn+1‖2

0 + ‖ξn+1‖2
h)− (‖λn‖2

0 + ‖ξn‖2
h) (4.22)

≤ Ch2

∫ tn+1

tn

‖∂Q

∂t
‖2
1dτ + φn, n = M, M + 1,M + 2, · · · , N − 1.

Take n = 1, notice the selection of u1 and Q1, ‖λ1‖0 = ‖ξ1‖0 = 0, by (4.21), we obtain

‖λ2‖2
0 + ‖ξ2‖2

h ≤
1 + C4t

(1− ε)(1− C4t)
(Ch2

∫ tn+1

tn

‖∂Q

∂t
‖2
1dτ + φ1 +

1
ε
‖θ̂1 − θ1‖2

0 +
1
ε
‖η̂1 − η1‖2

0),

(4.23)
when 4t is full small

(
1 + C4t

1− C4t
)n ≤ (

1 + C4t

1− C4t
)N = (1 +

2C4t

1− C4t
)

T
4t ≤ e2CT . (4.24)

Again by the φn, we obtain

‖λ2‖2
0 + ‖ξ2‖2

h ≤ C1(h2 + (4t)4).

Furthermore, we have

‖λn‖2
0 + ‖ξn‖2

h ≤ Cn−1(h2 + (4t)4), 3 ≤ n ≤ M + 1,

where Cn−1 (n = 2, · · · ,M + 1) are bounded number.
On both sides of (4.22) is multiplied by (1−C4t

1+C4t
)n, we have

(
1− C4t

1 + C4t
)N (‖λN‖2

0 + ‖ξN‖2
h)− (

1− C4t

1 + C4t
)M+1(‖λM+1‖2

0 + ‖ξM+1‖2
h)

≤ C
N−1∑

n=M+1

(h2

∫ tn+1

tn

‖∂Q

∂t
‖2
1dτ + φn)(

1− C4t

1 + C4t
)n,

(4.25)
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that is

‖λN‖2
0 + ‖ξN‖2

h ≤ Ce2CT (‖λM+1‖2
0 + ‖ξM+1‖2

h + T max
0≤n≤N

(φn + h2

∫ tn+1

tn

‖∂Q

∂t
‖2
1dτ)),

(4.26)
take 4t full small, by Gronwall inequalities, we have

‖λN‖2
0 + ‖ξN‖2

h ≤ C(h2 + (4t)4).

Furthermore
max

M+1≤n≤N
(‖λn‖2

0 + ‖ξn‖2
h) ≤ C(h2 + (4t)4).

Again
‖Qh

n −Qn‖2
0 + ‖uh

n − un‖2
h ≤ ‖λn‖2

0 + ‖θn‖2
0 + ‖ξn‖2

h + ‖ηn‖2
h,

by Lemma 2.1 and the finite element interpolation theory, we obtain (4.6), the proof is
completed.
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非线性Klein-Gordon方程的变网格有限元方法

张斐然,朱 岩

(商丘师范学院数学与统计学院,河南商丘 476000)

摘要: 本文研究了非线性Klein-Gordon方程问题, 利用Crank-Nicolson变网格非协调有限元方法, 不

需要传统的Riesz投影算子, 利用插值技巧和单元的特殊性质, 得到了相应的收敛性分析和最优误差估计.
关键词: Klein-Gordon方程; 各向异性; 变网格; 非协调; Crank-Nicolson格式
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