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Abstract: In this paper, some inequalities related to the solutions of a class of nonho-

mogeneous Dirac-harmonic equations in differential forms are studied. By the conditions of the

Dirac-harmonic equation and the operation rules of Dirac-harmonic operator D, Poincaré inequal-

ity, Caccioppoli inequality and the weak inverse Hölder inequality are obtained. As the applications

of related inequalities, the forms of the Poincaré inequality with special weights and in the Ls(µ)-

averaging domains are proved. The related inequalities of solutions of homogeneous Dirac-harmonic

equation are extended to the case of non-homogeneous Dirac-harmonic equation.

Keywords: Non-homogeneous Dirac-harmonic equations; differential forms; norm inequal-

ities; weights; Ls(µ)-averaging domains

2010 MR Subject Classification: 35R01; 46E30; 58A10

Document code: A Article ID: 0255-7797(2020)03-0267-16

1 Introduction

As generalizations of the functions, differential forms were widely used in many fields,
including potential theory, partial differential equations, quasiconformal mappings and etc.
During recent years a series of estimates and inequalities for differential forms, particularly,
for the forms satisfying the homogeneous or nonhomogeneous A-harmonic equations, or the
conjugate A-harmonic equations in Rn(n ≥ 2), were developed, see [1–8]. These estimates
and inequalities are critical tools to investigate the properties of solutions to the nonlin-
ear differential equations and to control oscillatory behavior in domains or on manifolds.
However, the nonlinear PDE with the Hodge-Dirac operator for differential forms, that is,
the Dirac-harmonic equation has yet to be further developed, where the Dirac operator was
initiated by Paul Dirac in order to get a form of quantum theory compatible with special
relativity, which was playing a critical role in some fields of mathematics and physics, such
as quantum mechanics, Clifford analysis and partial differential equations, see [9–13].
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The purpose of this paper is to introduce the non-homogeneous Dirac-harmonic equation
d?A(x,Dω) = B(x,Dω) for differential forms and initiate the study of this new type of
differential equations, where the Hodge-Dirac operator D is defined by D = d + d?, d is the
exterior differential operator, d? is the Hodge codifferential that is formal adjoint operator
of d, and A is an operator satisfying certain conditions. Specifically, we establish Poincaré-
type inequalities, Caccioppoli-type inequalities and the weak reverse Hölder inequality for
differential forms satisfying the non-homogeneous Dirac-harmonic equation. These basic
inequalities will form the basis for the study of the Lp-theory of the new introduced Dirac-
harmonic equation for differential forms.

Now we introduce some notations and definitions. Let Ω be an open subset of Rn(n ≥ 2)
and B be a ball in Rn. Let ρB denote the ball with the same center as B and diam(ρB) =
ρ diam(B)(ρ > 0). |Ω| is used to denote the Lebesgue measure of a set Ω ⊂ Rn. Let
∧l = ∧l(Rn), l = 0, 1, . . . , n, be the linear space of all l-forms ω(x) =

∑
I ωI(x)dxI =∑

I ωi1i2···il
(x)dxi1∧dxi2∧· · ·∧dxil

in Rn, where I = (i1, i2, . . . , il), 1 ≤ i1 < i2 < · · · < il ≤ n,
are the ordered l-tuples. The Grassman algebra ∧ = ∧(Rn) = ⊕n

l=0 ∧l (Rn) is a graded
algebra with respect to the exterior products ∧. Moreover, if each of the coefficient ωI(x)
of ω(x) is differential on Ω, then we call ω(x) a differential l-form on Ω, use D

′
(Ω,∧l) to

denote the space of all differential l-forms on Ω and D′(Ω,∧) = ⊕n
l=0D

′
(Ω,∧l). Analogously

C∞(Ω,∧l) denotes the space of smooth l-forms on Ω. The exterior derivative d : D
′
(Ω,∧l) →

D
′
(Ω,∧l+1), l = 0, 1, . . . , n− 1, is given by

dω(x) =
∑

I

n∑
j=1

∂ωi1i2···il
(x)

∂xj

dxj ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxil
(1.1)

for all ω ∈ D
′
(Ω,∧l). The Hodge star operator ? : ∧k → ∧n−k is defined as follows.

If ω = ωi1i2···ik
(x1, x2, . . . , xn)dxi1 ∧ dxi2 ∧ · · · ∧ dxik

= ωIdxI , i1 < i2 < · · · < ik, is a
differential k-form, then ?ω = ?(ωi1i2···ik

dxi1 ∧dxi2 ∧· · ·∧dxik
) = (−1)

∑
(I)ωIdxJ , where I =

(i1, i2, · · · , ik), J = {1, 2, . . . , n}−I, and
∑

(I) = k(k+1)
2

+
∑k

j=1 ij . The Hodge codifferential
operator d∗ : D

′
(Ω,∧l+1) → D

′
(Ω,∧l)is defined by d∗ = (−1)nl+1 ? d? on D′(Ω,∧l+1), l =

0, 1, . . . , n−1. For all ω ∈ D
′
(Ω,∧l), we have d(dω) = d∗(d∗ω) = 0. Lp(Ω,∧l)(1 ≤ p < ∞) is

a Banach space with the norm ‖ω‖p,Ω = (
∫
Ω
|ω(x)|pdx)1/p = (

∫
Ω
(
∑

I |ωI(x)|2)p/2dx)1/p < ∞
and Lp(Ω,∧) = ⊕n

l=0L
p(Ω,∧l). Similarly, the notations Lp

loc(Ω,∧l) and W 1,p
loc (Ω,∧l) are

self-explanatory.
From [14], ω is a differential form in a bounded convex domain Ω, then there is a

decomposition
ω = d(Tω) + T (dω), (1.2)

where T is called a homotopy operator. For the homotopy operator T , we know that

‖Tω‖p,B ≤ C|B|diam(B)‖ω‖p,B (1.3)

holds for any differential form ω ∈ Lp
loc(Ω,∧l), l = 1, 2, . . . , n, 1 < p < ∞. Furthermore, we
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can define the l-form ωΩ ∈ D
′
(Ω,∧l) by

ωΩ =

{
|Ω|−1

∫
Ω

ω(x)dx, l = 0,

dT (ω), l = 1, 2, . . . , n
(1.4)

for all ω ∈ Lp(Ω,∧l), 1 ≤ p < ∞.
The theory of differential equations was very well developed during last several decades.

Particularly, there was an increasing interest in different types of differential equations for
differential forms, see [15–21]. Among these types of equations, the traditional A-harmonic
equation for differential forms

d∗A(x, dω) = 0 (1.5)

in Rn, and the corresponding nonhomogeneous A-harmonic equation for differential forms is
a nonlinear elliptic equation of the form

d∗A(x, dω) = B(x, dω) (1.6)

received much investigation in recent years. In [10], for the purpose of dealing with terms
dω and d∗ω simultaneously in many cases , such as in the case of Hodge decomposition of a
differential form, Ding introduced the following Dirac-harmonic equation

d∗A(x,Dω) = 0 (1.7)

for differential forms. Similarly, we could introduce the corresponding nonhomogeneous
Dirac-harmonic equation for differential forms is a nonlinear elliptic equation of the form

d∗A(x,Dω) = B(x,Dω), (1.8)

where the Hodge-Dirac operator D is a Dirac operator defined by D = d + d∗, d is the
exterior differential operator, d∗ is the Hodge codifferential that is formal adjoint operator
of d, A : Ω× ∧(Rn) → ∧(Rn) and B : Ω× ∧(Rn) → ∧(Rn) satisfy the following conditions

|A(x, ξ)| ≤ a|ξ|p−1 , 〈A(x, ξ), ξ〉 ≥ |ξ|p and |B(x, ξ)| ≤ b|ξ|p−1 (1.9)

for almost every x ∈ Ω and all ξ ∈ ∧(Rn), here a, b > 0 is a constant and 1 < p < ∞ is
a fixed exponent associated with (1.8). Let W 1

p,loc(Ω,∧l−1) =
⋂

W 1
p (Ω′,∧l−1), where the

intersection is for all Ω′ compactly contained in Ω. A solution to (1.2) is an element of the
Sobolev space W 1

p,loc(Ω,∧l−1) such that
∫

Ω

〈A(x,Dω), Dϕ〉+ 〈B(x,Dω), ϕ〉 = 0 (1.10)

for all ϕ ∈ W 1
p (Ω,∧l−1) with compact support.

A solution ω of the homogeneous and non-homogeneous A-harmonic equation (1.5) and
(1.6) is called a nontrivial solution if dω 6= 0; otherwise, ω is called a trivial solution of (1.5)
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and (1.6). Similarly, a solution ω of the homogeneous and non-homogeneous Dirac-harmonic
equation (1.7) and (1.8) is called a nontrivial solution if Dω 6= 0; otherwise, ω is called a
trivial solution of (1.7) and (1.8). It should be noticed that the Dirac-harmonic equation can
be considered as an extension of the traditional A-harmonic equations with operator d being
replaced by the Dirac operator D = d+d?. It is also easy to see that if ω is a function (0-form),
both the traditional non-homogeneous A-harmonic equation d?A(x, dω) = B(x, dω)and the
non-homogeneous Dirac-harmonic equation d?A(x,Dω) = B(x,Dω) reduce to the usual
non-homogeneous A-harmonic equation

divA(x,∇ω) = B(x,∇ω). (1.11)

So far although the research on the non-homogeneous A-harmonic equation has gained
great attention, we can find most of what we get is the solution of its degenerated equation,
that is the special solution of the homogeneous A-harmonic equation, see [1,3, 22–23] for more
details. The non-homogeneous Dirac-harmonic equation (1.8), as a kind of more complicated
equation compared to the non-homogeneous A-harmonic equation, now we can get some
trivial special solutions, that is, the solutions satisfy Dω = 0.

In order to find the trivial solution of equation (1.8), we need the lemmas below.
Lemma 1.1 [9–11] Let ω be any differential form. Then, Dω = 0 if and only if dω = 0

and d?ω = 0. Noticing that ∆ω = (dd?+d?d)ω = (d+d?)2ω = D2ω, we have the proposition.
Proposition 1.1 Let ω be any differential form. Then, ∆ω = 0 if and only if Dω = 0.
According to Lemma 1.1 and the definitions of the operator d and d? = (−1)nl+1 ? d?,

we can know that ω =
∑
I

aIdxI , aI ∈ R is the special solution of equation (1.8). Besides, we

can check the following two examples are also the trivial solutions of equation (1.8).
Example 1.1 Let

ω(x1, x2) =
−x2

x2
1 + x2

2

dx1 +
x1

x2
1 + x2

2

dx2 (1.12)

be a 1-form in Ω ⊂ R2 which does not contain the origin (0, 0). Then ω(x1, x2) is a trivial
solution of the A-harmonic equation (1.5)–(1.8) in Ω.

Proof By simple calculation, we have

dω =
∂

∂x2

(
−x2

x2
1 + x2

2

)dx2 ∧ dx1 +
∂

∂x1

(
x1

x2
1 + x2

2

)dx1 ∧ dx2

=
x2

2 − x2
1

x2
1 + x2

2

(dx2 ∧ dx1 + dx1 ∧ dx2) = 0,

?(ω) =
−x2

x2
1 + x2

2

dx2 +
−x1

x2
1 + x2

2

dx1,

d(?(ω)) =
∂

∂x1

(
−x2

x2
1 + x2

2

)dx1 ∧ dx2 +
∂

∂x2

(− x1

x2
1 + x2

2

)dx2 ∧ dx1

=
2x1x2

x2
1 + x2

2

(dx2 ∧ dx1 + dx1 ∧ dx2) = 0,

(1.13)
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d?(ω) =(−1)3 ? d ? (ω) = 0,

D(ω) =(d + d?)(ω) = 0. (1.14)

Example 1.2 Let

ω(x1, x2, x3) =ω1dx1 ∧ dx2 + ω2dx2 ∧ dx3 + ω3dx3 ∧ dx1

=(x1 + x2 − 2x3)dx1 ∧ dx2 + (x1 − x2 + x3)dx2 ∧ dx3

+ (x1 + x2 − x3)dx3 ∧ dx1

(1.15)

be a 2-form in Ω ⊂ R3. Then ω(x1, x2) is a trivial solution of the A-harmonic equation
(1.5)–(1.8) in Ω.

Proof

dω =(
∂(w1)
∂x3

+
∂(w2)
∂x1

+
∂(w3)
∂x2

)dx1 ∧ dx2 ∧ dx3 = 0, (1.16)

?ω =ω1dx3 + ω2dx1 − ω3dx2,

d ? ω =(
∂(w1)
∂x1

− ∂(w2)
∂x3

)dx1 ∧ dx3 − (
∂(w3)
∂x1

+
∂(w2)
∂x2

)dx1 ∧ dx2

+ (
∂(w1)
∂x2

− ∂(w3)
∂x3

)dx2 ∧ dx3 = 0,

d?(ω) =(−1)7 ? d ? (ω) = 0,

D(ω) =(d + d?)(ω) = 0. (1.17)

In order to obtain the related inequalities with the solutions of the non-homogeneous
Dirac-harmonic equation for differential forms, we need the following generalized Hölder
inequality in this paper.

Lemma 1.2 [1] Let 0 < p, q < ∞ and s−1 = p−1 + q−1. If f and g are measurable
functions on Rn, then

‖fg‖s,Ω ≤ ‖f‖p,Ω‖g‖q,Ω (1.18)

for any Ω ⊂ Rn.
If we select q = sp

p−s
and g ≡ 1, we can get

‖f‖s,Q ≤ |Q| 1s− 1
p ‖f‖p,Q (1.19)

or
‖f‖s,Q ≤ |Q| p−s

ps ‖f‖p,Q. (1.20)

2 Poincaré Sobolev and Embedding Inequalities

Different versions of the classical Poincaré inequality were established in the study of the
Sobolev space and differential forms, see [1,6]. Susan proved the Poincaré inequality in Ls-
averaging domains in [15]. Tadeusz and Lutoborski proved a local Poincaré-type inequality
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in [14], which plays a crucial role in generalizing the theory of Sobolev functions to differential
forms.

In [10], Ding Proved the Poincaré Sobolev and embedding inequalities with the Dirac
operator. If appropriate substitution is made, ones can get the new forms of these inequali-
ties.

Lemma 2.1 [10] Let u ∈ D′(Q,∧l) be a differential form and Du ∈ Lp(Q,∧). Then
u− uQ is in L

np
(n−p) and

(
∫

Q

|u− uQ|
np

n−p dx)
(n−p)

np ≤ Cp(n)(
∫

Q

|Du|pdx)
1
p (2.1)

for Q a cube or a ball in Rn, l = 0, 1, . . . , n− 1 and 1 < p < n.
Considering that the norms ‖u‖p,Q and ‖u− uQ‖p,Q are comparable, see [4], namely,

‖u− uQ‖p,Q ≤ C1‖u‖p,Q ≤ C2‖u− uQ‖p,Q, (2.2)

we have
(
∫

Q

|u| np
n−p dx)

(n−p)
np ≤ Cp(n)(

∫

Q

|Du|pdx)
1
p (2.3)

for Q a cube or a ball in Rn, l = 0, 1, . . . , n− 1 and 1 < p < n.
Replacing u by Du in (2.1) and noting that ∆ = (d + d?)2 = D2, we have the following

inequality with the Dirac operator

(
∫

Q

|Du− (Du)Q|
np

n−p dx)
(n−p)

np ≤ Cp(n)(
∫

Q

|∆u|pdx)
1
p . (2.4)

Now, we give the new Poincaré inequality with the Dirac operator.
Theorem 2.1 Let u ∈ D′(Q,∧l) be a differential form and Du ∈ Lp(Q,∧), p > 1.

Then, u− uQ is in Lp(Q,∧) and

‖u− uQ‖p,Q ≤ C|Q|diam(Q)‖Du‖p,Q (2.5)

for all cubes or balls Q with Q ⊂ Rn, where C is a constant, independent of u and Du.
Proof

‖u− uQ‖p,Q = ‖T (du)‖p,Q ≤ C1|Q|diam(Q)‖du‖p,Q ≤ C1|Q|diam(Q)‖Du‖p,Q. (2.6)

Noticing that diam(Q) ≤ C2|Q| 1n , we have

‖u− uQ‖p,Q ≤ C3|Q|1+ 1
n ‖Du‖p,Q. (2.7)

Similarly, replacing u by Du in (2.5), we have

‖Du− (Du)Q‖p,Q ≤ C3|Q|diam(Q)‖∆u‖p,Q. (2.8)

Futhermore, considering that the norms ‖Du‖p,Q and ‖Du−(Du)Q‖p,Q are comparable,
we have

‖Du‖p,Q ≤ C3|Q|diam(Q)‖∆u‖p,Q. (2.9)
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3 Caccioppoli-Type Inequality

The Caccioppoli-type estimates become powerful tools in analysis and related fields, for
the Caccioppoli-type inequalities or estimates provide upper bounds for the norms of ∇u

or du in terms of the corresponding norm of u or u − c, where u is a differential form or a
function satisfying certain conditions. In recent years, different versions of Caccioppoli-type
estimates were established; see [1,3,10].

In [10], Ding obtained the Caccioppoli-type inequality with solutions of the Dirac-
harmonic equation (1.7) for differential forms. Similarly, we can also get the Caccioppoli-type
inequality with solutions of the non-homogeneous Dirac-harmonic equation for differential
forms. Now, we first introduce the product rules for the differentiations of exterior product.

Lemma 3.1 [10] (i) Product rule for d holds: let u =
∑
I

uIdxI be a k-form and

v =
∑
J

vJdxJ be l-form in D′(Ω,∧), where uI and vJ are differentiable functions in Ω. Then

d(u ∧ v) = du ∧ v + (−1)ku ∧ dv. (3.1)

(ii) Product rule for d? holds: let u ∈ D′(Ω,∧) be a k-form u =
∑
I

uIdxI , where

I = (i1, i2, · · · , ik) is a set of all k tuples with i1 < i2 < · · · < ik and 1 ≤ ik ≤ n. Let η be a
differentiable function in Ω, then

d?(uη) = (d?u)η + (−1)m
∑
I−q

uI
∂η

∂xq

dxI−q, (3.2)

D(uη) = (Du)η + (−1)ku(dη) + (−1)m
∑
I−q

uI
∂η

∂xq

dxI−q, (3.3)

where m, q are integers, 1 ≤ q ≤ n and I − q is an abusive notation to represent an k − 1
tuple with iq is missing (i1, · · · , îq, · · · , ik) and q /∈ J means q 6= js for any js in n− k tuples
J . Also,

∑
I

means the sum of all possible k tuples.

Theorem 3.1 Let u ∈ D′(Ω,∧l), l = 0, 1, . . . , n, be a solution of the non-homogeneous
Dirac-harmonic equation (1.8) in a bounded domain Ω ⊂ Rn, and assume that 1 < p < ∞ is
a fixed exponent associated with equation (1.8). Then there exists a constant C, independent
of u and Du, such that

‖Du‖p,B ≤ C|B|−1
n ‖u‖p,σB (3.4)

for all balls or cubes B with σB ⊂ Ω.
Proof Let η ∈ C∞

0 (σB), 0 ≤ η ≤ 1 with η ≡ 1 in B, and |dη| = |∇η| ≤ C1
diam(B)

.
Choosing the test form ϕ = −uηp. Then

Dϕ = −(Du)ηp + (−1)l+1upηp−1dη + (−1)m+1
∑
I−q

uIpηp−1 ∂η

∂xq

dxI−q. (3.5)
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From (1.10), we obtain
∫

σB

〈A(x,Du), ηpDu〉 = −
∫

σB

〈A(x,Du), (−1)lupηp−1dη〉

−
∫

σB

〈A(x,Du), (−1)m
∑
I−q

uIpηp−1 ∂η

∂xq

dxI−q〉 −
∫

σB

〈B(x,Du), uηp〉.
(3.6)

Applying (1.9), we have
∫

σB

|〈A(x,Du), ηpDu〉| ≥
∫

σB

|η|p|Du|pdx (3.7)

Notice that |∑I−q uIpηp−1 ∂η
∂xq

dxI−q| ≤ p|η|p−1|u||dη| and diam(B) ≤ diam(Ω) < ∞.
Using the Hölder inequality (1.18), we obtain

∫

σB

|η|p|Du|pdx ≤
∫

σB

|〈A(x,Du), ηpDu〉|

≤
∫

σB

|A(x,Du)|(p|u||η|p−1|dη|)dx +
∫

σB

|A(x,Du)|(p|u||η|p−1|dη|)dx +
∫

σB

b|Du|p−1(|u||η|p)dx

≤ C2

diam(B)

∫

σB

|Du|p−1|η|p−1|u|dx + C3

∫

σB

|Du|p−1|u||η|pdx

≤ C2

diam(B)
‖u‖p,σB(

∫

σB

(|η||Du|)pdx)
p−1

p + C3‖ηu‖p,σB(
∫

σB

(|η||Du|)pdx)
p−1

p

≤C2 + C3diam(B)
diam(B)

‖u‖p,σB(
∫

σB

(|η||Du|)pdx)
p−1

p

≤ C4

diam(B)
‖u‖p,σB(

∫

σB

(|η||Du|)pdx)
p−1

p ,

(3.8)

which is equivalent to

‖ηDu‖p,σB ≤ C4

diam(B)
‖u‖p,σB. (3.9)

Thus, we have

‖Du‖p,B = ‖ηDu‖p,B ≤ ‖ηDu‖p,σB ≤ C4

diam(B)
‖u‖p,σB ≤ C5|B|

−1
n ‖u‖p,σB. (3.10)

Let u be a solution of equation (1.8) and c be a harmonic form. Then, w = u+ c is also
a solution of equation (1.8). Write u = ω − c, then Du = Dω. Thus, we have the following
version of (3.10).

Corollary 3.1 Let c be a harmonic form and u is a solution of the non-homogeneous
Dirac-harmonic equation (1.8). Then

‖Du‖p,B ≤ C|B|− 1
n ‖u− c‖p,σB (3.11)

for all balls or cubes B with σB ⊂ Ω, σ > 1 be a constant.
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4 Weak Reverse Hölder Inequality

It is known to all that a necessary condition for (1.20) to hold is that p ≥ s. When p, s

are any two positive constants and an inequality weaker than (1.20) holds, which is known as
the weak reverse Hölder inequality and plays an important role in establishing the weighted
form of the related inequality, see [1] for more details.

In [15], if ω is a solution of the A-harmonic equation (1.6), then the weak reverse Hölder
inequality

‖ω‖s,Q ≤ C|Q| r−s
rs ‖ω‖r,σQ (4.1)

holds for all cubes or balls Q with σQ ⊂ Ω and any 0 < r, s < ∞.
Recently, Ding proved that inequality (4.1) also holds for the solutions of the Dirac-

harmonic equation (1.7), see [10]. Now we prove that for any solution ω of the non-
homogenious Dirac-harmonic equation (1.8), the weak reverse Hölder inequality still holds.
Specifically, we have the following Theorem 4.3.

We define the differential forms ω+ and ω− as follows. If ω ∈ ∧0(R), let ω+ = max{ω, 0}
and ω− = min{ω, 0}. Otherwise, let ω+ =

∑
ω+

I dxI and ω− =
∑

ω−I dxI .
Theorem 4.1 Let ω be a solution of (1.8) and η ∈ C∞

0 (Ω) with η ≥ 0. There exists a
constant C, depending only on a, b, and p, such that

∫

Ω

|Dω+|pηpdx ≤ C(
∫

Ω

|ω+|p|dη|pdx +
∫

Ω

|ω+|p|η|pdx). (4.2)

The same is true for ω−.
Proof Using the test form ϕ = −ω+ηp and using inequalities (1.9) and the Hölder

inequality (1.18), we get
∫

Ω

ηp|Dω+|pdx ≤C1

∫

Ω

|Dω+|p−1ηp−1|dη||ω+|dx + C2

∫

Ω

|Dω+|p−1|ω+|ηpdx

≤C1(
∫

Ω

|ω+|p|dη|pdx)
1
p (

∫

Ω

|Dω+|pηpdx)
(p−1)

p

+ C2(
∫

Ω

|ω+|pηpdx)
1
p (

∫

Ω

|Dω+|pηpdx)
(p−1)

p .

(4.3)

By the following basic inequality

n∑
i=1

|ai|s ≤ n(
n∑

i=1

|ai|)s ≤ ns+1

n∑
i=1

|ai|s, (4.4)

where s > 0 is any constant, it follows that
∫

Ω

ηp|Dω+|pdx ≤ (C1(
∫

Ω

|ω+|p|dη|pdx)
1
p + C2(

∫

Ω

|ω+|pηpdx)
1
p )p

≤ C3(
∫

Ω

|ω+|p|dη|pdx +
∫

Ω

|ω+|pηpdx).
(4.5)
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Theorem 4.2 Let ω be a solution of (1.8) in Ω, q > 0. There exists a constant C,
depending only on a, p, q, n such that

∫

Ω

|ω+|q|Dω+|pηpdx ≤ C

∫

Ω

|ω+|p+q(|dη|p + |η|p)dx (4.6)

for all nonnegative η ∈ C∞
0 (Ω).

The proof of Theorem 4.2 is similar to [15]. For complete purpose and convenience to
the readers, we state the proof as follows.

Proof Let t > 0 be any constant, T =
∑
I

tdxI , then ω − T is also a solution of (1.8)

and satisfies (4.2) too. Consider the sets A = ∪I{x|(ωI − t)+ > 0}, B = {x|(ω − T )+ 6= 0},
C = {x||ω+| > t}, DI = {x|ω+

I > t} and B = {x|(ω− T )+ 6= 0}. Then DI ⊂ A = B ⊂ C for
all for all I. Let dv = |Dω+|pηpdx and using (4.2) to get

∫

Ω

|ω+|qdv ≤ C1

∑
I

∫

Ω

|ω+
I |qdv = C1

∑
I

{q
∫ ∞

0

tq−1

∫

DI

dvdt}

≤C1

∑
I

{q
∫ ∞

0

tq−1

∫

A

|D(ω+
I − t)|pηpdxdt} ≤ C2

∫ ∞

0

tq−1

∫

B

|D(ω − T )+|pηpdxdt

≤C3

∫ ∞

0

tq−1

∫

B

|(ω − T )+|p(|dη|p + ηp)dxdt ≤ C3

∫ ∞

0

tq−1

∫

C

|ω+|p(|dη|p + ηp)dxdt

≤C3

∫

Ω

|ω+|q+p|(|dη|p + ηp)dx.

(4.7)

Lemma 4.1 [24] Let 0 < s < p and |v| ∈ Lp
loc(Ω), σ > 1. If there exists a constant C1

such that
(
∫

Q

|v|pdx)
1
p ≤ C1|Q|

(s−p)
sp (

∫

2Q

|v|sdx)
1
s (4.8)

for all cubes Q with 2Q ⊂ Ω, then for all r > 0, there exists a constant C2 depending only
on σ, n, p, r and C1, such that

(
∫

Q

|v|pdx)
1
p ≤ C2|Q|

(r−p)
rp (

∫

σQ

|v|rdx)
1
r (4.9)

for all cubes Q with σQ ⊂ Ω.
Now, we are ready to present and prove one of our main theorems, the weak reverse

Hölder inequality as follows.
Theorem 4.3 Let ω be a solution to the non-homogeneous Dirac-harmonic equation

(1.8) associated with p > 1 in Ω, σ > 1 be some constant, and 0 < r, s < ∞ be any constants.
Then, there exists a constant C, independent of ω, such that

‖ω‖s,B ≤ C|B| (r−s)
rs ‖ω‖r,σB (4.10)

for all cubes or balls B with σB ⊂ Ω.
Proof We prove this theorem in the following two steps. Step (i) is for the case

1 < p < n and Step (ii) is for the case p ≥ n.
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Step (i) Assume that 1 < p < n. We first prove that (4.10) holds for any constants
r, s with r > 0, 0 < s < np

n−p
. Let max

{
1, p

s
, n

s(n−1)

}
< α < np

s(n−p)
, and q = αns

(n+αs)
. Then

q =
αs

n + αs
· n < n, q − p =

αs(n− p)− np

n + αs
< 0, q − 1 =

αs(n− 1)− n

n + αs
> 0, (4.11)

that is, 1 < q < p < n, by (2.3), (1.19) and (3.4),

(
∫

B

|ω| nq
n−q dx)

n−q
nq ≤ C1(

∫

B

|Dω|qdx)
1
q ≤ C1|B| 1q− 1

p (
∫

B

|Dω|pdx)
1
p

≤ C2|B|
(n−q)

nq − 1
p (

∫

σB

|ω|pdx)
1
p .

(4.12)

Also, nq
n−q

= αs > p, by Lemma 4.1 and (4.12), for any r > 0, we have

(
∫

B

|ω| nq
n−q dx)

n−q
nq ≤ C3|B|

(n−q)
nq − 1

r (
∫

σB

|ω|rdx)
1
r . (4.13)

Since nq
n−q

= αs > s, by(1.19), it follows that

(
∫

B

|ω|sdx)
1
s ≤ |B| 1s− 1

αs (
∫

B

|ω| nq
n−q dx)

n−q
nq . (4.14)

Combining (4.13) and (4.14) yields

(
∫

B

|ω|sdx)
1
s ≤ C3|B|

r−s
rs (

∫

σB

|ω|rdx)
1
r , (4.15)

that is (4.10) holds for any constants r, s with r > 0 and 0 < s < np
n−p

. Next, we show that
(4.10) holds for any r > 0, s ≥ np

(n−p)
. We only need to prove that

‖ω+‖s,B ≤ C4|B|
(r−s)

rs ‖ω+‖r,σB. (4.16)

The proof for ω− is similar. The proof follows Theorem 3.34 in [25] with ω+ to replace u+

and Dω+ in replace of du+. Also by using (4.6) and the Moser iteration technique to get
(4.16).

Choose α > max{1, n
s(n−1)

} and q = αns
(n+αs)

. Then, nq
n−q

= αs > s and 1 < q < n.
Let rm = λ + (1 − λ)2−m, m = 0, 1, . . . ; 0 < λ < 1, then r0 = 1 and rm → λ as m → ∞.
Let ηm ∈ C∞

0 (rmB) be a nonnegative function such that ηm = 1 in rmB \ rm+1B and that
ηm ≤ C0|dηm| ≤ C0b

m|B| over each ball, for some constant C0 and 1 < b ≤ nq
n−q

. Let tm ≥ 0

be a sequence to be determined later and ωm = ω+|ω+| tm
q ηm. Then by product rule (3.3)

and exactly the same calculationas in [10], we get

(
∫

rmB

|Dωm|qdx)
1
q ≤ (1 + 2

tm

q
)(

∫

rmB

|Dω+|q|ω+|tmηq
mdx)

1
q + 2(

∫

rmB

|ω+|q+tm |dηm|qdx)
1
q

≤ [C5(1 + 2
tm

q
) + 2](

∫

rmB

|ω+|q+tm(|dηm|q + |ηm|q)dx)
1
q

≤ C6(q + tm)(
∫

rmB

|ω+|q+tm |dηm|qdx)
1
q . (4.17)
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Since the remaining derivation is exactly the same as in [10], we obtain

(
∫

B

|ω+|sdx)
1
s ≤ C7|B|

r−s
rs (

∫

σB

|ω+|rdx)
1
r . (4.18)

Similarly, let ωm = −ω−|ω−| tm
q ηm with the same method, we can get

(
∫

B

|ω−|sdx)
1
s ≤ C7|B|

r−s
rs (

∫

σB

|ω−|rdx)
1
r . (4.19)

Thus, by Minkowski inequality, (4.18) and (4.19), we have

‖ω‖s,B = ‖ω+ + ω−‖s,B ≤ ‖ω+‖s,B + ‖ω−‖s,B

≤C8|B|
r−s
rs (‖ω+‖r,σB + ‖ω−‖r,σB ≤ C8|B|

r−s
rs (‖ω‖r,σB + ‖ω‖r,σB)

≤C9|B|
r−s
rs ‖ω‖r,σB,

(4.20)

that is, for any r > 0, s ≥ np
(n−p)

.

‖ω‖s,B ≤ C9|B|
r−s
rs ‖ω‖r,σB. (4.21)

Step (ii) Assume that p ≥ n. We prove that (4.10) holds for any two positive constants
r, s . Let max{1, p

s
, n

s(n−1)
} < α, and q = αns

(n+αs)
. we find that (4.11)–(4.14) still hold for

such a choice of α. Thus, inequality (4.15) or (4.10) follows immediately for any constants
r, s > 0. We have completed the proof of Theorem 4.3.

In Theorem 4.3, considering that the norms ‖ω‖s,Q and ‖ω − ωQ‖s,Q are comparable,
we have the following version of the weak reverse Hölder inequality for differential forms
satisfies the non-homogeneous Dirac-harmonic equation (1.8)

‖ω − ωQ‖s,Q ≤ C|Q| r−s
rs ‖ω − ωQ‖r,σQ. (4.22)

5 Applications

We know the weight functions were widely used in analysis and PDE, so as applica-
tions of the Poincaré inequality and weak reverse Hölder inequality established in previ-
ous sections, we prove the Poincaré inequality with the A(ϕ1(x), ϕ2(x), τ, Ω)-weights. The
A(ϕ1(x), ϕ2(x), τ, Ω)-weight was introduced by Wen in [26].

Definition 5.1 Let ϕ1(x) and ϕ2(x) be Young functions, a pair of weights (w1(x), w2(x))
satisfies the A(ϕ1(x), ϕ2(x), τ, Ω)-condition, write (w1(x), w2(x)) ∈ A(ϕ1(x), ϕ2(x), τ, Ω), if
there exists a constant C, such that

sup
Q⊂Ω

‖w1(x)‖ϕ1(x),Q‖w2(x)−1‖τ
ϕ2(x),Q ≤ C < ∞, (5.1)

where the normalized Luxemburg norm for any function w(x) on a cube or ball Q with
Young functions ϕ : [0,∞) → [0,∞) is defined by

‖w‖ϕ,Q = inf{λ > 0 :
1
|Q|

∫

Q

ϕ(
|w(x)|

λ
)dx ≤ 1}. (5.2)
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Remark (i) If ϕ(t) = tp, then ‖w(x)‖ϕ,Q = ( 1
|Q|

∫
Q
|w|pdx)

1
p and the Luxemburg norm

reduce to the Lp-norm. Given a Young function ϕ, let ϕ denote its associate function: the
Young function with the property that t ≤ ϕ−1(t)ϕ−1(t) ≤ 2t, t > 0. If ϕ(t) = tp, p > 1,
and 1

p
+ 1

q
= 1 , then ϕ(t) = tq, and if ϕ(t) = tp log(e + t)α, then ϕ(t) ≈ tq log(e + t)

−αq
p .

(ii) From [26], we know that A(ϕ1(x), ϕ2(x), τ, Ω)-weight is the generation of some
existing versions of the weight. For example, if ϕ1(x) = x, ϕ2(x) = x

1
r−1 , τ = 1, and

w1 = w2 in above definition, then A(ϕ1(x), ϕ2(x), τ, Ω)-weight reduces to the Ar(Ω)-weight,
and if ϕ1(x) = xλ,ϕ2(x) = x

λ
r−1 ,τ = 1, then A(ϕ1(x), ϕ2(x), τ, Ω)-weight reduces to the

Ar,λ(Ω)-weight, see more details for [26].
Lemma 5.1 If ϕ is Young function, then for all functions f and g and any cube Q,

1
|Q|

∫

Q

|fg|dx ≤ 2 ‖ f ‖ϕ,Q‖ g ‖ϕ,Q . (5.3)

Theorem 5.1 Let ω ∈ Ls
loc(Ω,∧l) be a solution to equation (1.8) in a bounded

domain Ω, l = 0, 1, . . . , n − 1, Dω ∈ Ls
loc(Ω,∧). and let σ > 1 be a constant. If ϕ1(x)

and ϕ2(x) are Young functions with 1 ∈ Lϕ1(x)(Ω) ∩ Lϕ2(x)(Ω), and the pair of weights
(w1(x), w2(x)) ∈ A(ϕ1(x), ϕ2(x), τ, Ω). Then there exists a constant C, independent of ω,
such that

‖ω − ωB‖s,B,wα
1
≤ C|B|1+ 1

n ‖Dω‖s,σB,wτα
2

(5.4)

for all balls B with σB ⊂ Ω for some σ > 1 and α is constant with 0 < α < 1.
Proof Choose t = s

1−α
, since 1

s
= 1

t
+ (t−s)

ts
and t > s, using the Hölder inequality

(1.18), we have

‖ω − ωB‖s,B,wα
1

= (
∫

B

(|ω − ωB|w
α
s

1 )sdx)
1
s ≤ (

∫

B

|ω − ωB|tdx)
1
t (

∫

B

w
αt

t−s

1 dx)
t−s
ts

= ‖ω − ωB‖t,B(
∫

B

w1dx)
α
s = ‖ω − ωB‖t,B‖w1‖

α
s

1,B.

(5.5)

Taking m = s
1+ατ

, then m < s < t. Using (4.22) and (2.7), we have

‖ω − ωB‖t,B ≤ C2|B|
(m−t)

mt ‖ω − ωB‖m,σB ≤ C3|B|1+ 1
n |B| (m−t)

mt ‖Dω‖m,σB, (5.6)

where σ > 1. Substituting (5.6) in (5.5), we have

(
∫

B

(|ω − ωB|w
α
s

1 )sdx)
1
s ≤ C3|B|1+ 1

n |B| (m−t)
mt ‖Dω‖m,σB‖w1‖

α
s

1,B. (5.7)

Using (1.18) again yields

‖Dω‖m,σB = (
∫

σB

|Dω|mdx)
1
m = (

∫

σB

(|Dω|w τα
s

2 w
−τα

s

2 )mdx)
1
m

≤ (
∫

σB

(|Dω|swτα
2 dx)

1
s (

∫

σB

(
1
w2

)
ταm
s−m dx)

s−m
ms

= (
∫

σB

(|Dω|swτα
2 dx)

1
s ‖ 1

w2

‖ τα
s

1,σB

(5.8)



280 Journal of Mathematics Vol. 40

for all balls B with σB ⊂ Ω. Substituting (5.8) into (5.7), we find that

‖ω − ωB‖s,B,wα
1
≤ C3|B|1+ 1

n |B| (m−t)
mt ‖w1‖

α
s

1,B‖
1
w2

‖ τα
s

1,σB(
∫

σB

(|Dω|swτα
2 dx)

1
s . (5.9)

Since (w1(x), w2(x)) ∈ A(ϕ1(x), ϕ2(x), τ, Ω),

‖w1‖
α
s

1,B‖w−1
2 ‖ατ

s

1,σB = (‖w1‖1,B‖w−1
2 ‖τ

1,σB)
α
s

≤(C2|B|(1+τ)(
1

|σB|
∫

σB

|w1(x)|dx)(
1

|σB|
∫

σB

| 1
w2(x)

|dx)τ )
α
s

≤C3|B|α
s (1+τ)‖w1(x)‖α

s

ϕ1(x),σB‖1‖
α
s

ϕ1(x),σB‖w−1
2 (x)‖ατ

s

ϕ2(x),σB‖1‖
ατ
s

ϕ2(x),σB

≤C4|B|α
s (1+τ),

(5.10)

noting that
α

s
(1 + τ) +

1
t
− 1

m
= 0. (5.11)

Combining (5.9)–(5.11), we conclude that ‖ω − ωB‖s,B,wα
1
≤ C|B|1+ 1

n ‖Dω‖s,σB,wτα
2

for all
balls B with σB ⊂ Ω. This ends the proof of Theorem 5.1.

If ϕ1(x) = x,ϕ2(x) = x
1

r−1 ,τ = 1, and w1 = w2 in above definition, then A(ϕ1(x), ϕ2(x),
τ, Ω)-weight reduces to the Ar(Ω)-weight, then we have the following corollary.

Corollary 5.1 Let ω ∈ Ls
loc(Ω,∧l) be a solution to equation(1.8) in a bounded domain

Ω, l = 0, 1, . . . , n − 1, Dω ∈ Ls
loc(Ω,∧), and let σ > 1 be a constant. If the weight w(x) ∈

Ar(Ω). Then there exists a constant C, independent of ω, such that

‖ω − ωB‖s,B,wα ≤ C|B|1+ 1
n ‖Dω‖s,σB,wα (5.12)

for all balls B with σB ⊂ Ω for some σ > 1 and α is constant with 0 < α < 1.
As an applications of Corollary 5.1, we can prove the global result in Ls(µ)-averaging

domain.
Definition 5.2 [27] A proper subdomain Ω ⊂ Rn is called an Ls(µ)-averaging domain,

s ≥ 1, if µ(Ω) < ∞ and there exists a constant C such that

(
1

µ(B0)

∫

Ω

|u− uB0 |sdµ)
1
s ≤ C sup

2B⊂Ω
(

1
µ(B)

∫

B

|u− uB|sdµ)
1
s (5.13)

for some ball B0 ⊂ Ω and all u ∈ Ls
loc(Ω;∧l). Here the measure µ is defined by dµ = w(x)dx,

where w(x) is a weight and w(x) > 0 a.e., and the supremum is over all balls B ⊂ Ω.
Theorem 5.2 Let ω ∈ Ls

loc(Ω,∧l) be a solution to equation (1.8) in a bounded domain
Ω, l = 0, 1, . . . , n − 1, Dω ∈ Ls

loc(Ω,∧). If 1 < r < ∞ and w ∈ Ar(Ω) with w(x) ≥ ε > 0,
then, there exists a constant C, independent of ω and Dω, such that

(
1

µ(Ω)

∫

Ω

|ω − ωB0 |sdµ)
1
s ≤ C(

∫

Ω

|Dω|sdµ)
1
s (5.14)

for any Ls(µ)-averaging domain Ω and some ball B0 with 2B0 ⊂ Ω. Here dµ = w(x)αdx.
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Proof For any ball B ⊂ Ω, µ(B) =
∫

B
w(x)αdx ≥ ∫

B
εαdx = εα|B|, so that 1

µ(B)
≤ C1

|B| ,

where C1 = 1
εα . By Corollary 5.1 and noticing that 1 + 1

n
− 1

s
> 0, we obtain

(
1

µ(B)

∫

B

|ω − ωB|sdµ)
1
s = (µB)

−1
s (

∫

B

|ω − ωB|sdµ)
1
s (5.15)

≤ C2|B|
−1
s (

∫

B

|ω − ωB|sdµ)
1
s ≤ C2|B|

−1
s C3|B|1+ 1

n (
∫

B

|Dω|sdµ)
1
s = C4(

∫

B

|Dω|sdµ)
1
s .

Thus, by (5.15) and the definition of Ls(µ)-averaging domain, we deduce that

(
1

µ(Ω)

∫

Ω

|ω − ωB0 |sdµ)
1
s ≤ (

1
µ(B0)

∫

Ω

|ω − ωB0 |sdµ)
1
s

≤C5 sup
2B⊂Ω

(
1

µ(B)

∫

B

|ω − ωB|sdµ)
1
s ≤ C5 sup

2B⊂Ω
(C4(

∫

σB

|Dω|sdµ)
1
s )

≤C6 sup
2B⊂Ω

(
∫

Ω

|Dω|sdµ)
1
s ) = C6(

∫

Ω

|Dω|sdµ)
1
s ).

(5.16)

We complete the proof of Theorem 5.2.
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微分形式中的非齐次Dirac-调和方程解的若干不等式

戴志敏 1,2 ,刘三阳 1

(1. 西安电子科技大学数学与统计学院, 陕西西安 710126)

(2. 西安工业大学理学院, 陕西西安 710021)

摘要: 本文研究了与微分形式中一类非齐次的Dirac-调和方程解相关的不等式问题. 利用非齐次

的Dirac-调和方程的条件和Dirac-调和算子D的运算法则, 获得了Poincaré不等式, Caccioppoli不等式和弱

逆Hölder不等式. 作为相关不等式的应用, 证明了Poincaré不等式赋特殊权和在Ls(µ)平均域上的形式. 本文

的研究将齐次Dirac-调和方程解的相关不等式推广到了对应该方程非齐次的情形.
关键词: 非齐次Dirac-调和方程; 微分形式; 范数不等式; 权; Ls(µ)-平均域
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