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Abstract: In this paper, we study the problem of integral formulas for an oriented and com-
pact n-dimension isometric immersion submanifold M™ without boundary in the (n+ p)-dimension
euclid space R™*?. At first, we define the 7-th higher order mean curvature H, (0 <r < n) along
the direction of the unit mean curvature vector field £ to M™, and then we attain a new integral
formula, by applying the method of moving frame and exterior differential, which generalizes a
classical integral formula in the case of codimension p = 1, that is in the case of hypersurfaces.
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1 Introduction

It is well known that study on hypersurfaces and submanifolds in euclid space is one of
fundamental tasks of differential geometry. For oriented and compact isometric immersion
hypersurfaces in euclid space, references [1-3] ever established a classical integral formula,
that is the following Theorem 1.1.

In this paper, we study an oriented and compact n-dimension isometric immersion
submanifold M™ in the (n+p)-dimension euclid space R"*?. Let £ be the unit mean curvature
vector field of M™. At first, we define the higher order mean curvature H,(r =0,1,2,--- ,n)
along the direction £&. And then, by applying the method of moving frame and exterior
differential, we attain a new integral formula, that is the following Theorem 1.2. When
codimension p = 1, Theorem 1.2 becomes Theorem 1.1.

Theorem 1.1 (see [1-3]) Let ¢ : M — R""! be an oriented and compact isometric

immersion hypersurface without boundary. Then the following integral formulas hold

/ (Hy + Hiy1 (o, N))dAM =0, k=0,1,2,--- ,n—1,
M

* Received date: 2019-07-14 Accepted date: 2019-10-12
Foundation item: Supported by the Special Funding of Guiyang Science and Technology Bureau
and Guiyang University (GYU-KYZ [2019-2020]).
Biography: Wang Qi (1963-), male, born at Shuangfeng, Hunan, professor, major in differential

geometry.



416 Journal of Mathematics Vol. 40

here N is the unit normal vector field to M, Hj is the k-th higher order mean curvature
of M and (,) is the euclid inner product in R"™! dM is the n-dimension Riemann volume
form for M.

Theorem 1.2 Let ¢ : M™ — R""? be an oriented and compact n-dimension isometric

immersion submanifold without boundary. Then the following integral formulas hold
/ (Hk +Hk+1<307§>)dM =0, k=0,1,2,--- ,n—1,
M

here & is the unit mean curvature vector field to M"™, Hj is the k-th higher order mean
curvature along the direction ¢ and (,) is the euclid inner product in R™P  dM is the

n-dimension Riemann volume form for M™.

2 Preparation

Let R™P be the (n + p)-dimension euclid space and (M™, g) be a smooth n-dimension
Riemann manifold. Denote by ¢ : M™ — R™P a smooth immersion mapping between
smooth manifolds. If the equation g = ¢*((,)) holds everywhere on M™, then M™ or p(M™)
is called an isometric immersion submanifold in R"*?. Here (,) is the euclid inner product
of R"*? and ¢* is the pull-back mapping for the immersion mapping .

In this paper, we prescribe the index range as
1§z,j,k,l§n,n+1§a, ,BSTL—FP, ]-SA) BSTL"—p

Denote by {ea} a local unit orthogonal frame field for R™*? such that when being
confined onto M", {e;} is a local unit tangent frame field to M™ and {e,} is a local unit
normal frame field to M™.

Denote by {w”} the dual frame field for {e4}, then the second fundamental form IT for

M™ can be expressed in component form as
1l = g he w' @ w! ® eq.
a,i,j

Define the mean curvature vector field o to M™ as
— 1 hOé
g = ; Z iiCa-
a,i

It is well-known that the definition of ¢ is independent on the choice of the local unit
orthogonal frame field {ea}.

We consider the unit mean curvature vector field £ = o/|o|. Let {\;} be the principal
curvature functions along the direction £, then the r-th higher order mean curvature H,
(r=1,2,...,n) is defined as

1<i1<...<ip<n
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here (1) is the ordinary combination number. At the same time we define Hy = 1.
Reference [3] ever attained a fundamental integral formula that is the integral of the
Codazzi tensor field on an isometric immersion hypersurface in R**!. Similar to reference
[3], for n-dimension isometric immersion submanifold M™ of R"*?  we attain the following
Lemma 2.2. Here we firstly recall some relevant fundamental concepts and properties. As-
sume that S is a tensor field of type (k, k) on a Riemann manifold (M™,g). If S is anti
symmetric both to its each pair of covariant indices and to its each pair of contravariant

indices, then we write
S € T(EndA*(TM)).

For S € I'(End A¥(TM)), T € T'(End AY(TM)), we also consider the tensor field of type
(k+1,k+1),
ST € T'(End A*(TM)),

and the definition of S * T is that the exterior product of covariant components of S and
the covariant components of T', and respectively the exterior product of contravariant com-
ponents of S and the contravariant components of 7. And by reference [3], this product x*
is associative and commutative.

Definition 2.1 (see [3]|, Codazzi tensor field) Let (M™,g) be a n-dimension Riemann
manifold and S € T'(End A*(T'M)). If for all C* vector field Xy, Xo,--, X1 € D(TM)
we have

Z(—l)j“(vij(Xl AXo A AXj i A X A A Xjyr)) = 0,
J
then S is called a Codazzi tensor field on M™, here V is the Levi-Civita connection of
(M",g).

According to reference [3], we know that if S and T" are Codazzi tensor field respectively
of type (k, k) and type (I,1) on (M™,g) , then S T must be a Codazzi field tensor field of
type (k+ 1,k +1) on M™ . From reference [3], we also define a Codazzi tensor field A of
type (1,1) on M™ . Let (M™,g) be a n-dimension Riemann manifold and ¢ : M™ — R"*?
be an isometric immersion mapping. Let Y be the position vector field of ¢)(M™) in R"*?,
then the Codazzi tensor field A of type (1, 1) is determined by

(A(X),Z) = (A(Z),X) = (II(X, 2),Y) = (II(X, Z),), VX,Z € T(TM),

here (,) is the euclid inner product of R™*? and Il is the second fundamental form for
(M™, g).

Now we are ready to prove the following Lemma 2.2.

Lemma 2.2 let (M",g) be a n-dimension Riemann manifold and ¢ : M™ — R"*?
be an oriented and isometric immersion mapping. Let ¢¥(M™) be compact and be without
boundary. Assume that S is a Codazzi tensor field of type (k, k) on M™ | then the following

integral formulas hold

/ {(n — k) - trace(S) — trace(S*« A)}dV =0, k=0,1,2,--- ,;n— 1.
M
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Here dV is the n-dimension Riemann volume form of M™ and trace is the trace operator.
Proof Denote by dV the n-dimension Riemann volume form of M™, then the following

equation
a(X13X27 U 7Xn—1) = dV(YtanaXlaXQa U 7Xn—1)a V)(la)(% e aXn—l S F(TM)

determines a (n — 1) form and it is written as a = Y*|dV, here Y*'*" is the tangent
component to M™ of the position vector Y for ¢)(M™) in R"*?.

From reference [3] and direct computation, we have
Vxa={X —A(X)}|dV, VX e (TM),

here V is the Levi-Civita connection of (M",g). At first we assume that S is a Codazzi
tensor field of type (n —1,n — 1).
Let {e;} is an unit orthogonal frame for M"™ and write

Ej:61/\-~/\ej_1/\ej+1/\-~/\en, E:el/\egA---/\en.

We can see w = a0 S as a (n — 1) form which takes value in I'(End A*(T'M). By the

computation in reference [3], we have

dw(er,ea, - en) = (1) (Ve w)(Ey)
_Z 1744V, @) o S(E; —l—aOZ( 17V, S)(E)).

Because S is a Codazzi tensor field, the second term of the above equation vanishes and
so we have

dw(er ez, yen) = > (=1 {e; — A(e;)} | dV o S(E)
=Y (—1)He; AS(e;), E) = Y (=1)"T(A(e;) A S(E;), E)
= (e AS(E)),e5 NE;) =Y (Ale;) AS(E;)), e5 A Ej)

= trace S — trace S *x A.

Because M" is compact and is without boundary, f 2y wdV = 0. And so Lemma 2.1 holds
in the case that S is a Codazzi tensor field of type (n —1,n —1). Now we assume that S is a
Codazzi tensor field of type (k, k). Denote by I the identity element of I'(End A" ~*~(T M)).

Because I is parallel, I % S is a Codizza tensor field of type (n —1,n —1). So from the
above conclusion we have

/ { trace (S« I) —trace (S*x AxI) }dV =0, k=0,1,--- ,n— 1.
M
Finally we notice that

trace (S x I) = (n — k) trace (S), trace (S * A xI) = trace (S * A),
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we already finish the proof of Lemma 2.2.

3 Proof of Theorem 1.2

Theorem 1.2 Let ¢ : M™ — R™P be an oriented and compact n-dimension isometric

immersion submanifold without boundary. Then the following integral formulas hold.

/ (Hk+Hk+1<<p7§>>dM:07 k:0)1727"' an_la
M

here £ is the unit mean curvature vector field to M"™, Hj is the k-th higher order mean
curvature along the direction ¢ and (,) is the euclid inner product in R™P  dM is the
n-dimension Riemann volume form for M™.

Proof Let Ty be the shape operator of M"™ along the direction of the unit mean
curvature vector field £, that is to say, T¢ is a tensor field of type (1,1) on M" defined by

Te(X) = —(Vx€)T, ¥ X e I(TM),

here V is the Levi-Civita connection of R"*?.

Because the Levi-Civita connection V is flat, by the Codazzi equation for submanifold
( see [4] ), we know that T¢ is a Codazzi tensor field of type (1,1) on M™.

Denote by A1, Ag, - -+, A, the characteristic values of T¢ and by o, the r-th fundamental

homogeneous symmetry polynomial, that is
Op = Z )\jl"')\jT,TZI,Q,"',TL.
J1<.<Jnr

Let S = Tg"' =T * T¢ % ... x T¢ be the k-times % product. According to reference [3], we
know that S is a Codazzi tensor field of type (k, k). And by direct computation, we have

trace (S) = k! oy, . (3.1)
Denote by
h=h(zx) = (p(x),{(x)), veM
the support function of M™ along the direction {. Then it is easy to see A = —hT;. By

direct computation, we have
trace (S* A) = —h (k+ 1) opy1 . (3.2)

Now we recall once again the definition of the higher order mean curvature H, along

the unit mean curvature vector field &
Hk = (z)710k7 k= 1727' T, N

We notice the above (3.1), (3.2) and then we apply Lemma 2.2, we already finish the
proof for Theorem 1.2.
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