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Abstract: In this paper, we study the numerical solution of M-matrix algebraic Riccati

equation. Based on the alternately linearized implicit iteration method, we propose a modified

alternately linearized implicit iteration method (MALI) for computing the minimal nonnegative

solution of MARE. Convergence of the MALI iteration method is proved under suitable conditions.

Convergence rate with optimal parameters are given for the MARE associated with a nonsingular

M-matrix or an irreducible singular M-matrix. Numerical experiments are given to show that the

MALI iteration method is feasible in some cases.
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1 Introduction

We study M-matrix algebraic Riccati equation (MARE) of the form

XCX −XD −AX + B = 0, (1.1)

where A, B, C, D are real matrices of sizes m×m, m× n, n×m, n× n, respectively, and

K =

(
D −C

−B A

)
(1.2)

is an M-matrix. M-matrix algebraic Riccati equation arises from many branches of applied
mathematics, such as transport theory, Wiener-Hopf factorization of Markov chains, stochas-
tic process, and so on [1–5]. Research on the theories and the efficient numerical methods of
MARE became a hot topic in recent years [6–19].
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The following are some notations and definitions we will use later.
For any matrices A = (aij), B = (bij) ∈ Rm×n, we write A ≥ B(A > B), if aij ≥

bij(aij > bij) for all i, j. A is called a Z-matrix if aij ≤ 0 for all i 6= j. Z-matrix A is called
an M-matrix if there exists a nonnegative matrix B such that A = sI − B and s ≥ ρ(B),
where ρ(B) is the spectral radius of B. In particular, A is called a nonsingular M-matrix if
s > ρ(B) and singular M-matrix if s = ρ(B).

We first review some basic results of M-matrix. The following lemmas can be found in
[20, Chapter 6].

Lemma 1.1 (see [20]) Let A be a Z-matrix, then the following statements are equivalent
(1) A is a nonsingular M-matrix;
(2) A−1 ≥ 0;
(3) Av > 0 for some vectors v > 0;
(4) all eigenvalues of A have positive real part.
Lemma 1.2 (see [20]) Let A, B be Z-matrices. If A is a nonsingular M-matrix and

A ≤ B, then B is also a nonsingular M-matrix. In particular, for any nonnegative real
number α, B = αI + A is a nonsingular M-matrix.

Lemma 1.3 (see [20]) Let A be an M-matrix, B ≥ A a Z-matrices. If A is nonsingular
or if A is singular and irreducible with A 6= B, then B is also a nonsingular M-matrix.

Lemma 1.4 (see [20]) Let A be a nonsingular M-matrix or an irreducible singular
M-matrix. A is partitioned as

A =

(
A11 A12

A21 A22

)
,

where A11 and A22 are square matrices, then A11 and A22 are nonsingular M-matrices.
Lemma 1.5 (see [20]) Let A, B be nonsingular M-matrices and A ≤ B, then A−1 ≥

B−1.
Lemma 1.6 (see [13]) Let A be an M-matrix and λmin(A) be the eigenvalue of A with

smallest absolute value. Then λmin(A) is nonnegative and satisfies

λmin(A) ≤ max
1≤i≤m

{aii}.

For the minimal nonnegative solution of the MARE, we have the following important
result.

Lemma 1.7 (see [3, 5, 6]) If K in (1.2) is a nonsingular M-matrix or an irreducible
singular M-matrix, then (1.1) has a minimal nonnegative solution S. If K is a nonsingular
M-matrix, then A − SC and D − CS are also nonsingular M-matrices. If K is irreducible
M-matrix, then S > 0 and A− SC and D − CS are also irreducible M-matrices.

Lemma 1.8 (see [3, 5]) If K in (1.2) is an irreducible singular M-matrix, then there
exist unique, up to a multiplicative constant, u > 0 and v > 0 such that uT K = 0, Kv = 0
and uT v = 1.

Partition the vectors u and v in the above lemma according to the block structure of
the matrix K as uT = [uT

1 , uT
2 ], vT = [vT

1 , vT
2 ]. Through u and v we can define the drift µ as
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the real number

µ = uT
2 v2 − uT

1 v1. (1.3)

The term ”drift” originates in the context of Markov chains and describes the different
physical behaviors of the chain in the cases where µ is positive, null, or negative. In this
context the terms positive recurrent, null recurrent, and transient are used to denote the
caess µ < 0, µ = 0, and µ > 0, respectively.

In terms of the definition, we have the following result.

Lemma 1.9 (see [3]) If K defined in (1.2) is an irreducible singular M-matrix and S is
the minimal nonnegative solution of the MARE (1.1). Then

(i) when µ < 0, D − CS is singular and A− SC is nonsingular;

(ii) when µ > 0, D − CS is nonsingular and A− SC is singular;

(iii) when µ = 0, both D − CS and A− SC are singular.

Efficient numerical methods for MARE include fixed-point iterative methods, Newton
method, SDA, and so on. For details see [3, 5, 8, 9, 11, 13].

Recently, Bai et al.[8] proposed an alternately linearized implicit iteration method (ALI)
for the MARE, which is very simple and efficient than the fixed-point iterative methods and
Newton method, since at each iteration only two linear matrix equations are needed to solve.

The ALI iteration method

• Set X0 = 0 ∈ Rm×n.

• For k = 0, 1, · · · , until {Xk} converge, compute Xk+1 from Xk by solving the
following two systems of linear matrix equations

{
Xk+1/2(αI + (D − CXk)) = (αI −A)Xk + B,

(αI + (A−Xk+1/2C))Xk+1 = Xk+1/2(αI −D) + B,

where α > 0 is a given parameter.

However, there still has room to improve the ALI iteration method. In this paper, to
fully improve the effectiveness of the ALI iteration method, we propose a modified alternately
linearized implicit iteration method (MALI) which has two parameters and includes the ALI
iteration method as special cases.

The rest of this paper is organized as follows. In next section, we propose a modified
alternately linearized implicit iteration method and give its convergence analysis. In Section
3, we analysis the convergence rate and the optimal parameters of the MALI iteration
method. In Section 4, we use some numerical examples to show the feasibility of the MALI
iteration method. Conclusion is given in the last section.

2 The MALI Iteration Method
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In the following, we propose a modified alternately linearized implicit iteration method.

The MALI iteration method

• Set X0 = 0 ∈ Rm×n.

• For k = 0, 1, · · · , until {Xk} converge, compute Xk+1 from Xk by solving the
following two systems of linear matrix equations

{
Xk+1/2(αI + (D − CXk)) = (αI −A)Xk + B,

(βI + (A−Xk+1/2C))Xk+1 = Xk+1/2(βI −D) + B,
(2.1)

where α > 0, β > 0 are two given parameters.

Compared with the ALI iteration method, there are two parameters α and β in the MALI
iteration method, which will reduce to the ALI iteration method when α = β. Hence the
ALI iteration method is a special case of the MALI iteration method.

In the following, we give convergence analysis of the MALI iteration method. First we
need several lemmas.

Lemma 2.1 Let {Xk} be the matrix sequence generated by the MALI iteration method,
R(X) = XCX −XD−AX + B, and S be the minimal nonnegative solution to (1.1). Then
for any k ≥ 0, the following equalities hold

(1) (Xk+1/2 − S)(αI + (D − CXk)) = (αI − (A− SC))(Xk − S);
(2) (Xk+1/2 −Xk)(αI + (D − CXk)) = R(Xk);
(3) R(Xk+1/2) = (αI − (A−Xk+1/2C))(Xk+1/2 −Xk);
(4) (βI + (A−Xk+1/2C))(Xk+1 − S) = (Xk+1/2 − S)(βI − (D − CS));
(5) (βI + (A−Xk+1/2C))(Xk+1 −Xk+1/2) = R(Xk+1/2);
(6) R(Xk+1) = (Xk+1 −Xk+1/2)(βI − (D − CXk+1)).
Proof The proof is similar to that of in [8], so we omit here.
Lemma 2.2 For the MARE (1.1), if the matrix K in (1.2) is a nonsingular M-matrix

or an irreducible singular M-matrix, S is the minimal nonnegative solution to (1.1), then for
any δ > 0 and 0 ≤ Z ≤ S, the matrices δI + A − ZC and δI + D − CZ are nonsingular
M-matrices.

Proof First, from 0 ≤ Z ≤ S, we have A− SC ≤ A− ZC and D − CS ≤ D − CZ.
If K is a nonsingular M-matrix, then A − SC and D − CS are also nonsingular M-

matrices by Lemma 1.7. Thus δI + A− ZC and δI + D − CZ are nonsingular M-matrices
by Lemma 1.2.

If K is an irreducible M-matrix, then A−SC and D−CS are also irreducible M-matrices
by Lemma 1.7. Since δ > 0, A − SC 6= δI + A − ZC and D − CS 6= δI + D − CZ. By
Lemma 1.3, δI + A− ZC and δI + D − CZ are nonsingular M-matrices.

Lemma 2.3 For the MARE (1.1), suppose that the matrix K in (1.2) is a nonsingular
M-matrix or an irreducible singular M-matrix, S is the minimal nonnegative solution to



No. 6 A modified alternately linearized implicit iteration method for M-matrix algebraic Riccati equation 815

(1.1), and the parameters α, β satisfy

α ≥ max
1≤i≤m

{aii}, β ≥ max
1≤j≤n

{djj}, (2.2)

where ai,i and dj,j are diagonal entries of A and D, respectively, then for any k ≥ 0,
(i) {Xk+1/2} and {Xk+1} are well defined and bounded

0 ≤ Xk+1/2 ≤ S, 0 ≤ Xk+1 ≤ S; (2.3)

(ii) βI + A−Xk+1/2C and αI + D − CXk+1 are nonsingular M-matrices.
Proof If K is a nonsingular M-matrix or an irreducible singular M-matrix, from

Lemma 1.4, A and D are nonsingular M-matrices. Thus, when α and β satisfy (2.2), both
αI −A and βI −D are nonnegative matrices.

We prove this lemma by induction. When k = 0, we have X1/2(αI + D) = B since
X0 = 0 from the MALI iteration. As D is a nonsingular M-matrix, by Lemma 1.2, αI + D

is also a nonsingular M-matrix. Thus from Lemma 1.1 we have (αI + D)−1 ≥ 0. Hence

X1/2 = B(αI + D)−1 ≥ 0.

On the other hand, from Lemma 2.1(1), we have

(X1/2 − S)(αI + D) = −(αI − (A− SC))S.

Thus since C ≥ 0 and S ≥ 0, we have

X1/2 − S = −(αI − (A− SC))S(αI + D)−1

= −((αI −A) + SC)S(αI + D)−1

≤ 0.

This show that 0 ≤ X1/2 ≤ S.
On the other hand, since C ≥ 0, we have A − SC ≤ A − X1/2C. Since that D is a

nonsingular M-matrix, β must be positive from (2.2). Thus βI +A−X1/2C is a nonsingular
M-matrix by Lemma 2.2.

Similarly, from the MALI iteration and Lemma 2.1 (4), we have

(βI + (A−X1/2C))X1 = X1/2(βI −D) + B

and
(βI + (A−X1/2C))(X1 − S) = (X1/2 − S)(βI − (D − CS)).

Hence
X1 = (βI + (A−X1/2C))−1(X1/2(βI −D) + B) ≥ 0

and
X1 − S = (βI + (A−X1/2C))−1(X1/2 − S)(βI − (D − CS)) ≤ 0.
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This show that 0 ≤ X1 ≤ S.
On the other hand, since C ≥ 0, we have D − CS ≤ D − CX1. Note that A is a

nonsingular M-matrix, α must be positive. By Lemma 2.2, αI + D − CX1 is a nonsingular
M-matrix.

Thus (i) and (ii) hold true for k = 0.
Assume that (i) and (ii) hold true for k = l − 1. From the MALI iteration, we have

Xl+1/2(αI + (D − CXl)) = (αI −A)Xl + B,

thus
Xl+1/2 = ((αI −A)Xl + B)(αI + (D − CXl))−1 ≥ 0.

From Lemma 2.1 (1), we have (Xl+1/2 − S)(αI + (D − CXl)) = (αI − (A − SC))(Xl − S),
thus

Xl+1/2 − S = (αI − (A− SC))(Xl − S)(αI + (D − CXl))−1 ≤ 0.

This show that 0 ≤ Xl+1/2 ≤ S.
Again, since C ≥ 0 and β > 0, by Lemma 2.2, βI + A − Xl+1/2C is a nonsingular

M-matrix.
Similarly, from the MALI iteration and Lemma 2.1 (4), we have

(βI + (A−Xl+1/2C))Xl+1 = Xl+1/2(βI −D) + B

and
(βI + (A−Xl+1/2C))(Xl+1 − S) = (Xl+1/2 − S)(βI − (D − CS)).

Hence
Xl+1 = (βI + (A−Xl+1/2C))−1(Xl+1/2(βI −D) + B) ≥ 0

and
Xl+1 − S = (βI + (A−Xl+1/2C))−1(Xl+1/2 − S)(βI − (D − CS)) ≤ 0.

This show that 0 ≤ Xl+1 ≤ S.
Again, since C ≥ 0 and α > 0, by Lemma 2.2, αI + D − CXl+1 is a nonsingular

M-matrix.
Thus we prove by induction that (i) and (ii) hold true for all k ≥ 0.
Lemma 2.4 Under the assumption of Lemma 2.2, the following inequalities hold for

all k ≥ 0,

Xk ≤ Xk+1/2 ≤ Xk+1, R(Xk) ≥ 0, R(Xk+1/2) ≥ 0, R(Xk+1) ≥ 0, (2.4)

where R(X) is defined in Lemma 2.1.
Proof We prove this lemma by induction.
In fact, when k = 0, we have R(X0) = B ≥ 0. From Lemma 2.1(2), we have

(X1/2 −X0)(αI + (D − CX0)) = R(X0).
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Since αI + D is a nonsingular M-matrix,

X1/2 −X0 = R(X0)(αI + (D − CX0))−1 = B(αI + D)−1 ≥ 0.

From Lemma 2.1(3), we have

R(X1/2) = (αI − (A−X1/2C))(X1/2 −X0) = ((αI −A) + X1/2C)(X1/2 −X0) ≥ 0.

From Lemma 2.1(5), we have (βI + (A −X1/2C))(X1 −X1/2) = R(X1/2). By Lemma 2.2,
βI + (A−X1/2C) is a nonsingular M-matrix, we have

X1 −X1/2 = (βI + (A−X1/2C))−1R(X1/2) ≥ 0.

From Lemma 2.1(6), we have

R(X1) = (X1 −X1/2)(βI − (D − CX1)) = (X1 −X1/2)((βI −D) + CX1) ≥ 0.

This show that (2.4) holds for k = 0.
Now we suppose that (2.4) holds for k = l − 1. Then from Lemma 2.1(2) and Lemma

2.2, we have
Xl+1/2 −Xl = R(Xl)(αI + (D − CXl))−1 ≥ 0.

From Lemma 2.1(3), we have

R(Xl+1/2) = (αI − (A−Xl+1/2C))(Xl+1/2 −Xl) ≥ 0.

From Lemma 2.1(5) and Lemma 2.2, we have

Xl+1 −Xl+1/2 = (βI + (A−Xl+1/2C))−1R(Xl+1/2) ≥ 0.

From Lemma 2.1(6), we have

R(Xl+1) = (Xl+1 −Xl+1/2)(βI − (D − CXl+1)) ≥ 0.

Thus we show by induction that (2.4) holds for all k ≥ 0.
By Lemmas 2.3 and 2.4, we can prove the following convergence theorem of the MALI

iteration method.
Theorem 2.1 For the MARE (1.1), if K in (1.2) is a nonsingular M-matrix or an

irreducible singular M-matrix, S is the minimal nonnegative solution to (1.1), and the pa-
rameters α, β satisfy (2.2), then {Xk} is well defined, monotonically increasing and converges
to S.

Proof Combining Lemma 2.3 with Lemma 2.4, we show that {Xk} is nonnegative,
monotonically increasing and bounded from above. Thus there is a nonnegative matrix S∗

such that lim
k→∞

Xk = S∗. It also holds that lim
k→∞

Xk+1/2 = S∗. From Lemma 2.3, we have
S∗ ≤ S. On the other hand, take the limit in the MALI iteration, we have that S∗ is a
solution of the MARE, thus S ≤ S∗. Hence S = S∗.
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3 Convergence Rate of the MALI Iteration Method

In this section, we analyse the convergence rate and give optimal parameters of the
MALI iteration method.

Theorem 3.1 Under the assumption of Theorem 2.1, for the sequence {Xk} generated
by the MALI iteration method, we have

lim sup
k→∞

‖S −Xk‖1/k
2 ≤ ρ(α, β), (3.1)

where
ρ(α, β) =

α− λmin

β + λmin

· β − µmin

α + µmin

(3.2)

and
λmin = λmin(A− SC), µmin = µmin(D − CS).

Proof From Lemma 2.1(1) and (4), we have

Xk+1/2 − S = (αI − (A− SC))(Xk − S)(αI + (D − CXk))−1

and
Xk+1 − S = (βI + (A−Xk+1/2C))−1(Xk+1/2 − S)(βI − (D − CS)).

Thus

S−Xk+1 = (βI+(A−Xk+1/2C))−1(αI−(A−SC))(S−Xk)(αI+(D−CXk))−1(βI−(D−CS)).

Because βI + (A− SC) ≤ βI + (A−Xk+1/2C), by Lemma 1.5, we have

(βI + (A−Xk+1/2C))−1 ≤ (βI + (A− SC))−1.

Similarly, we have
(αI + (D − CXk))−1 ≤ (αI + (D − CS))−1.

Thus

S −Xk+1 ≤ (βI + (A− SC))−1(αI − (A− SC))(S −Xk)(αI + (D − CS))−1(βI − (D − CS)).

By induction we have

S−Xk ≤ ((βI+(A−SC))−1(αI−(A−SC)))k(S−X0)((αI+(D−CS))−1(βI−(D−CS)))k.

Hence

‖S −Xk‖1/k
2

≤‖((βI + (A− SC))−1(αI − (A− SC)))k‖1/k
2 ‖(S −X0)‖1/k

2

‖((αI + (D − CS))−1(βI − (D − CS)))k‖1/k
2 .
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Take limit on both side and, note that ρ(A) = lim
k→∞

‖Ak‖1/k
2 , we have

lim sup
k→∞

‖S −Xk‖1/k
2 ≤ρ((βI + (A− SC))−1(αI − (A− SC)))

· ρ((αI + (D − CS))−1(βI − (D − CS))).

It’s easy to verify that

ρ((βI + (A− SC))−1(αI − (A− SC))) =
α− λmin

β + λmin

,

ρ((αI + (D − CS))−1(βI − (D − CS))) =
β − µmin

α + µmin

,

where λmin = λmin(A− SC) and µmin = µmin(D − CS). Hence

lim sup
k→∞

‖S −Xk‖1/k
2 ≤ ρ(α, β) =

α− λmin

β + λmin

· β − µmin

α + µmin

.

Corollary 3.1 When K in (1.2) is a nonsingular M-matrix or an irreducible singular
M-matrix with nonzero drift, for any α, β satisfy (2.2), we have ρ(α, β) < 1. In this case,
the MALI iteration method has linear convergence rate. When K is an irreducible singular
M-matrix with zero drift, for any α, β satisfy (2.2), we have ρ(α, β) = 1. In this case, the
the MALI iteration method has sub-linear convergence rate.

Proof When K is a nonsingular or an irreducible singular M-matrix with nonzero
drift, we know that A− SC and D − CS have at least one which is nonsingular by Lemma
1.9. By Lemma 1.6,

α ≥ max{aii} ≥ max{(A− SC)ii} ≥ λmin(A− SC),

β ≥ max{dii} ≥ max{(D − CS)ii} ≥ µmin(D − CS),

where (A−SC)ii is the diagonal entries of A−SC and (D−CS)ii is the diagonal entries of
D−CS. Thus ρ(α, β) < 1. In this case, the MALI iteration method has linear convergence
rate.

When K is an irreducible singular M-matrix with zero drift, we know that both A−SC

and D−CS are singular M-matrices by Lemma 1.9. Thus λmin(A−SC) = 0, µmin(D−CS) =
0. Hence ρ(α, β) = 1. In this case, the the MALI iteration method has sub-linear convergence
rate.

Corollary 3.2 The optimal parameters of the MALI iteration method are

αopt = max{aii}, βopt = max{djj}.

Proof It’s easy to verify that ρ(α, β) is an increasing function with respect to α, β.
Thus the minimum of ρ(α, β) is attained at α = max{aii}, β = max{djj}.

Note that, in Corollary 3.2, the optimal parameters only minimize the upper bound of
the contraction factor.
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4 Numerical Experiments

In this section we use several examples to show the feasibility of the MALI iteration
method. We compare the MALI iteration method with the ALI iteration method in [8],
Newton method in [3, 11] and present computational results in terms of the numbers of
iterations (IT), CPU time (CPU) in seconds and the residue (RES), where

RES :=
‖XCX −XD −AX + B‖∞

‖XCX‖∞ + ‖XD‖∞ + ‖AX‖∞ + ‖B‖∞ .

In our implementations all iterations are performed in MATLAB (version 2012a) on a per-
sonal computer and are terminated when the current iterate satisfies RES < 10−6 or the
number of iterations is more than 9000, which will be denoted by ’-’.

Example 1 Consider the MARE (1.1) with

D = −10En×n + 180.002In, C = 0.001En×m, B = CT , A = 0.018Im,

where Em×n is the m × n matrix with all ones and Im is the identity matrix of size m

with m = 2, n = 18. This example is from [5], where the corresponding K is an irreducible
singular M-matrix. The computational results are summarized in Table 1.

Table 1 Numerical Results of Example 1

Method IT CPU RES
Newton 3 0.002008 7.4339e-08

ALI - - -
MALI 7 0.001182 7.4289e-08

Example 2 Consider the MARE (1.1) with

D = α




3 −1
−1 4 −1

. . . . . . . . .

−1 4 −1
−1 2




, C = α




1 1

1
. . .
. . . 1

1




,

B =




1
1 1

. . . . . .

1 1




, A =




n −1 · · · −1

−1 n + 1
. . . −1

...
. . . . . . −1

−1 · · · −1 n + 1




.

This example is taken from [5], where we choose α = 2 and the corresponding K is an
irreducible singular M-matrix with µ > 0. The computational results are summarized in
Table 2 for different sizes of n.
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From the two numerical experiments, we can observe that the MALI iteration method
needs the least CPU time than the ALI iteration method and Newton method. So it is
feasible.

Table 2 Numerical Results of Example 2

n Method IT CPU RES
100 Newton 5 0.066381 3.0660e-11

ALI 283 0.497736 9.8101e-07
MALI 37 0.107517 8.5536e-07

200 Newton 5 0.529522 2.9874e-11
ALI 559 5.125106 9.9191e-07

MALI 38 0.398621 8.3592e-07
500 Newton 5 5.997137 4.4014e-11

ALI 1387 179.284168 9.9851e-07
MALI 38 3.179370 9.9365e-07

1000 Newton 5 39.657354 6.3203e-11
ALI - - -

MALI 39 21.070847 9.9365e-07

5 Conclusions

We propose a modified alternately linearized implicit iteration method (MALI) for com-
puting the the minimal nonnegative solution of MARE. Theoretical analysis and numerical
experiments show that the MALI iteration method is feasible in some cases. However, since
the MALI iteration method only has linear convergence rate in general, it will be very slowly
as compared with the SDA algorithm in [9, 15]. So, in general, the SDA algorithm will be
more preferable.
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M-矩阵代数Riccati方程的一类改进的交替线性化隐式迭代法

关晋瑞1,周芳1, ZUBAIR Ahmed 2

(1.太原师范学院数学系,山西晋中 030619)

(2.Institute of Mathematics and Computer Science, University of Sindh, Jamshoro, Pakistan)

摘要: 本文研究了M-矩阵代数Riccati方程的求解问题. 基于交替线性化隐式迭代法, 提出了一类改进

的交替线性化隐式迭代法用于计算M-矩阵代数Riccati方程的最小非负解. 在一定条件下证明了新方法的收

敛性并给出最优参数表达式. 数值实验表明, 改进的方法在一定条件下是可行的.
关键词: 代数Riccati方程; 最小非负解; M-矩阵; ALI迭代法.
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