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Abstract: In this paper, we study the problem of integral formulas for an oriented and com-

pact n-dimension isometric immersion submanifold Mn without boundary in the (n+p)-dimension

euclid space Rn+p. At first, we define the r-th higher order mean curvature Hr (0 ≤ r ≤ n) along

the direction of the unit mean curvature vector field ξ to Mn, and then we attain a new integral

formula, by applying the method of moving frame and exterior differential, which generalizes a

classical integral formula in the case of codimension p = 1, that is in the case of hypersurfaces.
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1 Introduction

It is well known that study on hypersurfaces and submanifolds in euclid space is one of
fundamental tasks of differential geometry. For oriented and compact isometric immersion
hypersurfaces in euclid space, references [1–3] ever established a classical integral formula,
that is the following Theorem 1.1.

In this paper, we study an oriented and compact n-dimension isometric immersion
submanifold Mn in the (n+p)-dimension euclid space Rn+p. Let ξ be the unit mean curvature
vector field of Mn. At first, we define the higher order mean curvature Hr(r = 0, 1, 2, · · · , n)
along the direction ξ. And then, by applying the method of moving frame and exterior
differential, we attain a new integral formula, that is the following Theorem 1.2. When
codimension p = 1, Theorem 1.2 becomes Theorem 1.1.

Theorem 1.1 (see [1–3]) Let ϕ : M → Rn+1 be an oriented and compact isometric
immersion hypersurface without boundary. Then the following integral formulas hold

∫

M

(Hk + Hk+1〈ϕ,N〉)dM = 0, k = 0, 1, 2, · · · , n− 1,
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here N is the unit normal vector field to M , Hk is the k-th higher order mean curvature
of M and 〈, 〉 is the euclid inner product in Rn+1, dM is the n-dimension Riemann volume
form for M .

Theorem 1.2 Let ϕ : Mn → Rn+p be an oriented and compact n-dimension isometric
immersion submanifold without boundary. Then the following integral formulas hold

∫

M

(Hk + Hk+1〈ϕ, ξ〉)dM = 0, k = 0, 1, 2, · · · , n− 1,

here ξ is the unit mean curvature vector field to Mn, Hk is the k-th higher order mean
curvature along the direction ξ and 〈, 〉 is the euclid inner product in Rn+p, dM is the
n-dimension Riemann volume form for Mn.

2 Preparation

Let Rn+p be the (n + p)-dimension euclid space and (Mn, g) be a smooth n-dimension
Riemann manifold. Denote by ϕ : Mn → Rn+p a smooth immersion mapping between
smooth manifolds. If the equation g = ϕ∗(〈, 〉) holds everywhere on Mn, then Mn or ϕ(Mn)
is called an isometric immersion submanifold in Rn+p. Here 〈, 〉 is the euclid inner product
of Rn+p and ϕ∗ is the pull-back mapping for the immersion mapping ϕ.

In this paper, we prescribe the index range as

1 ≤ i, j, k, l ≤ n, n + 1 ≤ α, β ≤ n + p, 1 ≤ A, B ≤ n + p.

Denote by {eA} a local unit orthogonal frame field for Rn+p such that when being
confined onto Mn, {ei} is a local unit tangent frame field to Mn and {eα} is a local unit
normal frame field to Mn.

Denote by {ωA} the dual frame field for {eA}, then the second fundamental form II for
Mn can be expressed in component form as

II =
∑
α,i,j

hα
ii ωi ⊗ ωj ⊗ eα.

Define the mean curvature vector field σ to Mn as

σ =
1
n

∑
α,i

hα
iieα.

It is well-known that the definition of σ is independent on the choice of the local unit
orthogonal frame field {eA}.

We consider the unit mean curvature vector field ξ = σ/|σ|. Let {λi} be the principal
curvature functions along the direction ξ, then the r-th higher order mean curvature Hr

(r = 1, 2, ..., n) is defined as

Hr = (n
r )−1 · (

∑
1≤i1<...<ir≤n

λi1 · λi2 · · · λir
),
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here (n
r ) is the ordinary combination number. At the same time we define H0 ≡ 1.

Reference [3] ever attained a fundamental integral formula that is the integral of the
Codazzi tensor field on an isometric immersion hypersurface in Rn+1. Similar to reference
[3], for n-dimension isometric immersion submanifold Mn of Rn+p, we attain the following
Lemma 2.2. Here we firstly recall some relevant fundamental concepts and properties. As-
sume that S is a tensor field of type (k, k) on a Riemann manifold (Mn, g). If S is anti
symmetric both to its each pair of covariant indices and to its each pair of contravariant
indices, then we write

S ∈ Γ(EndΛk(TM)).

For S ∈ Γ(End Λk(TM)), T ∈ Γ(End Λl(TM)), we also consider the tensor field of type
(k + l, k + l),

S ∗ T ∈ Γ(End Λk+l(TM)),

and the definition of S ∗ T is that the exterior product of covariant components of S and
the covariant components of T , and respectively the exterior product of contravariant com-
ponents of S and the contravariant components of T . And by reference [3], this product ∗
is associative and commutative.

Definition 2.1 (see [3], Codazzi tensor field) Let (Mn, g) be a n-dimension Riemann
manifold and S ∈ Γ(End Λk(TM)). If for all C∞ vector field X1, X2, · · · , Xk+1 ∈ Γ(TM)
we have ∑

j

(−1)j+1(∇Xj
S(X1 ∧X2 ∧ ... ∧Xj−1 ∧Xj+1 ∧ ... ∧Xk+1)) = 0,

then S is called a Codazzi tensor field on Mn, here ∇ is the Levi-Civita connection of
(Mn, g).

According to reference [3], we know that if S and T are Codazzi tensor field respectively
of type (k, k) and type (l, l) on (Mn, g) , then S ∗ T must be a Codazzi field tensor field of
type (k + l, k + l) on Mn . From reference [3], we also define a Codazzi tensor field A of
type (1, 1) on Mn . Let (Mn, g) be a n-dimension Riemann manifold and ψ : Mn → Rn+p

be an isometric immersion mapping. Let Y be the position vector field of ψ(Mn) in Rn+p,
then the Codazzi tensor field A of type (1, 1) is determined by

〈A(X), Z〉 = 〈A(Z), X〉 = 〈II(X, Z), Y 〉 = 〈II(X, Z), ψ〉, ∀X, Z ∈ Γ(TM),

here 〈, 〉 is the euclid inner product of Rn+p and II is the second fundamental form for
(Mn, g).

Now we are ready to prove the following Lemma 2.2.
Lemma 2.2 let (Mn, g) be a n-dimension Riemann manifold and ψ : Mn → Rn+p

be an oriented and isometric immersion mapping. Let ψ(Mn) be compact and be without
boundary. Assume that S is a Codazzi tensor field of type (k, k) on Mn , then the following
integral formulas hold

∫

M

{(n− k) · trace(S)− trace(S ∗A)}dV = 0, k = 0, 1, 2, · · · , n− 1.
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Here dV is the n-dimension Riemann volume form of Mn and trace is the trace operator.
Proof Denote by dV the n-dimension Riemann volume form of Mn, then the following

equation

α(X1, X2, · · · , Xn−1) = dV (Y tan, X1, X2, · · · , Xn−1), ∀X1, X2, · · · , Xn−1 ∈ Γ(TM)

determines a (n − 1) form and it is written as α = Y tancdV , here Y tan is the tangent
component to Mn of the position vector Y for ψ(Mn) in Rn+p.

From reference [3] and direct computation, we have

∇Xα = {X −A(X)}cdV, ∀X ∈ Γ(TM),

here ∇ is the Levi-Civita connection of (Mn, g). At first we assume that S is a Codazzi
tensor field of type (n− 1, n− 1).

Let {ei} is an unit orthogonal frame for Mn and write

Ej = e1 ∧ · · · ∧ ej−1 ∧ ej+1 ∧ · · · ∧ en, E = e1 ∧ e2 ∧ · · · ∧ en.

We can see ω = α ◦ S as a (n − 1) form which takes value in Γ(End Λk(TM). By the
computation in reference [3], we have

dω(e1, e2, · · · , en) =
∑

(−1)j+1(∇ej
ω)(Ej)

=
∑

(−1)j+1(∇ej
α) ◦ S(Ej) + α ◦

∑
(−1)j+1(∇ej

S)(Ej).

Because S is a Codazzi tensor field, the second term of the above equation vanishes and
so we have

dω(e1, e2, · · · , en) =
∑

(−1)j+1{ej −A(ej)} c dV ◦ S(Ej)

=
∑

(−1)j+1〈ej ∧ S(ej), E〉 −
∑

(−1)j+1〈A(ej) ∧ S(Ej), E〉
=

∑
〈ej ∧ S(Ej), ej ∧ Ej〉 −

∑
〈A(ej) ∧ S(Ej), ej ∧ Ej〉

= trace S − trace S ∗A.

Because Mn is compact and is without boundary,
∫

M
ωdV = 0. And so Lemma 2.1 holds

in the case that S is a Codazzi tensor field of type (n− 1, n− 1). Now we assume that S is a
Codazzi tensor field of type (k, k). Denote by I the identity element of Γ(End Λn−k−1(TM)).

Because I is parallel, I ∗ S is a Codizza tensor field of type (n− 1, n− 1). So from the
above conclusion we have

∫

M

{ trace (S ∗ I)− trace (S ∗A ∗ I) }dV = 0, k = 0, 1, · · · , n− 1.

Finally we notice that

trace (S ∗ I) = (n− k) trace (S) , trace (S ∗A ∗ I) = trace (S ∗A),
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we already finish the proof of Lemma 2.2.

3 Proof of Theorem 1.2

Theorem 1.2 Let ϕ : Mn → Rn+p be an oriented and compact n-dimension isometric
immersion submanifold without boundary. Then the following integral formulas hold.

∫

M

(Hk + Hk+1〈ϕ, ξ〉)dM = 0, k = 0, 1, 2, · · · , n− 1,

here ξ is the unit mean curvature vector field to Mn, Hk is the k-th higher order mean
curvature along the direction ξ and 〈, 〉 is the euclid inner product in Rn+p, dM is the
n-dimension Riemann volume form for Mn.

Proof Let Tξ be the shape operator of Mn along the direction of the unit mean
curvature vector field ξ, that is to say, Tξ is a tensor field of type (1, 1) on Mn defined by

Tξ(X) = −(∇Xξ)>, ∀ X ∈ Γ(TM),

here ∇ is the Levi-Civita connection of Rn+p.
Because the Levi-Civita connection ∇ is flat, by the Codazzi equation for submanifold

( see [4] ), we know that Tξ is a Codazzi tensor field of type (1, 1) on Mn.
Denote by λ1, λ2, · · · , λn the characteristic values of Tξ and by σr the r-th fundamental

homogeneous symmetry polynomial, that is

σr =
∑

j1<...<jr

λj1 · · · λjr
, r = 1, 2, · · · , n .

Let S = T k
ξ = Tξ ∗ Tξ ∗ ... ∗ Tξ be the k-times ∗ product. According to reference [3], we

know that S is a Codazzi tensor field of type (k, k). And by direct computation, we have

trace (S) = k! σk . (3.1)

Denote by
h = h(x) = 〈ϕ(x), ξ(x)〉, x ∈ M

the support function of Mn along the direction ξ. Then it is easy to see A = −hTξ. By
direct computation, we have

trace (S ∗A) = −h (k + 1)! σk+1 . (3.2)

Now we recall once again the definition of the higher order mean curvature Hr along
the unit mean curvature vector field ξ

Hk = (n
k)−1σk, k = 1, 2, · · · , n.

We notice the above (3.1), (3.2) and then we apply Lemma 2.2, we already finish the
proof for Theorem 1.2.
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欧氏空间中紧致子流形的积分公式

王 琪, 周志进

(贵阳学院数学与信息科学学院,贵州贵阳 550005)

摘要: 本文研究了 (n + p)维欧氏空间 Rn+p 中 n维定向紧致无边子流形Mn 的积分公式的问题. 首

先定义了Mn 沿其单位平均曲率向量场 ξ 方向的高阶平均曲率 Hr (0 ≤ r ≤ n); 然后, 利用活动标架与外微

分法, 获得了关于Mn 的一个新的积分公式. 新公式推广了余维数 p = 1即超曲面情况下的经典积分公式.
关键词: 欧氏空间; 紧致无边子流形; 平均曲率向量场; 高阶平均曲率; 积分公式
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