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Abstract: In this paper, we study the problem of the monotonicity on general L,-mixed
projection bodies and general Lp-mixed centroid bodies. By using analytic inequality theory, some
monotonic inequalities of quermassintegrals and dual quermassintegrals for general L,-mixed pro-
jection bodies and general L,-mixed centroid bodies are obtained, which generalizes the problem
of the monotonicity for the form of volume on L,-projection bodies and L,-centroid bodies.
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1 Introduction

Let K™ denote the set of convex bodies (compact, convex subsets with non-empty interi-
ors) in Euclidean space R™. The set of convex bodies containing the origin in their interiors,
we write K. S denotes the set of star bodies (about the origin) in R™. The unit ball in R™
and its surface will be denoted by B and S™"~!, respectively. V(K) denotes the n-dimensional
volume of a body K and write V(B) = w,.

For K € K™, its support function, hx=h(K,-): R™ — R, is defined by (see [1, 2])

hMK,z)=max{z-y:ye€ K}, x€R"

where x - y denotes the standard inner product of x and y.
The conception of L,-centroid body was introduced by Lutwak and Zhang (see [3]). For
each compact star-shaped (about the origin) K in R™ and real p > 1, the L,-centroid body,
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I', K, of K is an origin-symmetric convex body which support function is defined by

1
hzr)pK(u):CV(K)/ |-z [P de
n,p K

1

|u-v|” pi (v)dS(v)

(1.1)

Cn,p(n +p>V(K) /Snl

for any u € S"~!, where the integration is in connection with Lebesgue measure on S"~!
and

Wn+p

C =
n,p WolnWy_1 (12)

In 2000, Lutwak, Yang and Zhang in [4] put forward the notion of L,-projection body.
For K € K} and real p > 1, the L,-projection body, IL,K, of K is an origin-symmetric
convex body whose support function is given by

) = any [ Jueol? dS,(K0) (1.3)

Sn—1
for all uw € S™~'. Here S,(K,-) is the L,-surface area measure of K,

1

S 1.4
NwnCn—2p ( )

Q. p =
and c¢,_», satisfies (1.2). At the same time, they (see [4]) proved the L,-Petty projec-
tion inequality and L,-Busemann-Petty centroid inequality. For the L,-centroid bodies and
L,-projection bodies, some scholars made a series of researches and gained several results
(see [5-15]). In particular, Wang, Lu and Leng in [12] established the following monotonic
inequalities.

Theorem 1.A Let K, L € K and p > 1. If for any Q € K, V,(K, Q) < V,(L,Q), then
V(LK) < V(II,L) with equality for p = 1 if and only if II,K and II,L are translates, for
p > 1if and only if I, K = II, L, here V,,(M, N) denotes the L,-mixed volume of M, N € K7.

Theorem 1.B Let K,L € K and p > 1. If for any @ € K, V,(K,Q) < V,(L,Q),
then V(II; K) > V(II;L) with equality if and only if II, K = II, L, here IT; M denotes the
polar of II, M.

Theorem 1.C Let K,L € 8" and p > 1. If for any Q € 8", V_,(K,Q) < V_,(L,Q),
then ) ,

VLK) V(DL
V(K) — V()
with equality for p = 1 if and only if I')K and I',L are translates, for p > 1 if and only if
I,K =T,L, here V_,(M, N) denotes the L,-dual mixed volume of M, N € S".

Theorem 1.D Let K,L € &} and p > 1. If for any Q € S7, YN/_p(K, Q) < ﬁ_p(L,Q),

then

V(I K)» o V(IyL)»
V(K) — V(L)
with equality if and only if I'; K = I', L, here I'; M denotes the polar of I', M.
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Ludwig (see [16]) introduced a function ¢, : R — [0, +00) given by @, (t) = |t| + 7t for
€ [—1,1]. Using this function, Ludwig [16] defined general L,-projection bodies as follows:

for K € K, p > 1 and 7 € [~1,1], general L,-projection body, ID K € K}, of K with
support function by
(@) = anylr) [ onluro)as, (i), (15)
Sn—l
where 9
Qp,
Qpp(T) = ( L (1.6)

1+7)P+(1—1)P’
and av, ;, satisfies (1.4). For every 7 € [~1, 1], the normalization is chosen such that IIT B = B.
Clearly, if 7 = 0, then ITK = IIYK =1L, K.

Regarding general L,-projection bodies, Wang and Wan (see [17]) studied the Shephard
type problem. Wang and Feng (see [18]) established general L,-Petty affine projection
inequality. Wang and Wang (see [19]) gave the extremums of quermassintegrals and dual
quermassintegrals for general L,-projection bodies and their polar.

Subsequently, according to definition (1.1) of L,-centroid bodies, Feng, Wang and Lu
(see [20]) imported the notion of general L,-centroid bodies. For K € S}, p > 1 and

€ [—1,1], the general L,-centroid body, 'K € K7, of K which support function is defined
by

Po(u) = L u - z)Pdz
M) = —esorgzy | ool o -
Yop(T) n+p .
=~ [ el oS o)
where
1 1.8
’Yn,p(T) mv ( . )
tap() = seapl(L+ 7P+ (1— 7))

2
and ¢, , satisfies (1.2). The normalization is chosen such that I'] B = B for every 7 € [-1,1],
and I‘gK =I,K.
From the definition of L,-projection body, Wang and Leng (see [21]) gave the following
concept of L,-mixed projection body. For each K € K, realp > landi=0,1,--- ,n—1, the
L,-mixed projection body, 1L, ; K, of K is an origin-symmetric convex body, which support

function is defined by

M () = oy / lu-v [P dS, (K, v) (1.9)

Sn—1

for any u € S"7!, the positive Borel measure S, ;(K, ) on S"! is absolutely continuous
with respect to S;(K, ), and has the Radon-Nikodym derivative

ds,.(K,-)

5K R P(K, ). (1.10)
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By definitions (1.9) and (1.3), we easily know that II, (K = II,K.

Just as the definition of the L,-mixed projection body, L,-mixed centroid body was
introduced by Wang, Leng and Lu (see [11]). If K C R"™ is compact star-shaped about the
origin, p > 1, ¢ € R, then the L,-mixed centroid body, I', ; K, of K is the origin-symmetric

convex body whose support function is given by

1

B _ v P PR (v)dS
by oac) = G [ e A @as)

for every u € S"~!. From this and definition (1.1), we have I, K =T, K.

For the studies of L,-mixed projection bodies and L,-mixed centroid bodies, Wang and
Leng [21] demonstrated the Petty projection inequality for L,-mixed projection bodies, and
then, Wang, Leng and Lu [11] obtained the forms of quermassintegrals and dual quermass-
integrals of Theorem 1.A and Theorem 1.B. Moreover, on one hand, associated with the
definition of quermassintegrals, Wang and Leng [10] extended Theorem 1.C to the quer-
massintegrals; on the other hand, Wang, Lu and Leng [13] gave the dual quermassintegrals
form for Theorem 1.D. In regard to the studies of the L,-mixed projection bodies and the
L,-mixed centroid bodies, see also [22-25].

According to definitions (1.5) and (1.9), general L,-mixed projection bodies were raised
by Wan and Wang [26]. For K € K, p>1, 7€ [-1,1] and i =0,1,--- ,n — 1, the general

L,-mixed projection bodies, II} ;K € K, whose support function is provided by

h’ﬁ; r(u) = Oén’p(T)/ o (u-v)PdS, (K, v). (1.11)
’ Sn—1
From (1.11) and (1.5), if i = 0, then I} (K =TT K.
Similar to Wan and Wang’s idea, we define general L,-mixed centroid bodies as follows:
for K € 8!, p > 1, 7 € [-1,1] and i is any real, the general L,-mixed centroid body,
'K € Ky, of K is presented by

Tn (T) n+p—1i
he, = (u- )PP dS(v), 1.12
b ) = i [ entuop was) (112)
where 7, ,(7) is the same as (1.8). Especially, if ¢ = 0, by definitions (1.12) and (1.7), we
easily get I') (K = I K.

In this article, we first extend Theorem 1.A and Theorem 1.B to quermassintegrals and
dual quermassintegrals, which can be stated as follows.

Theorem 1.1 Let K,L € K", p > 1,7 € [-1,1] and 4,5 = 0,1,--- ,n — 1. If for any
Qeky,

Wp,j(K7Q) < Wp,j(L’Q))

then
Wi(H;)jK) < Wi(H;)jL). (1.13)
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Equality holds in (1.13) for p = 1 if and only if II] ;K and II7 ;L are translates; for p > 1
if and only if II] ;K = II7 ;L. Here W, ;(M,N) (j = 0,1,---,n — 1) denotes the L,-mixed
quermassintegrals of M, N € K.

Theorem 1.2 Let K,L € KI', p>1,7€[-1,1],real i #n and j =0,1,--- ,n— 1. If
for any @ € K7,

Wy (K, Q) < W, ;(L,Q),

then for ¢ < n,

Wi(I5K) > Wi(I5L); (1.14)
forn<i<n+pori>n+p,

Wi(TTK) < Wi(IL) T L). (1.15)
Equality holds in (1.14) or (1.15) for i # n + p if and only if II] ;K =117 ;L. For i = n + p,
inequality (1.15) is identic.

Moreover, we establish the following inequalities of quermassintegrals and dual quer-
massintegrals for general L,-mixed centroid bodies, which is regarded as a generalization of
Theorem 1.C and Theorem 1.D.

Theorem 1.3 Let K, L € S)),p>1, 7€ [-1,1],real i #n and j =0,1,--- ,n— 1. If
for any Q € S,

W i(K,Q) < W_pi(L, Q)

then

P

Wj(FZ,iK)f’f" > WJ(F;,iL)i"%j
viKy —— V(@)
Equality holds in (1.16) for p = 1 if and only if I'] ;K" and T} ;L are translates, for p >
1 if and only if I'] ;K = T ;L. Here W_,;(M,N) (j # n) denotes the L,-dual mixed
quermassintegrals of M, N € S.
Theorem 1.4 Let K, L € S, p> 1,7 € [-1,1], real 4,j # n. If for any Q € S,

(1.16)

W_pJ(K, Q) S W—p,i(Lv Q)a

then

Wi (DK™ Wi i)™
VK) — V()
Equality holds in (1.17) for j # n +p if and only if I'] ;K =I'] ;L. For j = n + p, inequality
(1.17) is identic.
Obviously, taking ¢ = j = 7 = 0 in Theorems 1.1-1.4, then inequalities (1.13)—(1.17)

reduce to Theorems 1.A—-1.D, respectively.

(1.17)

This paper is organized as follows. In section 2, we provide some basic notions and

results. Section 3 gives the proofs of Theorems 1.1-1.4.

2 Basic Notions
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2.1 Radial Functions and Polar Bodies

If K is a compact star-shaped (about the origin) set in R™, then its radial function,
pr = p(K,-) : R"\ {0} — [0, +00), is defined by (see [2])

P(K,u):max{)\zo;)\.ueKL we S

If pg is positive and continuous, then K is viewed as a star body (about the origin). Two star
bodies K and L will be dilates (of one another) if px(u)/pr(u) is independent of u € S™~1.
If K is a nonempty subset of R™, then the polar set K* of K is defined by (see [1, 2])

K'={zeR":z-y<l,ye K}.

If K € K, it follows that (K*)* = K and

1 1
hgs = —, = — 2.1
K oK PK B ( )

2.2 L,-Minkowski and L,-Harmonic Radial Combinations

For K,L € K, real p > 1 and A, u > 0 (not both zero), the L,-Minkowski combination
(also called the Firey L,-combination), A\ - K +, - L € K, of K and L is defined by (see
27))

WO K 1+ Ly = MK, P+ (L, ),

where the operation A - K denotes Firey scalar multiplication. Obviously, Firey scalar mul-
tiplication and usual scalar multiplication are related by A - K = A K.

For K,L € 8}, p > 1, \,u > 0 (not both zero), the L,-harmonic radial combination,
AxK+_, pxL eS8}, of K and L is defined by (see [28])

pA* K +_p px L,)7P = Mp(K, )P + pp(L, )77,

Here A x K denotes L,-harmonic radial scalar multiplication, and we can see Ax K = AP K.
Note that for convex bodies, the L,-harmonic radial combination was investigated by Firey
(see [29]).

2.3 Quermassintegrals and L,-Mixed Quermassintegrals

If K € K", the quermassintegrals W;(K) (i =0,1,--- ,n — 1) of K are defined by (see
1, 2])

1
W) =+ [ hactu)dsi () (2.2
n Sn—1
where S;(K,-) (i=0,1,--- ,n— 1) is the mixed surface area measure of K € K", So(K,-) is

the surface area measure of K. In particular, we easily see that

Wo(K) = V(K). (2.3)
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In [30], Lutwak defined the L,-mixed quermassintegrals and showed that for K, L € K7,
p>1landi=0,1,---,n—1, the L,-mixed quermassintegrals W), ;(K, L) has the following

integral representation

1
W, (K, L) = © / W2 (w)dS, (K, ). (2.4)
Snfl

n

Here S, (K, ) (i = 0,1,--- ,n — 1) satisfies (1.10). The case i = 0, S, (k) is just the
L,-surface area measure S,(K,-) of K € K.
From (2.2), (2.4) and (1.10), it follows immediately that for each K € K2 and p > 1,

Wi (K, K) = Wi(K). (2.5)

For the L,-mixed quermassintegrals W, ;(K, L), Lutwak [30] established the following
Minkowski inequality
Theorem 2.A If K, L €K} p>1land¢=0,1,---,n—1, then

W, (K, L) > Wi(K) "= Wi(L)== (2.6)

with equality for p = 1 if and only if K and L are homothetic, for p > 1 if and only if K

and L are dilates.
2.4 Dual Quermassintegrals and L,-Dual Mixed Quermassintegrals

For K € S and real i, the dual quermassintegrals, %(K ), of K are defined by (see
31])

Wi(K) = % /S ) dS (). 2.7)
Obviously,
Wo(K) = % /S Pl S () = V() (2.8)

In 2005, Wang and Leng [32] introduced the L,-dual mixed quermassintegrals as follows:
for K,L € 8", p > 1 and real i # n, the L,-dual mixed quermassintegrals, W_,, ;(K, L), of
K and L are given by

Wyl = [ i () o). (2.9)

n

From formula (2.9) and definition (2.7), we get
W_,:(K,K) = W;(K). (2.10)
For the L,-dual mixed quermassintegrals, Wang and Leng (see [32]) proved the following
Minkowski inequality.
Theorem 2.B If K, L €S8, p>1,real i #n,thenfori <norn<i<n+p,

ntp—i p

W_,:(K,L) > W;(K) =5 Wy(L) "5 (2.11)
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for ¢ > n + p,

+p—

W_,(K, L) < Wi(K) "7 W,(L)" . (2.12)

Equality holds in each inequality if and only if K and L are dilates.

3 Proofs of Theorems

In this section, we prove Theorems 1.1-1.4. First, the following lemmas are necessary.
Lemma3.1 If K, Le K", p>1,7€[-1,1]and 4,5 =0,1,--- ;n— 1, then

Wi (KT L) = W, 5 (L, 1017 K). (3.1)
Proof According to definitions (2.4) and (1.11), and using Fubini theorem, we get

1
Wyl I, = o [ WL LwPds, (.0
Sn—1

1
_ L / 1 () / or (- 0)PdS, 5 (L, 0)dS, (K. )
Sn—l Sn—l

n
1
! / Gt p(7) / or (- 0P S, (K, u)dS, (L)
n gn—1 gn—1
1 T
= /Snl h(Hp’Z-K, v)PdS, ;(L,v)
= W, (L, 117, K).

Lemma3.2 f K e K, p>1,7€[-1,1],real i #n and j = 0,1,--- ,n — 1, then for

any M € S§”,
2wy,

V(M)

Proof From definitions (2.4), (2.9) and (1.12), and using nc,—2, = (n+p)c, p, we have

W, (K,T7 M) =

b p, 3

T W-pa (M I K). (3.2)

W, (K, ) = - / W (V). (K. v)

)y n 571
_ %p / / (u - o) (W) dS (u)dS, 5 (K, )
Sn 1 STL 1

— 2('07" n+p—i —p w u
 nV(M )/Sn 1pM (u )pn;]*.l{( )dS(u)

2wy 5 T, %
= ——W_,,(MII"K).
V( ) b, ( P,J )

Lemma 3.3 If K,L € S, p>1, 7 € [—1,1] and reals i,j # n, then

L 2 ’ PJ

V(K) V(L)

W_, (K, T7L) W—p (L, T K) (3.3)
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Proof Due to considerations (2.9), (1.12), (2.1) and Fubini theorem, we obtain

Wy (K.T37L)

) D,

V(K)

1 n+p—j —p
nVl(K)/ - P?ﬁp J( )hlg;iL(U)dS(u)

i B " (u w-v)P PP (0)dS (v)dS (u
WV (K)WV(L) Jgur % ( )/S @r(u-v)Ppp ™" (v)dS (v)dS (u)
(7)

__ np\T) ntp—i(, w-v)Pp P (y u v
Ao [ AT [ et opa st

! n+p—1 p
nV(L) /S‘n.l PL (U)hF;’jK(U)dS(U)

= 1 n+p—1 —p

“nV(L) /S e (0)ppr  (v)dS(v)
WL TIK)

vE

Proof of Theorem 1.1 Since K,L € K, p > 1, j = 0,1,--- ,n — 1, and for any
Q€ Ky,

Wp,j(K9Q) < Wp,j(L?Q)) (3'4>
thus for any M € K, let Q = II7 M, where 7 € [~1,1] and i = 0,1,--- ,n — 1, then (3.4)

gives
Wi (K, TI7 M) < W, (L, 117 M), (3.5)

By (3.1), we see that (3.5) can be written as the following inequality
Wy i( ML K) < W, (M, IT L), (3.6)
Taking M =1I7 ;L in (3.6), and using (2.5) and inequality (2.6), we get

D

Wi(II7 . L) > W, (I} L, IT7 _K) > W;i(IT; ,L) =7 Wi(II}  K)7,

namely,
D

Wi(IT ;L) 75 > Wi(IT K)o, (3.7)

Notice that 0 < ¢ < n and p > 1, then inequality (3.7) can be expressed by
Wi(IT7 K) < Wi(IT; L),

this is just inequality (1.13).

According to the equality conditions of inequality (2.6), we see that equality holds in
inequality (1.13) for p = 1 if and only if II7 ;K and II7 ;L are translates, for p > 1 if and
only if I} . K =11} ; L.



No. 3 Some monotonic inequalities for general L,-mixed projection bodies - --- - 353

Proof of Theorem 1.2 For K, L € K}, p>1,7=0,1,--- ,n—1, and for any Q) € 7,
WPJ(K? Q) < Wp,j(L’ Q)’
so, let @ =17 ;M for any M € S, where 7 € [~1,1] and real i # n,n + p. We get
Wp,j<K7 F;,iM) < Wp,j(L) F;,iM)'
From (3.2), we know that
W (M, K) < W (M, T L), (3.8)

For i < mnorn < i <n+p, taking M = II7L in inequality (3.8), and using (2.10) and
inequality (2.11), we obtain that
Wi(TT5 L) > Wy (T3 L, T K)

> W(IL5 L) 55 W (I K~

that is

%

WL K) ™ < Wi(II;

(3.9)
Therefore, for i < n, inequality (3.9) has the followmg simple form

Wi (IS K) > W, (I 5 L),
this yields inequality (1.14); for n < i < n + p, inequality (3.9) shows

W(HT*K) < W(HT* ),

i.e., inequality (1.15) is obtained.
Similarly, for i > n + p, taking M =TI)7 K in (3.8), and utilizing (2.10) and inequality
(2.12), we easily obtain that

WL K) < Wy (I K 1 L)

nt+p—i

< WL K) S5 W (I L)~ 7

namely,
W(HT*K) = <W(HT*L) o=

notice that i > n + p, we get inequality (1.15).

According to equality conditions of inequalities (2.11) and (2.12), we know that for
i # n+p, equality holds in (1.14) or (1.15) if and only if T[7 K =TI 7 L, i.e., I} K =TI7 ;L.
For i = n+ p, by (3.8) and (2.9) we know that 1nequahty (1.15) stlll holds.

Proof of Theorem 1.3 For K,L € 8}, p > 1, real i # n and any Q € S, since
fW/_pyi(K,Q) < ﬁ//_m(L, @), therefore, for any M € K, 7 € [-1,1] and j = 0,1,--- ,n — 1,
let Q = II7 M, we get

W_p7i (K, H;:jM) < W—p,i(La H;:;kM)
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Together with (3.2), we obtain

V(K)W, ;(M,T} ,K) < V(L)W, ;(M,I'} ,L). (3.10)

’ TP st pyi

Taking M =17 ,L in inequality (3.10), and using (2.4) and inequality (2.6), we have

(E)Wy (T3, L, T K)

’ TP
p

()W, (T7 L) 727 W (17, K) 77

namely,
D

_ WiTp L)
Vi) C V@)

this is just inequality (1.16).

According to the condition of equality in (2.6), we know that equality holds in inequality
(1.16) for p = 1 if and only if '] ;K and I'] ;L are translates, for p > 1 if and only if
I K=T7,L.

Proof of Theorem 1.4 For K,L € S, p > 1, real ¢ # n and any @) € S”, because
W_pi(K,Q) < W_,,(L,Q), thus let Q = L) M for any M € 87, where 7 € [—1, 1] and real
j # n, then

W_pi(K,TT* M) < W_,, (L, T7" M).

YT pg YT pg
From (3.3), we get
V(KE)W_,;(M,T7K) < V(L)W_, ;(M,T7L). (3.11)

’ TPy ' pyi

For j <morn<j<mn+p, taking M = F;::L in (3.11), and together with inequality
(2.11), we have

V(L)W (T, L) = VIK)W (T L, T K)

N

>V
>V o ntp—j =7 -2

(E)YW;(T5 L) = Wi(T )™,

ie.,

W (D) K) " S Wi (Tp L)
VK) = V()

This is inequality (1.17).
For j >n+p,let M =T 7K in (3.11), and together with inequality (2.12), we have

VE)W; (I K) < V(L)W_, 5 (DK T L)

— ntp—j o~

< V(L)W,(T K) 55 W (Ui L),

namely,
Wi (T )™ Wi(TpiL)™s
viK)y = V@)
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this yields inequality (1.17).
According to equality conditions of inequalities (2.11) and (2.12), we see that for j #
n+p, equality holds in (1.17) if and only if T} 7K =T 7L, i.e., I} ;K =T} L. For j = n+p,

by (3.11) and (2.9), we see that inequality (1.17) is still true.
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