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1 Introduction

The concept of Lie triple systems (LTSs) was introduced by Nathan Jacobson in 1949

[1], to study subspaces of associative algebras closed under triple commutators [[u, v], w].

The role played by LTSs in the theory of symmetric spaces is parallel to that of Lie algebras

in the theory of Lie groups. Clearly, every Lie algebra is at the same time a Lie triple

system (LTS) by putting [x, y, z] = [[x, y], z]. Some applications of LTSs are widely studied

recently [2–4]. The notion of δ-Jordan Lie triple systems (δ-JLTSs) was introduced by

Susumu Okubo in 1997 [5]. The case of δ = 1 implies δ-JLTSs are LTSs and the other

case of δ = −1 gives Jordan Lie triple systems. So a question arises whether some known

results on LTSs can be extended to the framework of δ-JLTSs. δ-JLTSs are the natural

generalization of LTSs and have important applications. Recently, deformations, Nijenhuis

operators, Abelian extensions and T ∗-extensions of δ-JLTSs were studied [6].

The class of the split ones is specially related to addition quantum numbers, graded

contractions, and deformations. In [7], Calderón introduced techniques of connections of

roots in the field of split Lie algebras. In [8], Calderón introduced the concept of split LTSs
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of arbitrary dimension and studied the split LTSs with a coherent 0-root space. Recently, in

[9–13], the structures of arbitrary split Leibniz algebras, arbitrary split LTSs, arbitrary split

Leibniz triple systems and arbitrary graded Leibniz triple systems were determined by the

techniques of connections of roots. In the present paper, we are interested in studying the

structure of arbitrary δ-JLTSs with a coherent 0-root space by focussing on the split ones.

Our work is essentially motivated by the work on split LTSs [8].

Throughout this paper, δ-JLTSs T with a coherent 0-root space are considered of arbi-

trary dimension and over an arbitrary field K. This paper proceeds as follows. In Section

2, we establish the preliminaries on split δ-JLTSs theory. In Section 3, we introduce the

notion of connections of roots in the framework of split δ-JLTS and study its properties.

We also show that such an arbitrary δ-JLTS with a symmetric root system is of the form

T = U +
∑

[α]∈Λ1/∼

I[α] with U a subspace of the 0-root space T0 and any I[α] a well described

ideal of T , satisfying [I[α], T, I[β]] = 0 if [α] 6= [β].

2 Preliminaries

Definition 2.1 [5] A δ-Jordan Lie algebra L is a vector space over a field K endowed

with a bilinear map [·, ·] : L × L → L satisfying

(1) [x, y] = −δ[y, x], δ = ±1,

(2) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, ∀x, y, z ∈ L.

Remark 2.2 [5] A δ-Jordan Lie algebra L is called a Lie algebra if δ = 1, and a δ-Jordan

Lie algebra L is called a Jordan Lie algebra if δ = −1.

Definition 2.3 [5] A δ-JLTS is a vector space T endowed with a trilinear operation

[·, ·, ·] : T × T × T → T satisfying

(1) [x, y, z] = −δ[y, x, z], δ = ±1,

(2) [x, y, z] + [y, z, x] + [z, x, y] = 0 (Jacobi identity),

(3) [x, y, [a, b, c]] = [[x, y, a], b, c] + [a, [x, y, b], c] + δ[a, b, [x, y, c]] for x, y, z, a, b, c ∈ T .

When δ = 1, a δ-JLTS is a LTS. So LTSs are special examples of δ-JLTSs.

Example 2.4 If L is a δ-Jordan Lie algebra with product [·, ·], then L becomes a δ-JLTS

by putting [x, y, z] = [[x, y], z].

Definition 2.5 Let I be a subspace of a δ-JLTS T . Then I is called a subsystem of

T , if [I, I, I] ⊆ I; I is called an ideal of T , if [I, T, T ] ⊆ I.

Definition 2.6 [5] The standard embedding of a δ-JLTS T is the Z2-graded δ-Jordan

Lie algebra L = L0 ⊕ L1, L0 being the K-span of {L(x, y). x, y ∈ T}, where L(x, y) denotes

the left multiplication operator in T , L(x, y)(z) := [x, y, z]; L1 := T and where the product

is given by

[(L(x, y), z), (L(u, v), w)] := (L([u, v, y], x) − L([u, v, x], y) + L(z,w), [x, y, w] − δ[u, v, z]).

Let us observe that L0 with the product induced by the one in L = L0 ⊕ L1 becomes a

δ-Jordan Lie algebra.
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Definition 2.7 Let T be a δ-JLTS, L = L0⊕L1 be its standard embedding, and H0 be

a maximal abelian subalgebra (MASA) of L0. For a linear functional α ∈ (H0)∗, we define

the root space of T (with respect to H0) associated to α as the subspace Tα := {tα ∈ T :

[h, tα] = α(h)tα for any h ∈ H0}. The elements α ∈ (H0)∗ satisfying Tα 6= 0 are called roots

of T with respect to H0 and we denote Λ1 := {α ∈ (H0)∗ \ {0} : Tα 6= 0}.

Let us observe that T0 = {t0 ∈ T : [h, t0] = 0 for any h ∈ H0}. In the following, we shall

denote by Λ0 the set of all nonzero α ∈ (H0)∗ such that L0
α := {v0

α ∈ L0 : [h, v0
α] = α(h)v0

α

for any h ∈ H0} 6= 0.

Lemma 2.8 Let T be a δ-JLTS, L = L0 ⊕ L1 be its standard embedding, and H0 be

a MASA of L0. For α, β, γ ∈ Λ1 ∪ {0} and ξ, q ∈ Λ0 ∪ {0}, the following assertions hold.

(1) If [Tα, Tβ] 6= 0, then δ(α + β) ∈ Λ0 ∪ {0} and [Tα, Tβ] ⊆ L0
δ(α+β).

(2) If [L0
ξ , Tα] 6= 0, then δ(ξ + α) ∈ Λ1 ∪ {0} and [L0

ξ, Tα] ⊆ Tδ(ξ+α).

(3) If [Tα, L0
ξ] 6= 0, then δ(α + ξ) ∈ Λ1 ∪ {0} and [Tα, L0

ξ] ⊆ Tδ(α+ξ).

(4) If [L0
ξ , L

0
q] 6= 0, then δ(ξ + q) ∈ Λ0 ∪ {0} and [L0

ξ, L
0
q] ⊆ L0

δ(ξ+q).

(5) If {Tα, Tβ, Tγ} 6= 0, then α + β + δγ ∈ Λ1 ∪ {0} and {Tα, Tβ, Tγ} ⊆ Tδ2α+δ2β+δγ =

Tα+β+δγ .

Proof (1) For any x ∈ Tα, y ∈ Tβ and h ∈ H0, by Definition 2.1 (2), one has

[h, [x, y]] = δ[x, [h, y]] + δ[[h, x], y] = δ[x, β(h)y] + δ[α(h)x, y] = δ(α + β)(h)[x, y].

(2) For any x ∈ L0
ξ, y ∈ Tα and h ∈ H0, by Definition 2.1 (2), one has [h, [x, y]] =

δ[x, [h, y]] + δ[[h, x], y] = δ[x, α(h)y] + δ[ξ(h)x, y] = δ(ξ + α)(h)[x, y].

(3) For any x ∈ Tα, y ∈ L0
ξ, and h ∈ H0, by Definition 2.1 (2), one has [h, [x, y]] =

δ[x, [h, y]] + δ[[h, x], y] = δ[x, ξ(h)y] + δ[α(h)x, y] = δ(α + ξ)(h)[x, y].

(4) For any x ∈ L0
ξ, y ∈ L0

q and h ∈ H0, by Definition 2.1 (2), one has [h, [x, y]] =

δ[x, [h, y]] + δ[[h, x], y] = δ[x, q(h)y] + δ[ξ(h)x, y] = δ(ξ + q)(h)[x, y].

(5) It is a consequence of Lemma 2.8 (1) and (2).

Definition 2.9 Let T be a δ-JLTS, L = L0 ⊕ L1 be its standard embedding, and

H0 be a MASA of L0. We shall call that T is a split δ-JLTS (with respect to H0) if

T = T0 ⊕ (⊕α∈Λ1Tα). We say that Λ1 is the root system of T .

We also note that the facts H0 ⊂ L0 = [T, T ] and T = T0 ⊕ (⊕α∈Λ1Tα) imply

H0 =
∑

α∈Λ1

[Tα, T−α]. (2.1)

It seems to us that the study of the structure of arbitrary split δ-JLTS is difficult to

accomplish at the whole level of generality, so we begin the study of this class of δ-JLTS by

considering those with a coherent 0-root space.

Definition 2.10 We say that a split δ-JLTS T has a coherent 0-root space if

(1) [T0, T0, T ] = 0,

(2) [T0, Tα, T0] 6= 0, for any α ∈ Λ1.

This is a natural relation between T0 and any Tα, α ∈ Λ1. Observe that, by condition

(2), α ∈ Λ1 implies α ∈ Λ0, but not the converse.
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Definition 2.11 A root system Λ1 of a split δ-JLTS T is called symmetric if it satisfies

that α ∈ Λ1 implies −α ∈ Λ1.

A similar concept applies to the set Λ0 of nonzero roots of L0.

Definition 2.12 A subset Ω1 of a root system Λ1, associated to a split δ-JLTS T , is

called a root subsystem if it is symmetric, and for α, β, γ ∈ Ω1 ∪{0} such that δ(α+β) ∈ Λ0

and α + β + δγ ∈ Λ1, then α + β + δγ ∈ Ω1.

Let Ω1 be a root subsystem of Λ1. We define

T0,Ω1 := span
K
{[Tα, Tβ, Tγ ] : α + β + δγ = 0; α, β, γ ∈ Ω1 ∪ {0}} ⊂ T0

and VΩ1 := ⊕α∈Ω1Tα. It is straightforward to verify that TΩ1 := T0,Ω1 ⊕ VΩ1 is a subsystem

of T . We will say that TΩ1 is a subsystem associated to the root subsystem Ω1.

3 Decompositions

In the following, T denotes a split δ-JLTS having a coherent 0-root space, with a sym-

metric root system Λ1, and T = T0 ⊕ (⊕α∈Λ1Tα) the corresponding root decomposition. We

begin the study of split δ-JLTS by developing the concept of connections of roots.

Definition 3.1 Let α and β be two nonzero roots, we say that α and β are connected

if there exists a family {α1, α2, · · · , α2n, α2n+1} ⊂ Λ1 ∪ {0} of roots of T such that

(1) {α1, δ
2α1 + δ2α2 + δα3, δ

4α1 + δ4α2 + δ3α3 + δ2α4 + δα5, · · · , δ2nα1 + · · ·+ δ2α2n +

δα2n+1} ⊂ Λ1;

(2) {δα1 + δα2, δ
3α1 + δ3α2 + δ2α3 + δα4, · · · , δ2n−1α1 + · · · + δα2n} ⊂ Λ0;

(3) α1 = α and δ2nα1 + · · · + δ2α2n + δα2n+1 ∈ ±β.

We shall also say that {α1, α2, · · · , α2n, α2n+1} is a connection from α to β.

We denote by Λ1
α := {β ∈ Λ1 : α andβ are connected}, we can easily get that {α} is a

connection from α to itself and to −α. Therefore ±α ∈ Λ1
α.

Proposition 3.2 If Λ0 is symmetric, then the relation ∼ in Λ1, defined by α ∼ β if

and only if β ∈ Λ1
α, is of equivalence.

Proof {α} is a connection from α to itself and therefore α ∼ α.

If α ∼ β and {α1, α2, · · · , α2n, α2n+1} is a connection from α to β, then {δ2nα1 + · · · +

δα2n+1,−δα2n+1,−δα2n, · · · ,−δα2} is a connection from β to α in case δ2nα1 + · · ·+δ2α2n +

δα2n+1 = β, and {−δ2nα1−· · ·−δα2n+1, δα2n+1, δα2n, · · · , δα2} in case δ2nα1 + · · ·+δ2α2n +

δα2n+1 = −β. Therefore β ∼ α.

Finally, suppose α ∼ β and β ∼ γ, {α1, α2, · · · , α2n, α2n+1} is a connection from α to β

and {β1, · · · , β2m+1} is a connection from β to γ. If m 6= 0, then {α1, · · · , α2n+1, β2, · · · , β2m+1}

is a connection from α to γ in case δ2nα1 + · · · + δ2α2n + δα2n+1 = β, and {α1, · · · , α2n+1,

−β2, · · · ,−β2m+1} in case δ2nα1 + · · · + δ2α2n + δα2n+1 = −β. If m = 0, then γ ∈ ±β

and so {α1, α2, · · · , α2n, α2n+1} is a connection from α to γ. Therefore α ∼ γ and ∼ is of

equivalence.

Proposition 3.3 Let α be a nonzero root and suppose Λ0 is symmetric. Then Λ1
α is

a root subsystem.
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Proof If β ∈ Λ1
α then there exists a connection {α1, α2, · · · , α2n, α2n+1} from α to β.

It is clear that {α1, α2, · · · , α2n, α2n+1} also connects α to −β and therefore −β ∈ Λ1
α. Let

β1, β2, β3 ∈ Λ1
α ∪ {0} be such that δ(β1 + β2) ∈ Λ0 and β1 + β2 + δβ3 ∈ Λ1. If β1 = 0, as

δ(β1 +β2) ∈ Λ0 then β2 6= 0 and there exists a connection {α1, α2, · · · , α2n, α2n+1} from α to

β2. We have {α1, α2, · · · , α2n+1, 0, β3} is a connection from α to β2+δβ3 in case δ2nα1+ · · ·+

δ2α2n + δα2n+1 = β2 and {α1, α2, · · · , α2n+1, 0,−β3} in case δ2nα1 + · · ·+ δ2α2n + δα2n+1 =

−β2. So β1 + β2 + δβ3 = β2 + δβ3 ∈ Λ1
α. Suppose β1 6= 0, then there exists a connection

{α1, α2, · · · , α2n, α2n+1} from α to β1. Hence, {α1, α2, · · · , α2n+1, β2, β3} is a connection from

α to β1+β2+δβ3 in case δ2nα1+· · ·+δ2α2n+δα2n+1 = β1 and {α1, α2, · · · , α2n+1,−β2,−β3}

in case δ2nα1 + · · · + δ2α2n + δα2n+1 = −β1. Therefore β1 + β2 + δβ3 ∈ Λ1
α.

Our next goal is to prove that, for a fixed α0 ∈ Λ1, the subsystem TΛ1
α0

associated to

the root subsystem Λ1
α0

is an ideal of T . First we need to state a series of lemmas.

Lemma 3.4 The following assertions hold.

(1) If α, β ∈ Λ1 with [Tα, Tβ] 6= 0, then α is connected with β.

(2) If α, β ∈ Λ1, α ∈ Λ0 and [L0
α, Tβ] 6= 0, then α is connected with β.

(3) If α, β ∈ Λ1 such that α is not connected with β, then [Tα, Tβ] = 0 and [L0
α, Tβ] = 0

if furthermore α ∈ Λ0.

Proof (1) Suppose [Tα, Tβ] 6= 0, by Lemma 2.8 (1), one gets δ(α + β) ∈ Λ0 ∪ {0}. If

α+β = 0, then β = −α and so α is connected with β. Suppose α+β 6= 0. Since α+β ∈ Λ0,

one gets {α, β,−δα} is a connection from α to β.

(2) Suppose [L0
α, Tβ] 6= 0, by Lemma 2.8 (2), one gets δ(α+β) ∈ Λ1∪{0}. If α+β = 0,

then β = −α and so α is connected with β. Suppose α+β 6= 0. Since α+β ∈ Λ1, we obtain

{α, 0,−δα − δβ} is a connection from α to β.

(3) It is a consequence of Lemma 3.4 (1) and (2).

Lemma 3.5 Fix α0 ∈ Λ1 and suppose Λ0 is symmetric. Then the following assertions

hold.

(1) If α ∈ Λ1
α0

, β ∈ Λ1, β 6= −α, and [T0, Tα, Tβ] 6= 0. Then α + δβ ∈ Λ1
α0

.

(2) If Λ0 is symmetric, given α ∈ Λ1
α0

and β, γ ∈ Λ1 with α + β + δγ 6= 0 and

[Tα, Tβ, Tγ ] 6= 0, then α + β + δγ ∈ Λ1
α0

.

Proof (1) By Lemma 2.8 (5), we have α + δβ ∈ Λ1. From here, if {α1, · · · , α2n+1} is

a connection from α0 to α, then {α1, · · · , α2n+1, 0, β} is a connection from α0 to α + δβ in

case δ2nα1 + · · ·+ δα2n+1 = α and {α1, · · · , α2n+1, 0,−β} in case δ2nα1 + · · ·+ δα2n+1 = −α.

So α0 is connected with α + δβ.

(2) First, let us observe that β, γ ∈ Λ1
α0

. Indeed, as [Tα, Tβ] 6= 0, Lemma 3.4 (1)

gives β is connected with α, and by the transitivity of the connection relation β ∈ Λ1
α0

.

By Jacobi identity, either [Tα, Tγ ] 6= 0 or [Tβ, Tγ ] 6= 0. Then, we have as above γ ∈ Λ1
α0

.

Second, if α + β = 0, then α + β + δγ = δγ ∈ Λ1
α0

. Suppose α + β 6= 0, as [Tα, Tβ, Tγ ] 6= 0

then δ(α + β) ∈ Λ0 and α + β + δγ ∈ Λ1. Hence, as Λ1
α0

is a root subsystem, we obtain

α + β + δγ ∈ Λ1
α0

.

Lemma 3.6 Fix α0 ∈ Λ1 and suppose Λ0 is symmetric. If α ∈ Λ1
α0

and β ∈ Λ1 with
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β 6∈ Λ1
α0

, then for any γ̃ ∈ Λ1 ∪ {0} we have [Tγ̃ , Tα, Tβ] = 0. Any permutation of the factors

Tγ̃ , Tα, Tβ in the above triple product also makes null the triple product.

Proof Suppose γ̃ = 0. If [T0, Tα] 6= 0, as [T0, Tα] ⊂ L0
δα, Lemma 3.4 (3) gives

[T0, Tα, Tβ] = 0. Suppose γ̃ ∈ Λ1
α0

. Since [Tγ̃ , Tα, Tβ] ⊂ [Tα, Tβ, Tγ̃ ] + [Tβ, Tγ̃ , Tα], and by

Lemma 3.4 (3), [Tα, Tβ] = [Tβ, Tγ̃ ] = 0, we have [Tγ̃ , Tα, Tβ] = 0. Finally, if γ̃ 6∈ Λ1
α0

, as by

Lemma 3.4 (3), [Tγ̃ , Tα] = 0, we obtain [Tγ̃ , Tα, Tβ] = 0. If we permute the factors in the

triple product, we can use either the Jacobi identity or argue in a similar way to get that

the triple product is null.

Lemma 3.7 Fix α0 ∈ Λ1 and suppose Λ0 is symmetric. If α, β, γ ∈ Λ1
α0

∪ {0} and

ξ ∈ Λ1 with ξ 6∈ Λ1
α0

, then [[Tα, Tβ, Tγ ], Tξ] = 0.

Proof By Jacobi identity, the fact [T0, T0, T ] = 0 and Lemma 3.4 (3), there is no loss

of generality in supposing α, γ 6= 0.

Suppose [[Tα, Tβ, Tγ ], Tξ] 6= 0, that is, [[[Tα, Tβ], Tγ ], Tξ] 6= 0, and so either

[[Tγ , Tξ], [Tα, Tβ]] 6= 0 or [[Tξ , [Tα, Tβ]], Tγ ] 6= 0.

In the first case [Tγ , Tξ] 6= 0, which contradicts Lemma 3.4 (3). In the second case,

[Tξ, [Tα, Tβ]] 6= 0, which contradicts Lemma 3.6.

Definition 3.8 A δ-JLTS T is said to be simple, if {T, T, T} 6= 0 and its only ideals

are {0} and T .

Theorem 3.9 Suppose Λ0 is symmetric, the following assertions hold.

(1) For any α0 ∈ Λ1, the subsystem

TΛ1
α0

= T0,Λ1
α0

⊕ VΛ1
α0

of T associated to the root subsystem Λ1
α0

is an ideal of T .

(2) If T is simple, then there exists a connection from α to β for any α, β ∈ Λ1.

Proof (1) Recall that

T0,Λ1
α0

:= span
K
{[Tα, Tβ, Tγ ] : α + β + δγ = 0; α, β, γ ∈ Λ1

α0
∪ {0}} ⊂ T0

and VΛ1
α0

:= ⊕γ∈Λ1
α0

Tγ. In order to complete the proof, it is sufficient to show that

[TΛ1
α0

, T, T ] ⊂ TΛ1
α0

.

It is easy to see that

[TΛ1
α0

, T, T ]

= [T0,Λ1
α0

⊕ VΛ1
α0

, T, T ]

=
[ ∑

α+β+δγ=0

α,β,γ∈Λ1
α0

∪{0}

[Tα, Tβ, Tγ ] +
∑

α∈Λ1
α0

Tα, T0 +
∑

β∈Λ1
α0

Tβ +
∑

γ 6∈Λ1
α0

Tγ, T0 +
∑

ξ∈Λ1
α0

Tξ +
∑

ε6∈Λ1
α0

Tε

]
.

Lemmas 3.5, 3.6 and 3.7 prove the assertion.
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(2) The simplicity of T implies TΛ1
α0

= T . Hence Λ1
α0

= Λ1.

Lemma 3.10 Fix α0 ∈ Λ1 and suppose Λ0 is symmetric. If α, β, γ ∈ Λ1
α0

∪ {0} with

α + β + δγ = 0, ξ ∈ Λ1
α0

and ε, ρ, τ ∈ Λ1
β0

∪ {0}, with β0 6∈ Λ1
α0

and ε + ρ + δτ = 0. Then

(1) [Tα, Tβ, [Tε, Tρ, Tτ ]] = 0.

(2) [[Tα, Tβ, Tγ], Tξ, [Tε, Tρ, Tτ ]] = 0.

(3) If µ 6∈ Λ1
α0

, [[Tα, Tβ, Tγ ], Tµ, [Tε, Tρ, Tτ ]] = 0.

Proof (1) Suppose [Tα, Tβ, [Tε, Tρ, Tτ ]] 6= 0, then either [Tβ, [Tε, Tρ, Tτ ], Tα] 6= 0 or

[[Tε, Tρ, Tτ ], Tα, Tβ] 6= 0, a contradiction with Lemma 3.7 or with [T0, T0, T ] = 0.

(2) Let us suppose [[Tα, Tβ, Tγ], Tξ, [Tε, Tρ, Tτ ]] 6= 0. By Jacobi identity, we have

[[Tα, Tβ, Tγ], Tξ, [Tε, Tρ, Tτ ]] ⊂ [Tξ, [Tε, Tρ, Tτ ], [Tα, Tβ, Tγ ]] + [[Tε, Tρ, Tτ ], [Tα, Tβ, Tγ ], Tξ].

From [T0, T0, T ] = 0, then

[[Tα, Tβ, Tγ ], Tξ, [Tε, Tρ, Tτ ]] ⊂ [Tξ, [Tε, Tρ, Tτ ], [Tα, Tβ, Tγ]] 6= 0.

From here, the product [Tξ, [Tε, Tρ, Tτ ]] is nonzero which contradicts Lemma 3.7.

(3) By Jacobi identity and [T0, T0, T ] = 0, we have

[[Tα, Tβ, Tγ ], Tµ, [Tε, Tρ, Tτ ]]⊂ [Tµ, [Tε, Tρ, Tτ ], [Tα, Tβ, Tγ]]⊂ −δ[[Tε, Tρ, Tτ ], Tµ, [Tα, Tβ, Tγ ]].

If µ ∈ Λ1
β0

, Lemma 3.10 (2) shows the above triple prouct is null. Otherwise, if µ 6∈ Λ1
β0

, the

nullity of the triple product is a consequence of Lemma 3.7.

Theorem 3.11 Suppose Λ0 is symmetric. Then for a vector space complement U of

spanK{[Tα, Tβ, Tγ ] : α + β + δγ = 0, where α, β, γ ∈ Λ1 ∪ {0}} in T0, we have

T = U +
∑

[α]∈Λ1/∼

I[α],

where any I[α] is one of the ideals TΛ1
α

of T described in Theorem 3.9. Moreover [I[α], T, I[β]] =

0 if [α] 6= [β].

Proof Let us denote ξ0 :=spanK{[Tα, Tβ, Tγ] : α+β+δγ = 0, where α, β, γ ∈ Λ1∪{0}}

in T0. By Proposition 3.2, we can consider the quotient set Λ1/ ∼:= {[α] : α ∈ Λ1}. By

denoting I[α] := TΛ1
α
, T0,[α] := T0,Λ1

α
and V[α] := VΛ1

α
, one gets I[α] := T0,[α] ⊕ V[α]. From

T = T0 ⊕ (⊕α∈Λ1Tα) = (U + ξ0) ⊕ (⊕α∈Λ1Tα),

it follows ⊕α∈Λ1Tα = ⊕[α]∈Λ1/∼V[α], ξ0 =
∑

[α]∈Λ1/∼

T0,[α], which implies

T = U + ξ0 ⊕ (⊕α∈Λ1Tα) = U +
∑

[α]∈Λ1/∼

I[α],

where each I[α] is an ideal of T by Theorem 3.9.
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Next, it is sufficient to show that [I[α], T, I[β]] = 0 if [α] 6= [β]. Note that,

[I[α], T, I[β]] = [
∑

α
′
+α

′′
+δα

′′′
=0

α
′
,α

′′
,α

′′′
∈Λ1

α∪{0}

[Tα′ , Tα′′ , Tα′′′ ] +
∑

α′
∈Λ1

α

Tα′ ,

T0 +
∑

α′
∈Λ1

α

Tα′ +
∑

γ 6∈Λ1
α

Tγ,
∑

β
′
+β

′′
+δβ

′′′
=0

β
′
,β

′′
,β

′′′
∈Λ1

β
∪{0}

[Tβ′ , Tβ′′ , Tβ′′′ ] +
∑

β′
∈Λ1

β

Tβ′ ].

Applying Lemmas 3.6, 3.7 and 3.10, we get [I[α], T, I[β]] = 0 if [α] 6= [β].

Definition 3.12 The annihilator of a δ-JLTS T is the set Ann(T ) = {x ∈ T : [x, T, T ] =

0}.

Corollary 3.13 Suppose Λ0 is symmetric. If Ann(T ) = 0 and [T, T, T ] = T , then T is

the direct sum of the ideals given in Theorem 3.11, T = ⊕[α]∈Λ1/∼I[α].

Proof From [T, T, T ] = T and Theorem 3.11, we have

[U +
∑

[α]∈Λ1/∼

I[α], U +
∑

[α]∈Λ1/∼

I[α], U +
∑

[α]∈Λ1/∼

I[α]] = U +
∑

[α]∈Λ1/∼

I[α].

Taking into account U ⊂ T0 and the fact that [I[α], T, I[β]] = 0 if [α] 6= [β] (see Theorem

3.11) give us that U = 0. That is,

T =
∑

[α]∈Λ1/∼

I[α].

To finish, it is sufficient to show the direct character of the sum. For x ∈ I[α]∩
∑

[β]∈Λ1/∼
β 6∼α

I[β],

using again the equation [I[α], T, I[β]] = 0 for [α] 6= [β], we obtain

[x, T, I[α]] = [x, T,
∑

[β]∈Λ1/∼
β 6∼α

I[β]] = 0.

So [x, T, T ] = [x, T, I[α] +
∑

[β]∈Λ1/∼
β 6∼α

I[β]] = [x, T, I[α]] + [x, T,
∑

[β]∈Λ1/∼
β 6∼α

I[β]] = 0 + 0 = 0. That is,

x ∈ Ann(T ) = 0. Thus x = 0, as desired.
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