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Abstract: In this paper, some inequalities related to the solutions of a class of nonho-
mogeneous Dirac-harmonic equations in differential forms are studied. By the conditions of the
Dirac-harmonic equation and the operation rules of Dirac-harmonic operator D, Poincaré inequal-
ity, Caccioppoli inequality and the weak inverse Holder inequality are obtained. As the applications
of related inequalities, the forms of the Poincaré inequality with special weights and in the L°(u)-
averaging domains are proved. The related inequalities of solutions of homogeneous Dirac-harmonic
equation are extended to the case of non-homogeneous Dirac-harmonic equation.
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1 Introduction

As generalizations of the functions, differential forms were widely used in many fields,
including potential theory, partial differential equations, quasiconformal mappings and etc.
During recent years a series of estimates and inequalities for differential forms, particularly,
for the forms satisfying the homogeneous or nonhomogeneous A-harmonic equations, or the
conjugate A-harmonic equations in R"(n > 2), were developed, see [1-8]. These estimates
and inequalities are critical tools to investigate the properties of solutions to the nonlin-
ear differential equations and to control oscillatory behavior in domains or on manifolds.
However, the nonlinear PDE with the Hodge-Dirac operator for differential forms, that is,
the Dirac-harmonic equation has yet to be further developed, where the Dirac operator was
initiated by Paul Dirac in order to get a form of quantum theory compatible with special
relativity, which was playing a critical role in some fields of mathematics and physics, such

as quantum mechanics, Clifford analysis and partial differential equations, see [9-13].
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The purpose of this paper is to introduce the non-homogeneous Dirac-harmonic equation
d*A(z, Dw) = B(x,Dw) for differential forms and initiate the study of this new type of
differential equations, where the Hodge-Dirac operator D is defined by D = d + d*, d is the
exterior differential operator, d* is the Hodge codifferential that is formal adjoint operator
of d, and A is an operator satisfying certain conditions. Specifically, we establish Poincaré-
type inequalities, Caccioppoli-type inequalities and the weak reverse Holder inequality for
differential forms satisfying the non-homogeneous Dirac-harmonic equation. These basic
inequalities will form the basis for the study of the LP-theory of the new introduced Dirac-
harmonic equation for differential forms.

Now we introduce some notations and definitions. Let 2 be an open subset of R (n > 2)
and B be a ball in R". Let pB denote the ball with the same center as B and diam(pB) =
p diam(B)(p > 0). || is used to denote the Lebesgue measure of a set @ C R™. Let
A= AY(R™),l = 0,1,...,n, be the linear space of all I-forms w(z) = >, w(z)dz; =
Do Wirigeiy (@)d@, Adag, A- - -Aday, in R™, where I = (iq, 49, ...,79),1 <1 <ip <--- <14 <,
are the ordered [-tuples. The Grassman algebra A = A(R") = @, Al (R") is a graded
algebra with respect to the exterior products A. Moreover, if each of the coefficient w;(x)
of w(x) is differential on €, then we call w(z) a differential I-form on Q, use D'(Q, A!) to
denote the space of all differential I-forms on Q and D'(, A) = @, D' (Q, Al). Analogously
C> (2, A') denotes the space of smooth I-forms on Q. The exterior derivative d : D' (€, Al) —
D'(Q,A"1), 1=0,1,...,n—1, is given by

Z Z (90-11112 “ dx] VAN dil?zl VAN dxw AN dx,»l (11)

I j=1

for all w € D'(Q,AY). The Hodge star operator x : AF — A% is defined as follows.

If w = wiiyoip (@1, T2, ... xn)da;, ANdagy, N Ndzy, = wrdxy, i3 < ipg < -+ < g, is a
differential k-form, then xw = x(wj,i,...;, A4, /\d:viQ A---Adxg,)) = (=1)2Dw;dr;, where I =
(11,02, ,ik), J = {1,2,. n} I,and ) () = k(kH) —I—Zk ij. The Hodge codifferential

operator d* : D' (£, /\l“) — D' (9, AV)is defined by d* (— )"“r1 x dx on D' (Q, AT | =
0,1,...,n—1. For allw € D'(Q, A!), we have d(dw) = d*(d*w) = 0. LP(Q, AD)(1 < p < 00) is
a Banach space with the norm [[wl|,.0 = ([, [w(z)[Pdz)"? = ([,(3; lwi(2)[*)P/2dz)/? < 0o
and LP(Q,A) = @p_,LP(, AY). Similarly, the notations LP (Q,A!) and W,oP(Q, Al) are
self-explanatory.

From [14], w is a differential form in a bounded convex domain €2, then there is a
decomposition

=d(Tw) + T (dw), (1.2)

where T is called a homotopy operator. For the homotopy operator T, we know that

[Twlly,s < C|B|diam(B)]|w

lp. (1.3)

holds for any differential form w € LY (Q,A"), 1 =1,2,...,n,1 < p < co. Furthermore, we
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can define the I-form wq € D'(Q, A!) by

Q7" [, w(z)dz, =0,

_ 1.4
e {dT(w), 1=1,2,....n (14)

for all w € LP(Q, A, 1 < p < c0.

The theory of differential equations was very well developed during last several decades.
Particularly, there was an increasing interest in different types of differential equations for
differential forms, see [15-21]. Among these types of equations, the traditional A-harmonic

equation for differential forms
d*A(z,dw) =0 (1.5)

in R™, and the corresponding nonhomogeneous A-harmonic equation for differential forms is

a nonlinear elliptic equation of the form
d*A(z,dw) = B(z,dw) (1.6)

received much investigation in recent years. In [10], for the purpose of dealing with terms
dw and d*w simultaneously in many cases , such as in the case of Hodge decomposition of a

differential form, Ding introduced the following Dirac-harmonic equation
d*A(x, Dw) =0 (1.7)

for differential forms. Similarly, we could introduce the corresponding nonhomogeneous

Dirac-harmonic equation for differential forms is a nonlinear elliptic equation of the form
d*A(x, Dw) = B(x, Dw), (1.8)

where the Hodge-Dirac operator D is a Dirac operator defined by D = d 4+ d*, d is the
exterior differential operator, d* is the Hodge codifferential that is formal adjoint operator
of d, A: Q x A(R") — A(R") and B : Q2 x A(R") — A(R") satisfy the following conditions

Az, &) < alefP™  (A(2,6),8) 2 [¢]" and |B(z,€)| < bl¢f™ (1.9)

for almost every x € Q and all £ € A(R™), here a,b > 0 is a constant and 1 < p < oo is
a fixed exponent associated with (1.8). Let W}, (Q,A'"1) = MW, (€, A1), where the
intersection is for all €' compactly contained in 2. A solution to (1.2) is an element of the
Sobolev space W1, (€2, Al=1) such that

/Q(A(m,Dw),Dga> + (B(z, Dw),p) =0 (1.10)

for all o € W, (2, A'™!) with compact support.
A solution w of the homogeneous and non-homogeneous A-harmonic equation (1.5) and

(1.6) is called a nontrivial solution if dw # 0; otherwise, w is called a trivial solution of (1.5)
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and (1.6). Similarly, a solution w of the homogeneous and non-homogeneous Dirac-harmonic
equation (1.7) and (1.8) is called a nontrivial solution if Dw # 0; otherwise, w is called a
trivial solution of (1.7) and (1.8). It should be noticed that the Dirac-harmonic equation can
be considered as an extension of the traditional A-harmonic equations with operator d being
replaced by the Dirac operator D = d+d*. It is also easy to see that if w is a function (0-form),
both the traditional non-homogeneous A-harmonic equation d*A(x, dw) = B(z,dw)and the
non-homogeneous Dirac-harmonic equation d*A(z, Dw) = B(x, Dw) reduce to the usual

non-homogeneous A-harmonic equation
divA(z, Vw) = B(z, Vw). (1.11)

So far although the research on the non-homogeneous A-harmonic equation has gained
great attention, we can find most of what we get is the solution of its degenerated equation,
that is the special solution of the homogeneous A-harmonic equation, see [1,3, 22-23] for more
details. The non-homogeneous Dirac-harmonic equation (1.8), as a kind of more complicated
equation compared to the non-homogeneous A-harmonic equation, now we can get some
trivial special solutions, that is, the solutions satisfy Dw = 0.

In order to find the trivial solution of equation (1.8), we need the lemmas below.

Lemma 1.1 [9-11] Let w be any differential form. Then, Dw = 0 if and only if dw = 0
and d*w = 0. Noticing that Aw = (dd* +d*d)w = (d+d*)*w = D*w, we have the proposition.

Proposition 1.1 Let w be any differential form. Then, Aw = 0 if and only if Dw = 0.

According to Lemma 1.1 and the definitions of the operator d and d* = (—1)"*! x dx,

we can know that w = > ardxr,ar € R is the special solution of equation (1.8). Besides, we

1
can check the following two examples are also the trivial solutions of equation (1.8).
Example 1.1 Let
—X9 I
o) = ——2 dry + ——Ld 1.12
o m) =gt gt (1.12)
be a 1-form in © C R? which does not contain the origin (0,0). Then w(z1,z2) is a trivial
solution of the A-harmonic equation (1.5)—(1.8) in Q.

Proof By simple calculation, we have

0 —m .
dw = =g )dva Ny + 5= (=5 )dz Ad
W 83:2(:5%4—37%) To N xl"'axl(m%_i_x%) xr1 N\ dxy
x5 — 12
= 2 gy (e N dm Fdm Adra) =0,
o .
*w) = x3 +2$§dx2 * x3 —|—1x§ das, (1.13)
d(x(w)) = i(l)dl’ A dx "‘i(—L)daj A da
T Omy a4l L T 1

= (dl‘g A\ dl’l + dl‘l N d(EQ) = 0,
T
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d*(w) =(~1)* x d x (w) = 0,
D(w) =(d + d*)(w) = 0. (1.14)

Example 1.2 Let
w(xl, T2, 173) :wldxl VAN d!EQ + CLJQdI‘Q VAN dI‘g + w3d:c3 A\ dLIZl

=(z1 + x2 — 223)dwy A das + (1 — X2 + 23)dwy A dXs (1.15)
+ ("El + o — .fﬂg)d$3 N dII,'l
be a 2-form in © C R3. Then w(zy, ;) is a trivial solution of the A-harmonic equation

(1.5)—(1.8) in Q.
Proof

O(wy)  O(ws) = O(ws)
8%3 + 81'1 + 8513’2

*w =wdxs + wedr — wids,

dw =( Ydxy A dxo A dxg =0, (1.16)

_O(wi)  O(w2) I(ws) | O(ws)
d*w _(Txl — . Ydxy A dxs — ( pr + s Ydxy A dxo
O(w1)  O(ws) B
+( oz, Oz, Ydza A dxg =0,
d*(w) =(—1)" % d* (w) =0,
D(w) =(d+ d*)(w) = 0. (1.17)

In order to obtain the related inequalities with the solutions of the non-homogeneous
Dirac-harmonic equation for differential forms, we need the following generalized Holder
inequality in this paper.

Lemma 1.2 [1] Let 0 < p,q < oo and s7! = p~! + ¢~ !. If f and g are measurable
functions on R™, then

1 gllse < IfIpsllglloe (1.18)

for any Q2 C R™.

If we select g = ]% and g = 1, we can get

I1£] ) fllp (1.19)

s <@

or

b
1flls.e <1QI™

Flp.q- (1.20)

2 Poincaré Sobolev and Embedding Inequalities

Different versions of the classical Poincaré inequality were established in the study of the
Sobolev space and differential forms, see [1,6]. Susan proved the Poincaré inequality in L*-

averaging domains in [15]. Tadeusz and Lutoborski proved a local Poincaré-type inequality
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in [14], which plays a crucial role in generalizing the theory of Sobolev functions to differential
forms.

In [10], Ding Proved the Poincaré Sobolev and embedding inequalities with the Dirac
operator. If appropriate substitution is made, ones can get the new forms of these inequali-
ties.

Lemma 2.1 [10] Let u € D'(Q, A') be a differential form and Du € LP(Q,A). Then
U — ug is in LG9 and

/|u—qu dz) T < Oy /|Du|pdx) (2.1)

for Q acubeoraballin R*, [=0,1,...,.n—1land 1 <p < n.

Considering that the norms ||ul|, o and ||u — ug||,,¢ are comparable, see [4], namely,

|u —ugllp.o < Cillullpo < Callu —ugllp.q; (2.2)

(f

for  a cube or a ball in R”, [ =0,1,...,.n—1and 1 < p < n.
Replacing v by Du in (2.1) and noting that A = (d + d*)? = D?, we have the following

inequality with the Dirac operator

we have
np

w5 dy) < cp(n)</Q|Dupdx)i (2.3)

/|Du—(Du)Q|n sdr) < O (/ |AulPdz)7. (2.4)

Now, we give the new Poincaré inequality with the Dirac operator.
Theorem 2.1 Let u € D'(Q,A!) be a differential form and Du € LP(Q,A),p > 1.
Then, u — ug is in LP(Q, A) and

[u = ugllp.q < CQ|diam(Q)| Dull,.q (2.5)

for all cubes or balls @ with Q@ C R™, where C' is a constant, independent of v and Du.
Proof

[u = uqllp.o = IT(du)lp.q < C1|Q|dlam(Q)|dull,.q < C1|Q|dlam(Q)[| Dully - (2.6)
Noticing that diam(Q) < C5|Q|#, we have
lu = ugllpq < C5Q" || Dullyq. (2.7)
Similarly, replacing v by Du in (2.5), we have
[Du — (Du)qllp.@ < Cs|Q|diam(Q)[| Aullp,q- (2.8)

Futhermore, considering that the norms ||Du||, o and || Du—(Du)g||p.q are comparable,
we have
[Dullp.q < Cs|Q|diam(Q)[|Aull, - (2.9)
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3 Caccioppoli-Type Inequality

The Caccioppoli-type estimates become powerful tools in analysis and related fields, for
the Caccioppoli-type inequalities or estimates provide upper bounds for the norms of Vu
or du in terms of the corresponding norm of u or u — ¢, where u is a differential form or a
function satisfying certain conditions. In recent years, different versions of Caccioppoli-type
estimates were established; see [1,3,10].

In [10], Ding obtained the Caccioppoli-type inequality with solutions of the Dirac-
harmonic equation (1.7) for differential forms. Similarly, we can also get the Caccioppoli-type
inequality with solutions of the non-homogeneous Dirac-harmonic equation for differential
forms. Now, we first introduce the product rules for the differentiations of exterior product.

Lemma 3.1 [10] (i) Product rule for d holds: let u = > wusdx; be a k-form and

T

v ="> wvydxy be l-form in D'(Q, A), where u; and v; are differentiable functions in Q. Then
J

d(uAv) =duAv+ (—1)"u A dv. (3.1)

(ii) Product rule for d* holds: let u € D'(2,A) be a k-form u = > urdx;, where
T

I = (i1,42, - ,i) is a set of all k tuples with i; < i < -+ < i) and 1 < i, < n. Let 1 be a

differentiable function in €, then

@ un) = @+ (1" s, (3:2)
k m 877
Dlun) = (Dujn -+ (~1) () + (1) Sy L, (33)

I—q

where m, q are integers, 1 < ¢ < n and I — ¢ is an abusive notation to represent an k — 1
tuple with 4, is missing (i1, - ,%g,--- ,ix) and g ¢ J means q # j, for any j, in n — k tuples
J. Also, > means the sum of all possible k tuples.

T

Theorem 3.1 Let u € D'(Q,AY),l =0,1,...,n, be a solution of the non-homogeneous
Dirac-harmonic equation (1.8) in a bounded domain 2 C R"™, and assume that 1 < p < oo is
a fixed exponent associated with equation (1.8). Then there exists a constant C', independent
of u and Du, such that

=1
n

[Dullp,s < C|B

u”p,UB (3'4>

for all balls or cubes B with 0B C Q.
Proof Let n € C§°(6B), 0 < n < 1 withn =1 1in B, and |dn| = |Vn| < ﬁl(B)
Choosing the test form ¢ = —un”. Then

_ m . 0
Dy = —(Du)nP + (—l)lHupnp Ydn + (-1) +1 Zulpnp 18777d171_q. (3.5)

I—q 4
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From (1.10), we obtain

/B<A<$’Du)’”pD“> = —/ (A(z, Du), (=1) upy”~*dn)

oB

L9 (3.6)
- /UB(A(x,Du), (=™ Zu;pnp a—qum[_q> - /UB<B(x,Du),u7)p>.
I—q
Applying (1.9), we have
[ 1@ pawow) = [ apivupas (37)
oB oB

Notice that [, urpnP 2 dzy_y| < p|nP~tul|dn| and diam(B) < diam(Q) < cc.
Using the Holder inequality (1.18), we obtain

/ inl?| DulPde < / \(A(e, D), 77 Du)|
oB oB

< / (A, D) (plud[nf?~"|digl) e + /
oB o

Cs
<2
~ diam(B)

02 p—=1 p—1
<l — p P p P
<l | (DU + Callalas( | (lDula)

ocB
CQ + nglam(B) p p—1
Famm(B)Nelon( [ (nllDulrd)

Az, Du)(pIUIIW”_lldn)der/ b Dul"~" (Jul [n|”)d

B oB

/ DU fuldz + C / |Dupul [P dz
oB oB

Cy p=1
<4 N, Du|)Pdz) 5,
< g tloen( [ (lIDurd)
(3.8)
which is equivalent to
C,y
D oB < ——— oB- 3.9
Dl < grmtz s (39)
Thus, we have
[ Dull [nDullp.5 < [[nDullp,e5 < < [tllpon < Cs5|BI 7 ||u] (3.10)
u = u UllpoB < ———|t)lpon < m ||wllp.on- .
p.B n pB = |7 p.oB diam(B) P B 5 p.oB

Let u be a solution of equation (1.8) and ¢ be a harmonic form. Then, w = u+ ¢ is also
a solution of equation (1.8). Write u = w — ¢, then Du = Dw. Thus, we have the following
version of (3.10).

Corollary 3.1 Let ¢ be a harmonic form and w« is a solution of the non-homogeneous

Dirac-harmonic equation (1.8). Then
[1Dullp,5 < CIB|™ |u = cllp.on (3.11)

for all balls or cubes B with o B C €, ¢ > 1 be a constant.
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4 Weak Reverse Holder Inequality

It is known to all that a necessary condition for (1.20) to hold is that p > s. When p, s
are any two positive constants and an inequality weaker than (1.20) holds, which is known as
the weak reverse Holder inequality and plays an important role in establishing the weighted
form of the related inequality, see [1] for more details.

In [15], if w is a solution of the A-harmonic equation (1.6), then the weak reverse Holder
inequality

lwllse < ClQIF

WHTJQ (4.1)

holds for all cubes or balls @ with @ C Q and any 0 < r,s < 0.

Recently, Ding proved that inequality (4.1) also holds for the solutions of the Dirac-
harmonic equation (1.7), see [10]. Now we prove that for any solution w of the non-
homogenious Dirac-harmonic equation (1.8), the weak reverse Holder inequality still holds.
Specifically, we have the following Theorem 4.3.

We define the differential forms w™ and w™ as follows. If w € A°(R), let w* = max{w, 0}
and w~ = min{w,0}. Otherwise, let w* =Y wjdr; and w™ = > w; dzs.

Theorem 4.1 Let w be a solution of (1.8) and n € C§°(Q2) with > 0. There exists a
constant C', depending only on a, b, and p, such that

[1perwds <o [ o planpds + [ ot Pinrao). (42)
Q Q Q

The same is true for w—.

Proof Using the test form ¢ = —w*n? and using inequalities (1.9) and the Holder
inequality (1.18), we get
/777)|Dw+|pd:1c §C’1/ |Dw+|p1np1|dn||w+|dx+02/ |Dw™ [P~ Hw ™ |nPde
Q Q Q

(p—1)

e / ot PldnlPda) / Dt Pypda) (4.3)
Q Q

(p—1)

X / ot Prda) B ( / Dt Prpde) s
Q Q

By the following basic inequality

Dolail® <nd - lai)* <0ty (4.4)
i=1 i=1 i=1

where s > 0 is any constant, it follows that

/ | DusPda < (i / (Wt P |dn[Pdz) + Ca / Wt o)’ P
Q Q Q
(4.5)
< oy / W Pldnpde + / Wt Prpdz).
Q Q
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Theorem 4.2 Let w be a solution of (1.8) in ©,q > 0. There exists a constant C,
depending only on a, p, g, n such that

/ w9 Dt PP < C / W P (dnl + Inl?)de (4.6)
Q Q

for all nonnegative n € C§°(9).

The proof of Theorem 4.2 is similar to [15]. For complete purpose and convenience to
the readers, we state the proof as follows.

Proof Let ¢t > 0 be any constant, 7' = ) tdx, then w — T is also a solution of (1.8)
and satisfies (4.2) too. Consider the sets A = LI_JI{xKCU[ —t)" >0}, B={z|(w—T)" # 0},

= {z||w*| > t}, D; = {z|w] >t} and B = {z|(w —T)* #0}. Then D; C A= B C C for
all for all I. Let dv = |Dw™ [PnPdz and using (4.2) to get

/w+lqdv<012/ wi |de_clz{q/ - 1/ dvdt}
Dy
<)o / ot [ Dt —opdsy <, / ot [ 1D -1 P
Cg/ tql/ |(w—T)+|P(|dn|P+np)dxdt503/ tql/ lwt P(Jdn|? 4+ nP)dzdt
0 B 0 c

(4.7)

<c, / W |7 (dnl? + 7)da
Q

Lemma 4.1 [24] Let 0 < s < p and |v| € L{ (), ¢ > 1. If there exists a constant C;

such that
( / o] de)* (48)
2Q

for all cubes @ with 2Q) C €, then for all » > 0, there exists a constant Cy depending only

( / lo[Pda)s < C1|Q|
Q

on o,n,p,r and Cy, such that

([ blrao < ol ([ Jolraa? (19)
Q oQ
for all cubes @ with c@ C €.
Now, we are ready to present and prove one of our main theorems, the weak reverse
Holder inequality as follows.
Theorem 4.3 Let w be a solution to the non-homogeneous Dirac-harmonic equation
(1.8) associated with p > 1in €, 0 > 1 be some constant, and 0 < r, s < oo be any constants.

Then, there exists a constant C', independent of w, such that

(r=s)
lwlls,5 < C1BI

(4.10)

for all cubes or balls B with o B C Q.
Proof We prove this theorem in the following two steps. Step (i) is for the case
1 < p < n and Step (ii) is for the case p > n.
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Step (i) Assume that 1 < p < n. We first prove that (4.10) holds for any constants

r,s withr > 0,0 <s < & Letmax{l,s,m}<a<s(n ) andq—(n+as) Then
as as(n —p) —np as(n—1) —n
= n<n, q-p=—l TP g 4o 1=220" 7 s (411
7 n+ as R n+as 7 n+ as ( )
that is, 1 < ¢ < p <mn, by (2.3), (1.19) and (3.4),
([ a0 < o[ 1Dupran)t < B[ Dulran)?
B B B (4.12)

< C|B (”’J«”i(/ wPdz)s.
oB

Also, L = s > p, by Lemma 4.1 and (4.12), for any r > 0, we have

n—q

</ | da) = < ) B %‘”‘W/ | d)*. (4.13)
B oB

Since nqu = as > s, by(1.19), it follows that

( /B witda)? <

Combining (4.13) and (4.14) yields

( /B oltde)? < ColBI= ([ o)t (4.15)

that is (4.10) holds for any constants r, s with » > 0 and 0 < s < ;£ Next, we show that

(4.

i—;s(/ |w| 77 da) (4.14)
B

[w ™ lls, < Ca roB- (4.16)

The proof for w™ is similar. The proof follows Theorem 3.34 in [25] with w™ to replace u*

and Dw™ in replace of dut. Also by using (4.6) and the Moser iteration technique to get
(4.16).

Choose o > max{1, - } and q = (nof;s)' Then, n"—fq =as >sand 1 < g < n.

Let 7, = A+ (1 — X\)2~ m,m—O,l,.. ;0< A< 1, thenryg =1andr, — X asm — oco.

Let 1, € C§°(r,mB) be a nonnegative function such that n,, = 1 in r,,B \ 7,41 B and that

n < Coldnm| < Cob™|B| over each ball, for some constant Cyp and 1 < b < ”q . Let ¢, >0

be a sequence to be determined later and w,, = w+|w+| Nm. Then by product rule (3.3)

and exactly the same calculationas in [10], we get

1 tm 1 1
(/ | Doy |*dz)a - < (1+2)(/ |Dw+lqlw+lt”‘n%dx)q+2(/ jw | | dn [ da) @
rmB q rm B r

m mB

tm 1
< (1422 12| A+ 7))’
rm B
< Cslg +tm)( |lwt[9F | diy | 9d) 3 (4.17)

rm B
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Since the remaining derivation is exactly the same as in [10], we obtain

( / Wt da)? < G| B ( / " da) (4.18)
B

oB
Similarly, let w,, = —w_|w_|%nm with the same method, we can get
(/ lw™ [*dz)* < c7|Bny(/ lw™["dz)*. (4.19)
B ocB
Thus, by Minkowski inequality, (4.18) and (4.19), we have
lwlls,5 = lw™ + w7 lls5 < lwlls5 + w55
SCS|B|%< |W+||T,JB +lw™ [lron < CS‘B|%(HW |lroB + lwllro5) (4.20)
<Co| Bl [|wl| o5,
that is, for any » > 0,s > %.
|wllss < Col Bl 7 ||wllr.om- (4.21)

Step (ii) Assume that p > n. We prove that (4.10) holds for any two positive constants
B 1 < a,and ¢ = 2%~ we find that (4.11)—(4.14) still hold for

? 57 s(n—1) (n+as)”
such a choice of a. Thus, inequality (4.15) or (4.10) follows immediately for any constants

r,s . Let max{1l

r,s > 0. We have completed the proof of Theorem 4.3.
In Theorem 4.3, considering that the norms ||w||s,¢ and |jw — wglls,q are comparable,
we have the following version of the weak reverse Holder inequality for differential forms

satisfies the non-homogeneous Dirac-harmonic equation (1.8)

lw —wolls.o < ClQIT

W — wQ| roQ- (4.22)

5 Applications

We know the weight functions were widely used in analysis and PDE, so as applica-
tions of the Poincaré inequality and weak reverse Holder inequality established in previ-
ous sections, we prove the Poincaré inequality with the A(p1(x), p2(z), T, 2)-weights. The
A(p1(x), p2(x), 7, Q)-weight was introduced by Wen in [26].

Definition 5.1 Let o4 (x) and p2(z) be Young functions, a pair of weights (wq(x), wa(x))
satisfies the A(¢1(x), p2(x), T, Q)-condition, write (wq(z),ws(x)) € A(pi(x), p2(x),7,Q), if
there exists a constant C, such that

sup [|ws ()¢, ). w2 (2) "M I7, 0y, < € < 00, (5.1)
QCQ
where the normalized Luxemburg norm for any function w(z) on a cube or ball @ with
Young functions ¢ : [0,00) — [0,00) is defined by

|w(z)]

|wlloo = inf{A > 0: @/Q@( iz <13, (5.2)
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Remark (i) If o(t) = 7, then ||lw(x)||p.0 = (I%BI fQ |w|pdx)% and the Luxemburg norm
reduce to the LP-norm. Given a Young function ¢, let i denote its associate function: the
Young function with the property that ¢t < o= (t)g '(t) < 2t,t > 0. If o(t) =7, p > 1,
and 11; + % =1, then @(t) = t9, and if (t) = t log(e + t)*, then B(t) ~ t?log(e +t) >

(ii) From [26], we know that A(p1(x),p2(x), T, 2)-weight is the generation of some
existing versions of the weight. For example, if ¢1(z) = z, @o(z) = xﬁ, 7 =1, and
w1 = wy in above definition, then A(¢p; (), p2(x), T, Q)-weight reduces to the A, (2)-weight,
and if ¢ (z) = 2*,0y(7) = 71,7 = 1, then A(p1(x), p2(x), 7, Q)-weight reduces to the
A, A (Q2)-weight, see more details for [26].

Lemma 5.1 If ¢ is Young function, then for all functions f and g and any cube @,

1
L / Folde <21 £ ol 9 o - (5.3)
al /.

Theorem 5.1 Let w € L{ _(2,A!) be a solution to equation (1.8) in a bounded
domain Q,l = 0,1,...,n — 1, Dw € L (2,A). and let ¢ > 1 be a constant. If ¢;(z)
and @y(z) are Young functions with 1 € L#?1@)(Q) N L#2(®)(Q), and the pair of weights
(w1 (z), wa(z)) € A(p1(x), p2(x),7,2). Then there exists a constant C, independent of w,
such that

lw = wslls.pur < CIBI™ 7 [ Dwlls o use (5.4)
for all balls B with 0B C {2 for some o > 1 and « is constant with 0 < o < 1.

Proof Choose t = ", since % = % + (t;s) and t > s, using the Holder inequality

(1.18), we have

at o,
|W—WB||st1—(/ w—wB|w1 dl’% /|w—de:v (/ 1""5(1917)ttT

=l — wallos( / wndz)? = |l — wp s w | F 5
B

(5.5)

Taking m = then m < s < t. Using (4.22) and (2.7), we have

1+a'r’

(m—t)

" [Dwllmos,  (5.6)

(m—t) N
HW*WBHt,B SCQ|B| mt ||w7wB||m,a’B §03|B|1+71L|B

where o > 1. Substituting (5.6) in (5.5), we have

(/(|w — wplw{ ) dz)* < Cs| B[+ |B|
B
Using (1.18) again yields

1Dl = ( / |Duofmda) = ( / (Dwlwsf wy ™ ymda)
oB oB

s—m

< / (Dufugds) / K L)oo (5.8)

Wa
1

—( / (1 DwlPwy*de)*
oB
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for all balls B with ¢ B C €. Substituting (5.8) into (5.7), we find that

1 (m—t) o 1 To s Ta 1
o =l < ColBIH 1B fun 1 - 75 / (Dulfuida)t.  (5.9)
oB
Since (wy (2), wa(x)) € Alpr (@), pa(a), 7, Q),
leoulZ pller 15 s = (lo stz 1 05) %
1 1 1 o
<(Col B+ (s / fwn () da) / L jday)
(0Bl Jo5 0B| Jo5 w2() (5.10)
<ColBIE S un (@)1, ol o105 )1 o T o
§C4‘B %(1+T)7
noting that
« 1 1
—(1 —— — =0. 5.11
LONERE (5.11)

Combining (5.9)-(5.11), we conclude that [lw — wg||s Bws < C’|B|1+%||Dw\|s703’w5a for all
balls B with ¢B C (). This ends the proof of Theorem 5.1.

If o1 (z) = 2,02(2z) = 77,7 = 1, and w; = w, in above definition, then A(p; (), pa(z),
7,)-weight reduces to the A,(Q)-weight, then we have the following corollary.

Corollary 5.1 Let w € L (2, Al) be a solution to equation(1.8) in a bounded domain

loc

2,0=0,1,....,n—1, Dw € L (2, A), and let ¢ > 1 be a constant. If the weight w(z) €

loc

A, (Q). Then there exists a constant C, independent of w, such that

o = wallo,z.0e < CIBI™]

Duw||s,0B,we (5.12)

for all balls B with 0B C {2 for some o > 1 and « is constant with 0 < o < 1.

As an applications of Corollary 5.1, we can prove the global result in L*(u)-averaging
domain.

Definition 5.2 [27] A proper subdomain  C R”™ is called an L®(u)-averaging domain,
s> 1, if u(2) < oo and there exists a constant C' such that

1 1 1 1
u—up,|’dp)s < C su / u—ugl®du)s 5.13
gy Ll wmla? <€ swp (s [ luusfdn) 6,13

for some ball By C Q and all u € L _(2; Al). Here the measure y is defined by du = w(z)dz,

where w(r) is a weight and w(z) > 0 a.e., and the supremum is over all balls B C Q.
Theorem 5.2 Let w € L{ (Q, A!) be a solution to equation (1.8) in a bounded domain

loc

2,0=0,1,....n—1, Dw € L{ (2, N). If 1 <r <ooand w € A,.(2) with w(z) > e >0,

loc

then, there exists a constant C, independent of w and Dw, such that
G Lo -wmbant < ([ o (5.14)
— w — wpg,|’du)s < w|*du)s .
() Jo ’ Q

for any L*(u)-averaging domain  and some ball By with 2By C Q. Here du = w(z)*dx.
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Proof For any ball B C Q, u(B) = [, w(z)*dx > [, e*dx = £*|B|, so that ﬁ < %,

where C] = E% By Corollary 5.1 and noticing that 1 + % — % > (0, we obtain

1 1 -1 1
— w—wgl’du)s = E w—wgl|®du)= 5.15
g [ b=t} = ) ([ o= wnlodn) (5.15)
< 02|B~3</ |w — wp|"dp)* < Co|B 503|B|1+*</ Dw|5du>i=04</ | Dw|*dp)*.
B B B

Thus, by (5.15) and the definition of L*(u)-averaging domain, we deduce that

We

10

[11

[12
[13

]

]

]

1
s

! sdp)* 1 w — wg,|*
gy [ = wmldn? < o [ o=
1

<Cj sup (/ lw — wp|*dp)* < Cs5 sup (04(/ |Dw|*dp)*) (5.16)
apca W(B) Jp 2BCQ oB

<Cu s ([ 1Dutdn)?) = ol [ Dalodi)?)

2BCQ Q

complete the proof of Theorem 5.2.
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