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Abstract: For a graph G with order n, the number of positive and negative eigenvalues of G,

denoted by p(G) and n(G), respectively, are called the positive and negative inertia indices of G.

The inertia indices are closely related to the nullity of the graph, which has important applications

in chemistry，and is intensively studied, especially for molecular graphs. The main objective of this

paper is to determine the structure of graphs with small negative inertia index. By utilizing vertex

multiplications, we obtain a characterization for graphs G with n(G) ≤ 2, as well as for graphs G

with pendent vertices and with n(G) ≤ 3.
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1 Introduction

We consider finite simple graphs in this paper. Undefined concepts and notations will
follow [1], and so we write G = (V (G), E(G)) to denote a simple graph with vertex set V (G)
and edge set E(G). As in [1], for a vertex subset U ⊆ V (G), G[U ] is the subgraph of G

induced by U . For a vertex u ∈ V (G), define NG(u) = {v ∈ V (G) | v is adjacent to u in G}
to be the neighborhood of vertex u in G, and dG(u) = |NG(u)| as the degree of u in G. For
integers n, n1, · · · , nt > 0, Kn, Cn and Kn1,n2,··· ,nt

denote the complete graph on n vertices,
the n-cycle and the complete multipartite graph, respectively. If G and H are two vertex
disjoint graphs, then G ∪H denotes the disjoint union of G and H.

Throughout this paper, the vertices of a graph G are often labeled as V (G) = {v1, v2, · · · ,

vn}, where n = |V (G)|. As in [1], the adjacency matrix of G is an n × n matrix A(G) =
(aij)n×n, where aij is the number of edges joining viand vj in G. The eigenvalues λ1, λ2, λ3, · · · ,

λn of A(G) are said to be the eigenvalues of the graph G and to form the spectrum of this
graph. The number of positive, negative and zero eigenvalues in the spectrum of G are called
positive inertia index, negative inertia index and nullity of the graph G, and are denoted
by p(G), n(G) and η(G), respectively. Obviously p(G) + n(G) + η(G) = n. The rank of G,
written as r(G), is the number of nonzero eigenvalues in the spectrum of G. It follows from
the definitions that r(G) = p(G) + n(G) = n− η(G).
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In chemistry, a conjugated hydrocarbon molecule can be modeled by its molecular graph
G, where the vertices of G represent the carbon atoms, and the edges of G represent the
carbon-carbon bonds of the conjugated molecule. The nullity (as well as the rank) of a
molecular graph G has a number of important applications in chemistry. For example, it is
known [2] that η(G) = 0 is a necessary condition for the molecule represented by G to be
chemically stable. More studies on nullity or rank of graphs can be found in [3–28], among
others. To the best of our knowledge, very few studies on the positive and negative inertia
indices of graphs were conducted. In [29], Hoffman showed that a graph has exactly one
negative eigenvalue if and only if its non-isolated vertices form a complete bipartite graph.
In [30], Smith showed that a graph has exactly one positive eigenvalue if and only if its
non-isolated vertices form a complete multipartite graph. In [31], graph G is characterized
with p(G) ≥ n− 2, where n = |V (G)|. It raises the problem of characterizing graph G with
small negative inertia indices.

This motivates the current research. In this paper, we present a complete characteri-
zation for graphs G with n(G) ≤ 2, and for graphs G with both δ(G) = 1 and n(G) ≤ 3,
where δ(G) is the smallest degree of G.

This paper is organized as follows: in Section 2, preliminary lemmas will be presented.
A Characterization for graph G with n(G) ≤ 2, and for graph G with pendent vertices and
with n(G) ≤ 3 are given in Sections 3 and 4. The characterization of graph G with n(G) ≤ 2
extends the former result of Hoffman in [29].

2 Priliminaries

Lemma 2.1 Let G and H be graphs. Then

p(G ∪H) = p(G) + p(H); n(G ∪H) = n(G) + n(H).

Lemma 2.2 (see [30]) A graph G has exactly one positive eigenvalue if and only if its
non-isolated vertices form a complete multipartite graph.

Lemma 2.3 (see [9, 32]) (the Cauchy inequalities) Let A be Hermtian matrix with
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn, B be one of its principal submatrices and B have eigenvalues
µ1 ≥ · · · ≥ µm. Then the inequalities λn−m+i ≤ µi ≤ λi(i = 1, · · · ,m) hold.

Lemma 2.4 Let H be a vertex-induced subgraph of G. Then
(1) r(H) ≤ r(G), p(H) ≤ p(G) and n(H) ≤ n(G).
(2) If r(H) = r(G), then p(H) = p(G) and n(H) = n(G).
Proof Lemma 2.4 follows from Lemma 2.3 and from the inequality r(H) = p(H) +

n(H) ≤ p(G) + n(G) = r(G).
Lemma 2.5 (see [33]) Let G be a connected graph with rank k (≥ 2). Then there

exists a vertex-induced subgraph H (of G) on k vertices such that r(H) = k.
As in [1], a vertex subset I ⊆ V (G) of a graph G is an independent set (also referred as

a stable set) of G if G[I], the subgraph induced by I, is edgeless. Let m = (m1,m2, ..., mn)
be a vector of positive integers. Denote by G ◦m the graph obtained from G by replacing
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each vertex vi of G with an independent set of mi vertices v1
i , v

2
i , · · · , vmi

i and joining vs
i with

vt
j if and only if vi and vj are adjacent in G (1 ≤ s ≤ mi, 1 ≤ t ≤ mj). The resulting graph

G ◦m is said to be obtained from G by multiplication of vertices.
Let Ω be the set of some graphs, we denote by M(Ω) the class of all graphs that can

be constructed from one of the graphs in Ω by multiplication of vertices.
Lemma 2.6 (see [5, 6]) Let G and H be graphs. If G ∈ M({H}), then r(G) = r(H).

Furthermore, in this case, we have both p(G) = p(H) and n(G) = n(H).
A graph is called a basic graph if it has no isolated vertex and can not be obtained from

other graphs by multiplication of vertices. By definition, a graph with no isolated vertices
is not a basic graph if and only if it has two vertices which have same neighborhoods. By
Lemma 2.6, it suffices to study basic graphs when we investigate graph invariants such as
the rank, the positive inertia index and the negative inertia index.

Lemma 2.7 (see [19]) Let G be a graph containing a pendant vertex, and let H be the
induced subgraph of G obtained by deleting the pendant vertex together with the vertex
adjacent to it. Then p(G) = p(H) + 1 and n(G) = n(H) + 1.

HHHH

HHHH 1 2 3 4

5 6 7 8

Figure 1: the connected basic graph with r(H) = 4

Lemma 2.8 (see [5,6,8]) Let G be a connected graph. Then
(a) r(G) = 2 if and only if G ∈M({K2}),
(b) r(G) = 3 if and only if G ∈M({K3}),
(c) r(G) = 4 if and only if G ∈M(Ω1), where Ω1 = {H1,H2, · · · ,H8},
(d) r(G) = 5 if and only if G ∈M(Ω2), where Ω2 = {G1, G2, · · · , G24},

where graphs Hi (i = 1, 2, · · · , 8) are depicted in Figure 1 and graphs Gi (i = 1, 2, · · · , 24)
are depicted in Figure 2.

Lemma 2.9 (see [31]) Let G be a graph of order n, then p(G) = n − 2 if and only if
one of the following holds

(1) n = 2, G ∼= 2K1; or
(2) n = 3, G ∼= K1

⋃
K2, K1,2 or K3; or

(3) n = 4, G ∼= F1, F2 or F3; or
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(4) n = 5, G ∼= C5,
where graphs Fi(i = 1, 2, 3) are depicted in Figure 3.
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Figure 2: the connected basic graph with r(G) = 5

3 Characterization of Graphs G with n(G) ≤ 2

The following lemmas will be needed in our characterization.

Lemma 3.1 (see [29]) A graph has exactly one negative eigenvalue if and only if its
non-isolated vertices form a complete bipartite graph. In other words, if G is a connected
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Figure 3: The graph G with four vertices and p(G) = 2

graph, then n(G) = 1 if and only if G ∈M({K2}).
Lemma 3.2 Let G be a connected graph. Then n(G) = 2 if and only if G ∈ M(Ω3),

where Ω3 = {K3, C5,H1,H2, · · · ,H7}, and the graphs Hi (i = 1, 2, · · · , 7) are defined in
Figure 1.

Proof It is routine to verify that n(G) = 2 for G ∈ {K3, C5} ∪ {Hi|1 ≤ i ≤ 7}. Thus
the sufficiency follows from Lemma 2.6.

To prove the necessity, we note that r(G) > n(G) = 2. If r(G) = 3, then by Lemma
2.8 (b), G ∈ M({K3}). If r(G) = 4, then by Lemma 2.8 (c), G ∈ M({H1,H2, · · · ,H8}).
However, as direct computation yields n(H8) = 3, we must have G ∈M({H1,H2, · · · ,H7}).

If r(G) = 5, then by Lemma 2.8 (d), G ∈ M({G1, G2, · · · , G24}). Direct computation
yields n(G2) = 4. To determine the values of the other n(Gi)’s, we utilize Table 1 of [9] to
find n(Gi) = 3, 3 ≤ i ≤ 8. By deleting the vertices which be marked ∗ in graphs depicted
in Figure 2, we observe that each Gi, 9 ≤ i ≤ 18, has a vertex-induced subgraph isomorphic
to G4, that each of G19, G20 and G21 has a vertex-induced subgraph isomorphic to G5, that
each of G22 and G23 has a vertex-induced subgraph isomorphic to G6, and that G24 has a
vertex-induced subgraph isomorphic to G7. It follows by Lemma 2.4 (2) that n(Gi) = 3,
9 ≤ i ≤ 24. Hence in this case, G ∈M({G1}) = M({C5}).

If r(G) = k ≥ 6, then by Lemma 2.5, there exists a vertex-induced subgraph H (of G)
on k vertices such that r(H) = k. Furthermore, by Lemma 2.4(2), we have n(H) = 2 and
p(H) = k − 2. However, there does not exist such a graph H by Lemma 2.9. This means
that there does not exist graph G with r(G) = k ≥ 6 and n(G) = 2.

 C H H5 6 7

Figure 4: basic extremal graphs with respect to n(G) = 2.

A graph G is called basic extremal graph with respect to n(G) = 2, if G is a basic graph
with n(G) = 2, and G is not a proper vertex-induced subgraph of any other basic graphs H

with n(H) = 2. By definition, since K3 is a proper vertex-induced subgraph of H6, hence K3

is not a basic extremal graph with respect to n(G) = 2, the same graphs Hi (i = 1, 2, 3, 4, 5)
are not basic extremal graph with respect to n(G) = 2. However, it is routine to verify that
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the graphs G in Figure 4 are basic extremal graphs with respect to n(G) = 2.
Theorem 3.1 now follows from Lemma 3.1 and Lemma 3.2.
Theorem 3.1 Let G be a graph. Then n(G) ≤ 2 if and only if G ∈M(Ω4), where Ω4

is the set of all vertex-induced subgraph of each graph in Θ1 = {C5∪K1,H6∪K1,H7∪K1},
and C5,H6,H7 are depicted in Figure 4.

4 Characterization of Graphs G with Pendent Vertices and n(G) ≤ 3

Let H be a graph with V (H) = {v1, v2, · · · , vn} and m = (m1,m2, ..., mn) be a vector
with mi = 1 or 2, (i = 1, 2, · · · , n). Then V (H) can be divided into two sets: V1 = {vi ∈
V (H) | mi = 1} and V2 = {vi ∈ V (H) | mi = 2}. Let v1

i and v2
i be the vertices in H ◦m

by multiplying the vertex vi in H when mi = 2. For a subset U ⊆ V1, we construct a graph
(H ◦m)U as follows

V ((H ◦m)U ) = {x, y} ∪ V (H ◦m),

E((H ◦m)U ) = {(x, y)} ∪ {(y, v1
i )|∀mi = 2} ∪ {(y, vi)|vi ∈ U} ∪ E(H ◦m).

By the definition, (H ◦m)U has a pendent vertex x.
Lemma 4.1 If H is a basic graph, then (H ◦m)U is also a basic graph.
Proof For any i, j ∈ {1, 2, · · · , n}, if i 6= j, as H is a basic graph, then NH(vi) 6=

NH(vj). So N(H◦m)U (vs
i ) 6= N(H◦m)U (vt

j) (1 ≤ s ≤ mi, 1 ≤ t ≤ mj). If i = j and mi = 2,
by the construction of the graph (H ◦m)U , we have y ∈ N(H◦m)U (v1

i ) and y /∈ N(H◦m)U (v2
i );

x ∈ N(H◦m)U (y) and x /∈ N(H◦m)U (v) for all v(6= y) ∈ V ((H ◦m)U ); N(H◦m)U (x) = {y} and
N(H◦m)U (v) 6= {y} for all v(6= x) ∈ V ((H ◦m)U ) (this is because H has no isolated vertex).
In a word, any two vertices in (H ◦ m)U don’t have the same neighborhoods. Therefore,
(H ◦m)U is a basic graph. This proves the lemma.

Let Γ(H) = {((H ◦m)U |U ∈ V1,m = (m1,m2, · · · ,mn),mi = 1 or 2} be the collection
of all graphs (H ◦ m)U . For the convenience of drawing, when mi = 2, we use a hollow
circle to indicate two vertices v1

i and v2
i , which have the same neighborhoods in H ◦ m,

the vertex y is adjacent to v1
i and not adjacent to v2

i , and we use a black dot to indicate
exactly one vertex. For example, the graph (H ◦m)U is depicted in Figure 6, where H = C5,
V (H) = {v1, v2, v3, v4, v5}, m = (2, 2, 1, 1, 1) and U = {v3, v4}.

v

v
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v
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Figure 5: the graph (C5 ◦m)U where m = (2, 2, 1, 1, 1), U = {v3, v4}
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PPP1 2 3

Figure 6: The graphs P1 = (C5 ◦m1)∅, P2 = (H6 ◦m2)∅, P3 = (H7 ◦m2)∅.

Lemma 4.2 Let G be a connected graph with pendent vertices and n(G) = 3. Then
G ∈M(Ω5), where Ω5 = Γ(2K2) ∪ Γ(K3) ∪ Γ(C5) ∪

⋃7

i=1 Γ(Hi) and Hi (i = 1, 2, · · · , 7) are
depicted in Figure 1.

Proof Without loss of generality, assume that G is a basic graph. Let H be the induced
subgraph of G obtained by deleting the pendant vertex x together with the vertex y adjacent
to it. By Lemma 2.7, we have n(H) = 2. Furthermore, H does not have isolated vertices (if
not, then the G contains at least an isolated vertex or two pendant vertices all adjacent to
y, so G is not a connected graph, or G is not a basic graph, a contradiction). If the graph
H is not connected, then by Lemma 3.1, H ∈ M({2K2}). If the graph H is connected,
then by Lemma 3.2, H ∈ M({K3, C5,H1,H2, · · · ,H7}), where graphs Hi (i = 1, 2, · · · , 7)
are depicted in Figure 1. We present the proof for the case when H = K3 ◦ m, where
m = (m1,m2, · · · ,mn) be a vector of positive integers, as the proofs for other cases are
similar and will be omitted. If mi ≥ 3, then there exist s, t ∈ {1, 2, · · · ,mi} such that
NG(vs

i ) = NG(vt
i). If mi = 2, v1

i and v2
i are all adjacent to y or none is adjacent to y,

then NG(v1
i ) = NG(v2

i ). However, G is a basic graph, this is a contradiction. So mi ≤ 2,
furthermore, one and only one of the two vertices v1

i and v2
i is adjacent to y when mi = 2.

Therefore, we conclude that G ∈ Γ(2K2) ∪ Γ(K3) ∪ Γ(C5) ∪
⋃7

i=1 Γ(Hi).
For vectors m1 = (2, 2, 2, 2, 2) and m2 = (2, 2, 2, 2, 2, 2), define P1 = (C5 ◦m1)∅, P2 =

(H6 ◦m2)∅, P3 = (H7 ◦m2)∅, as depicted in Figure 6. If

G ∈ Γ(2K2) ∪ Γ(K3) ∪ Γ(C5) ∪ ∪7
i=1Γ(Hi),

it is straightforward to verity that graphs G are a vertex-induced subgraph of P1, P2, or P3.
Hence Theorem 4.1 below follows from Lemma 4.2.

Theorem 4.1 Let G be a graph with pendent vertices and n(G) ≤ 3. Then G ∈
M(Ω6), where Ω6 is the set of all vertex-induced subgraph of each graph in Θ2 = {P1 ∪
K1, P2 ∪K1, P3 ∪K1}, where Pi (i = 1, 2, 3) are depicted in Figure 6.
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具有小的负惯性指数的图

马海成 ,解承玲 ,李丹阳

(青海民族大学数学与统计学院, 青海 西宁 810007)

摘要: 设G是有n个点的图, 在G的所有特征根中, 正特征根的个数和负特征根的个数分别称为图G的

正惯性指数和负惯性指数, 分别记为p(G)和n(G). 这两个参数密切联系与图G的零度, 而图的零度是具有重

要化学应用的图参数, 特别是对分子图, 它已经被大量的研究. 这篇文章的主要目的是刻画具有小的负惯性

指数的图. 利用图的点繁殖运算, 刻画了具有n(G) ≤ 2 的所有图, 也刻画了具有n(G) ≤ 3 的带有悬挂点的

所有图.
关键词: 正惯性指数;负惯性指数;点繁殖.
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