SOME MONOTONIC INEQUALITIES FOR GENERAL L_{p}－MIXED PROJECTION BODIES AND GENERAL L_{p}－MIXED CENTROID BODIES

SHI Wei ${ }^{1}$ ，WANG Wei－dong ${ }^{1,2}$
（1．Department of Mathematics，College of Science，China Three Gorges University， Yichang 443002，China）
（2．Three Gorges Mathematical Research Center，China Three Gorges University， Yichang 443002，China）

Abstract

In this paper，we study the problem of the monotonicity on general L_{p}－mixed projection bodies and general L_{p}－mixed centroid bodies．By using analytic inequality theory，some monotonic inequalities of quermassintegrals and dual quermassintegrals for general L_{p}－mixed pro－ jection bodies and general L_{p}－mixed centroid bodies are obtained，which generalizes the problem of the monotonicity for the form of volume on L_{p}－projection bodies and L_{p}－centroid bodies．

Keywords：general L_{p}－mixed projection body；general L_{p}－mixed centroid body；monotonic inequality

2010 MR Subject Classification：52A20；52A40
Document code：A Article ID：0255－7797（2019）03－0344－13

1 Introduction

Let \mathcal{K}^{n} denote the set of convex bodies（compact，convex subsets with non－empty interi－ ors）in Euclidean space \mathbb{R}^{n} ．The set of convex bodies containing the origin in their interiors， we write \mathcal{K}_{o}^{n} ． \mathcal{S}_{o}^{n} denotes the set of star bodies（about the origin）in \mathbb{R}^{n} ．The unit ball in \mathbb{R}^{n} and its surface will be denoted by B and S^{n-1} ，respectively．$V(K)$ denotes the n－dimensional volume of a body K and write $V(B)=\omega_{n}$ ．

For $K \in \mathcal{K}^{n}$ ，its support function，$h_{K}=h(K, \cdot): \mathbb{R}^{n} \rightarrow \mathbb{R}$ ，is defined by（see $[1,2]$ ）

$$
h(K, x)=\max \{x \cdot y: y \in K\}, \quad x \in \mathbb{R}^{n}
$$

where $x \cdot y$ denotes the standard inner product of x and y ．
The conception of L_{p}－centroid body was introduced by Lutwak and Zhang（see［3］）．For each compact star－shaped（about the origin）K in \mathbb{R}^{n} and real $p \geq 1$ ，the L_{p}－centroid body，

[^0]$\Gamma_{p} K$, of K is an origin-symmetric convex body which support function is defined by
\[

$$
\begin{align*}
h_{\Gamma_{p} K}^{p}(u) & =\frac{1}{c_{n, p} V(K)} \int_{K}|u \cdot x|^{p} d x \\
& =\frac{1}{c_{n, p}(n+p) V(K)} \int_{S^{n-1}}|u \cdot v|^{p} \rho_{K}^{n+p}(v) d S(v) \tag{1.1}
\end{align*}
$$
\]

for any $u \in S^{n-1}$, where the integration is in connection with Lebesgue measure on S^{n-1} and

$$
\begin{equation*}
c_{n, p}=\frac{\omega_{n+p}}{\omega_{2} \omega_{n} \omega_{p-1}} \tag{1.2}
\end{equation*}
$$

In 2000, Lutwak, Yang and Zhang in [4] put forward the notion of L_{p}-projection body. For $K \in \mathcal{K}_{o}^{n}$ and real $p \geq 1$, the L_{p}-projection body, $\Pi_{p} K$, of K is an origin-symmetric convex body whose support function is given by

$$
\begin{equation*}
h_{\Pi_{p} K}^{p}(u)=\alpha_{n, p} \int_{S^{n-1}}|u \cdot v|^{p} d S_{p}(K, v) \tag{1.3}
\end{equation*}
$$

for all $u \in S^{n-1}$. Here $S_{p}(K, \cdot)$ is the L_{p}-surface area measure of K,

$$
\begin{equation*}
\alpha_{n, p}=\frac{1}{n \omega_{n} c_{n-2, p}} \tag{1.4}
\end{equation*}
$$

and $c_{n-2, p}$ satisfies (1.2). At the same time, they (see [4]) proved the L_{p}-Petty projection inequality and L_{p}-Busemann-Petty centroid inequality. For the L_{p}-centroid bodies and L_{p}-projection bodies, some scholars made a series of researches and gained several results (see [5-15]). In particular, Wang, Lu and Leng in [12] established the following monotonic inequalities.

Theorem 1.A Let $K, L \in \mathcal{K}_{o}^{n}$ and $p \geq 1$. If for any $Q \in \mathcal{K}_{o}^{n}, V_{p}(K, Q) \leq V_{p}(L, Q)$, then $V\left(\Pi_{p} K\right) \leq V\left(\Pi_{p} L\right)$ with equality for $p=1$ if and only if $\Pi_{p} K$ and $\Pi_{p} L$ are translates, for $p>1$ if and only if $\Pi_{p} K=\Pi_{p} L$, here $V_{p}(M, N)$ denotes the L_{p}-mixed volume of $M, N \in \mathcal{K}_{o}^{n}$.

Theorem 1.B Let $K, L \in \mathcal{K}_{o}^{n}$ and $p \geq 1$. If for any $Q \in \mathcal{K}_{o}^{n}, V_{p}(K, Q) \leq V_{p}(L, Q)$, then $V\left(\Pi_{p}^{*} K\right) \geq V\left(\Pi_{p}^{*} L\right)$ with equality if and only if $\Pi_{p} K=\Pi_{p} L$, here $\Pi_{p}^{*} M$ denotes the polar of $\Pi_{p} M$.

Theorem 1.C Let $K, L \in \mathcal{S}_{o}^{n}$ and $p \geq 1$. If for any $Q \in \mathcal{S}_{o}^{n}, \widetilde{V}_{-p}(K, Q) \leq \widetilde{V}_{-p}(L, Q)$, then

$$
\frac{V\left(\Gamma_{p} K\right)^{-\frac{p}{n}}}{V(K)} \geq \frac{V\left(\Gamma_{p} L\right)^{-\frac{p}{n}}}{V(L)}
$$

with equality for $p=1$ if and only if $\Gamma_{p} K$ and $\Gamma_{p} L$ are translates, for $p>1$ if and only if $\Gamma_{p} K=\Gamma_{p} L$, here $\widetilde{V}_{-p}(M, N)$ denotes the L_{p}-dual mixed volume of $M, N \in \mathcal{S}_{o}^{n}$.

Theorem 1.D Let $K, L \in \mathcal{S}_{o}^{n}$ and $p \geq 1$. If for any $Q \in \mathcal{S}_{o}^{n}, \widetilde{V}_{-p}(K, Q) \leq \widetilde{V}_{-p}(L, Q)$, then

$$
\frac{V\left(\Gamma_{p}^{*} K\right)^{\frac{p}{n}}}{V(K)} \geq \frac{V\left(\Gamma_{p}^{*} L\right)^{\frac{p}{n}}}{V(L)}
$$

with equality if and only if $\Gamma_{p} K=\Gamma_{p} L$, here $\Gamma_{p}^{*} M$ denotes the polar of $\Gamma_{p} M$.

Ludwig (see [16]) introduced a function $\varphi_{\tau}: \mathbb{R} \rightarrow[0,+\infty)$ given by $\varphi_{\tau}(t)=|t|+\tau t$ for $\tau \in[-1,1]$. Using this function, Ludwig [16] defined general L_{p}-projection bodies as follows: for $K \in \mathcal{K}_{o}^{n}, p \geq 1$ and $\tau \in[-1,1]$, general L_{p}-projection body, $\Pi_{p}^{\tau} K \in \mathcal{K}_{o}^{n}$, of K with support function by

$$
\begin{equation*}
h_{\Pi_{p}^{\tau} K}^{p}(u)=\alpha_{n, p}(\tau) \int_{S^{n-1}} \varphi_{\tau}(u \cdot v)^{p} d S_{p}(K, v) \tag{1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{n, p}(\tau)=\frac{2 \alpha_{n, p}}{(1+\tau)^{p}+(1-\tau)^{p}} \tag{1.6}
\end{equation*}
$$

and $\alpha_{n, p}$ satisfies (1.4). For every $\tau \in[-1,1]$, the normalization is chosen such that $\Pi_{p}^{\tau} B=B$. Clearly, if $\tau=0$, then $\Pi_{p}^{\tau} K=\Pi_{p}^{0} K=\Pi_{p} K$.

Regarding general L_{p}-projection bodies, Wang and Wan (see [17]) studied the Shephard type problem. Wang and Feng (see [18]) established general L_{p}-Petty affine projection inequality. Wang and Wang (see [19]) gave the extremums of quermassintegrals and dual quermassintegrals for general L_{p}-projection bodies and their polar.

Subsequently, according to definition (1.1) of L_{p}-centroid bodies, Feng, Wang and Lu (see [20]) imported the notion of general L_{p}-centroid bodies. For $K \in \mathcal{S}_{o}^{n}, p \geq 1$ and $\tau \in[-1,1]$, the general L_{p}-centroid body, $\Gamma_{p}^{\tau} K \in \mathcal{K}_{o}^{n}$, of K which support function is defined by

$$
\begin{align*}
h_{\Gamma_{p}^{\tau} K}^{p}(u) & =\frac{1}{c_{n, p}(\tau) V(K)} \int_{K} \varphi_{\tau}(u \cdot x)^{p} d x \tag{1.7}\\
& =\frac{\gamma_{n, p}(\tau)}{V(K)} \int_{S^{n-1}} \varphi_{\tau}(u \cdot v)^{p} \rho_{K}^{n+p}(v) d S(v),
\end{align*}
$$

where

$$
\begin{align*}
\gamma_{n, p}(\tau) & =\frac{1}{(n+p) c_{n, p}(\tau)} \tag{1.8}\\
c_{n, p}(\tau) & =\frac{1}{2} c_{n, p}\left[(1+\tau)^{p}+(1-\tau)^{p}\right]
\end{align*}
$$

and $c_{n, p}$ satisfies (1.2). The normalization is chosen such that $\Gamma_{p}^{\tau} B=B$ for every $\tau \in[-1,1]$, and $\Gamma_{p}^{0} K=\Gamma_{p} K$.

From the definition of L_{p}-projection body, Wang and Leng (see [21]) gave the following concept of L_{p}-mixed projection body. For each $K \in \mathcal{K}_{o}^{n}$, real $p \geq 1$ and $i=0,1, \cdots, n-1$, the L_{p}-mixed projection body, $\Pi_{p, i} K$, of K is an origin-symmetric convex body, which support function is defined by

$$
\begin{equation*}
h_{\Pi_{p, i} K}^{p}(u)=\alpha_{n, p} \int_{S^{n-1}}|u \cdot v|^{p} d S_{p, i}(K, v) \tag{1.9}
\end{equation*}
$$

for any $u \in S^{n-1}$, the positive Borel measure $S_{p, i}(K, \cdot)$ on S^{n-1} is absolutely continuous with respect to $S_{i}(K, \cdot)$, and has the Radon-Nikodym derivative

$$
\begin{equation*}
\frac{d S_{p, i}(K, \cdot)}{d S_{i}(K, \cdot)}=h^{1-p}(K, \cdot) \tag{1.10}
\end{equation*}
$$

By definitions (1.9) and (1.3), we easily know that $\Pi_{p, 0} K=\Pi_{p} K$.
Just as the definition of the L_{p}-mixed projection body, L_{p}-mixed centroid body was introduced by Wang, Leng and Lu (see [11]). If $K \subset \mathbb{R}^{n}$ is compact star-shaped about the origin, $p \geq 1, i \in \mathbb{R}$, then the L_{p}-mixed centroid body, $\Gamma_{p, i} K$, of K is the origin-symmetric convex body whose support function is given by

$$
h_{\Gamma_{p, i} K}^{p}(u)=\frac{1}{(n+p) c_{n, p} V(K)} \int_{S^{n-1}}|u \cdot v|^{p} \rho_{K}^{n+p-i}(v) d S(v)
$$

for every $u \in S^{n-1}$. From this and definition (1.1), we have $\Gamma_{p, 0} K=\Gamma_{p} K$.
For the studies of L_{p}-mixed projection bodies and L_{p}-mixed centroid bodies, Wang and Leng [21] demonstrated the Petty projection inequality for L_{p}-mixed projection bodies, and then, Wang, Leng and Lu [11] obtained the forms of quermassintegrals and dual quermassintegrals of Theorem 1.A and Theorem 1.B. Moreover, on one hand, associated with the definition of quermassintegrals, Wang and Leng [10] extended Theorem 1.C to the quermassintegrals; on the other hand, Wang, Lu and Leng [13] gave the dual quermassintegrals form for Theorem 1.D. In regard to the studies of the L_{p}-mixed projection bodies and the L_{p}-mixed centroid bodies, see also [22-25].

According to definitions (1.5) and (1.9), general L_{p}-mixed projection bodies were raised by Wan and Wang [26]. For $K \in \mathcal{K}_{o}^{n}, p \geq 1, \tau \in[-1,1]$ and $i=0,1, \cdots, n-1$, the general L_{p}-mixed projection bodies, $\Pi_{p, i}^{\tau} K \in \mathcal{K}_{o}^{n}$, whose support function is provided by

$$
\begin{equation*}
h_{\Pi_{p, i}^{\tau} K}^{p}(u)=\alpha_{n, p}(\tau) \int_{S^{n-1}} \varphi_{\tau}(u \cdot v)^{p} d S_{p, i}(K, v) \tag{1.11}
\end{equation*}
$$

From (1.11) and (1.5), if $i=0$, then $\Pi_{p, 0}^{\tau} K=\Pi_{p}^{\tau} K$.
Similar to Wan and Wang's idea, we define general L_{p}-mixed centroid bodies as follows: for $K \in \mathcal{S}_{o}^{n}, p \geq 1, \tau \in[-1,1]$ and i is any real, the general L_{p}-mixed centroid body, $\Gamma_{p, i}^{\tau} K \in \mathcal{K}_{o}^{n}$, of K is presented by

$$
\begin{equation*}
h_{\Gamma_{p, i}^{\tau} K}^{p}(u)=\frac{\gamma_{n, p}(\tau)}{V(K)} \int_{S^{n-1}} \varphi_{\tau}(u \cdot v)^{p} \rho_{K}^{n+p-i}(v) d S(v), \tag{1.12}
\end{equation*}
$$

where $\gamma_{n, p}(\tau)$ is the same as (1.8). Especially, if $i=0$, by definitions (1.12) and (1.7), we easily get $\Gamma_{p, 0}^{\tau} K=\Gamma_{p}^{\tau} K$.

In this article, we first extend Theorem 1.A and Theorem 1.B to quermassintegrals and dual quermassintegrals, which can be stated as follows.

Theorem 1.1 Let $K, L \in \mathcal{K}_{o}^{n}, p \geq 1, \tau \in[-1,1]$ and $i, j=0,1, \cdots, n-1$. If for any $Q \in \mathcal{K}_{o}^{n}$,

$$
W_{p, j}(K, Q) \leq W_{p, j}(L, Q)
$$

then

$$
\begin{equation*}
W_{i}\left(\Pi_{p, j}^{\tau} K\right) \leq W_{i}\left(\Pi_{p, j}^{\tau} L\right) \tag{1.13}
\end{equation*}
$$

Equality holds in (1.13) for $p=1$ if and only if $\Pi_{p, j}^{\tau} K$ and $\Pi_{p, j}^{\tau} L$ are translates; for $p>1$ if and only if $\Pi_{p, j}^{\tau} K=\Pi_{p, j}^{\tau} L$. Here $W_{p, j}(M, N)(j=0,1, \cdots, n-1)$ denotes the L_{p}-mixed quermassintegrals of $M, N \in \mathcal{K}_{o}^{n}$.

Theorem 1.2 Let $K, L \in \mathcal{K}_{o}^{n}, p \geq 1, \tau \in[-1,1]$, real $i \neq n$ and $j=0,1, \cdots, n-1$. If for any $Q \in \mathcal{K}_{o}^{n}$,

$$
W_{p, j}(K, Q) \leq W_{p, j}(L, Q)
$$

then for $i<n$,

$$
\begin{equation*}
\widetilde{W}_{i}\left(\Pi_{p, j}^{\tau, *} K\right) \geq \widetilde{W}_{i}\left(\Pi_{p, j}^{\tau, *} L\right) \tag{1.14}
\end{equation*}
$$

for $n<i<n+p$ or $i>n+p$,

$$
\begin{equation*}
\widetilde{W}_{i}\left(\Pi_{p, j}^{\tau, *} K\right) \leq \widetilde{W}_{i}\left(\Pi_{p, j}^{\tau, *} L\right) \tag{1.15}
\end{equation*}
$$

Equality holds in (1.14) or (1.15) for $i \neq n+p$ if and only if $\Pi_{p, j}^{\tau} K=\Pi_{p, j}^{\tau} L$. For $i=n+p$, inequality (1.15) is identic.

Moreover, we establish the following inequalities of quermassintegrals and dual quermassintegrals for general L_{p}-mixed centroid bodies, which is regarded as a generalization of Theorem 1.C and Theorem 1.D.

Theorem 1.3 Let $K, L \in \mathcal{S}_{o}^{n}, p \geq 1, \tau \in[-1,1]$, real $i \neq n$ and $j=0,1, \cdots, n-1$. If for any $Q \in \mathcal{S}_{o}^{n}$,

$$
\widetilde{W}_{-p, i}(K, Q) \leq \widetilde{W}_{-p, i}(L, Q)
$$

then

$$
\begin{equation*}
\frac{W_{j}\left(\Gamma_{p, i}^{\tau} K\right)^{-\frac{p}{n-j}}}{V(K)} \geq \frac{W_{j}\left(\Gamma_{p, i}^{\tau} L\right)^{-\frac{p}{n-j}}}{V(L)} . \tag{1.16}
\end{equation*}
$$

Equality holds in (1.16) for $p=1$ if and only if $\Gamma_{p, i}^{\tau} K$ and $\Gamma_{p, i}^{\tau} L$ are translates, for $p>$ 1 if and only if $\Gamma_{p, i}^{\tau} K=\Gamma_{p, i}^{\tau} L$. Here $\widetilde{W}_{-p, j}(M, N)(j \neq n)$ denotes the L_{p}-dual mixed quermassintegrals of $M, N \in \mathcal{S}_{o}^{n}$.

Theorem 1.4 Let $K, L \in \mathcal{S}_{o}^{n}, p \geq 1, \tau \in[-1,1]$, real $i, j \neq n$. If for any $Q \in \mathcal{S}_{o}^{n}$,

$$
\widetilde{W}_{-p, i}(K, Q) \leq \widetilde{W}_{-p, i}(L, Q)
$$

then

$$
\begin{equation*}
\frac{\widetilde{W}_{j}\left(\Gamma_{p, i}^{\tau, *} K\right)^{\frac{p}{n-j}}}{V(K)} \geq \frac{\widetilde{W}_{j}\left(\Gamma_{p, i}^{\tau, *} L\right)^{\frac{p}{n-j}}}{V(L)} . \tag{1.17}
\end{equation*}
$$

Equality holds in (1.17) for $j \neq n+p$ if and only if $\Gamma_{p, i}^{\tau} K=\Gamma_{p, i}^{\tau} L$. For $j=n+p$, inequality (1.17) is identic.

Obviously, taking $i=j=\tau=0$ in Theorems 1.1-1.4, then inequalities (1.13)-(1.17) reduce to Theorems 1.A-1.D, respectively.

This paper is organized as follows. In section 2, we provide some basic notions and results. Section 3 gives the proofs of Theorems 1.1-1.4.

2 Basic Notions

2.1 Radial Functions and Polar Bodies

If K is a compact star-shaped (about the origin) set in \mathbb{R}^{n}, then its radial function, $\rho_{K}=\rho(K, \cdot): \mathbb{R}^{n} \backslash\{0\} \longrightarrow[0,+\infty)$, is defined by (see [2])

$$
\rho(K, u)=\max \{\lambda \geq 0: \lambda \cdot u \in K\}, \quad u \in S^{n-1}
$$

If ρ_{K} is positive and continuous, then K is viewed as a star body (about the origin). Two star bodies K and L will be dilates (of one another) if $\rho_{K}(u) / \rho_{L}(u)$ is independent of $u \in S^{n-1}$.

If K is a nonempty subset of \mathbb{R}^{n}, then the polar set K^{*} of K is defined by (see [1, 2])

$$
K^{*}=\left\{x \in \mathbb{R}^{n}: x \cdot y \leq 1, y \in K\right\}
$$

If $K \in \mathcal{K}_{o}^{n}$, it follows that $\left(K^{*}\right)^{*}=K$ and

$$
\begin{equation*}
h_{K^{*}}=\frac{1}{\rho_{K}}, \quad \rho_{K^{*}}=\frac{1}{h_{K}} \tag{2.1}
\end{equation*}
$$

$2.2 \quad L_{p}$-Minkowski and L_{p}-Harmonic Radial Combinations

For $K, L \in \mathcal{K}_{o}^{n}$, real $p \geq 1$ and $\lambda, \mu \geq 0$ (not both zero), the L_{p}-Minkowski combination (also called the Firey L_{p}-combination), $\lambda \cdot K+{ }_{p} \mu \cdot L \in \mathcal{K}_{o}^{n}$, of K and L is defined by (see [27])

$$
h\left(\lambda \cdot K+{ }_{p} \mu \cdot L, \cdot\right)^{p}=\lambda h(K, \cdot)^{p}+\mu h(L, \cdot)^{p}
$$

where the operation $\lambda \cdot K$ denotes Firey scalar multiplication. Obviously, Firey scalar multiplication and usual scalar multiplication are related by $\lambda \cdot K=\lambda^{\frac{1}{p}} K$.

For $K, L \in \mathcal{S}_{o}^{n}, p \geq 1, \lambda, \mu \geq 0$ (not both zero), the L_{p}-harmonic radial combination, $\lambda \star K+{ }_{-p} \mu \star L \in \mathcal{S}_{o}^{n}$, of K and L is defined by (see [28])

$$
\rho\left(\lambda \star K+{ }_{-p} \mu \star L, \cdot\right)^{-p}=\lambda \rho(K, \cdot)^{-p}+\mu \rho(L, \cdot)^{-p} .
$$

Here $\lambda \star K$ denotes L_{p}-harmonic radial scalar multiplication, and we can see $\lambda \star K=\lambda^{-\frac{1}{p}} K$. Note that for convex bodies, the L_{p}-harmonic radial combination was investigated by Firey (see [29]).

2.3 Quermassintegrals and L_{p}-Mixed Quermassintegrals

If $K \in \mathcal{K}^{n}$, the quermassintegrals $W_{i}(K)(i=0,1, \cdots, n-1)$ of K are defined by (see $[1,2])$

$$
\begin{equation*}
W_{i}(K)=\frac{1}{n} \int_{S^{n-1}} h_{K}(u) d S_{i}(K, u) \tag{2.2}
\end{equation*}
$$

where $S_{i}(K, \cdot)(i=0,1, \cdots, n-1)$ is the mixed surface area measure of $K \in \mathcal{K}^{n}, S_{0}(K, \cdot)$ is the surface area measure of K. In particular, we easily see that

$$
\begin{equation*}
W_{0}(K)=V(K) \tag{2.3}
\end{equation*}
$$

In [30], Lutwak defined the L_{p}-mixed quermassintegrals and showed that for $K, L \in \mathcal{K}_{o}^{n}$, $p \geq 1$ and $i=0,1, \cdots, n-1$, the L_{p}-mixed quermassintegrals $W_{p, i}(K, L)$ has the following integral representation

$$
\begin{equation*}
W_{p, i}(K, L)=\frac{1}{n} \int_{S^{n-1}} h_{L}^{p}(u) d S_{p, i}(K, u) \tag{2.4}
\end{equation*}
$$

Here $S_{p, i}(K, \cdot)(i=0,1, \cdots, n-1)$ satisfies (1.10). The case $i=0, S_{p, 0}(K, \cdot)$ is just the L_{p}-surface area measure $S_{p}(K, \cdot)$ of $K \in \mathcal{K}_{o}^{n}$.

From (2.2), (2.4) and (1.10), it follows immediately that for each $K \in \mathcal{K}_{o}^{n}$ and $p \geq 1$,

$$
\begin{equation*}
W_{p, i}(K, K)=W_{i}(K) \tag{2.5}
\end{equation*}
$$

For the L_{p}-mixed quermassintegrals $W_{p, i}(K, L)$, Lutwak [30] established the following Minkowski inequality

Theorem 2.A If $K, L \in \mathcal{K}_{o}^{n}, p \geq 1$ and $i=0,1, \cdots, n-1$, then

$$
\begin{equation*}
W_{p, i}(K, L) \geq W_{i}(K)^{\frac{n-p-i}{n-i}} W_{i}(L)^{\frac{p}{n-i}} \tag{2.6}
\end{equation*}
$$

with equality for $p=1$ if and only if K and L are homothetic, for $p>1$ if and only if K and L are dilates.

2.4 Dual Quermassintegrals and L_{p}-Dual Mixed Quermassintegrals

For $K \in \mathcal{S}_{o}^{n}$ and real i, the dual quermassintegrals, $\widetilde{W}_{i}(K)$, of K are defined by (see [31])

$$
\begin{equation*}
\widetilde{W}_{i}(K)=\frac{1}{n} \int_{S^{n-1}} \rho(K, u)^{n-i} d S(u) \tag{2.7}
\end{equation*}
$$

Obviously,

$$
\begin{equation*}
\widetilde{W}_{0}(K)=\frac{1}{n} \int_{S^{n-1}} \rho(K, u)^{n} d S(u)=V(K) \tag{2.8}
\end{equation*}
$$

In 2005, Wang and Leng [32] introduced the L_{p}-dual mixed quermassintegrals as follows: for $K, L \in \mathcal{S}_{o}^{n}, p \geq 1$ and real $i \neq n$, the L_{p}-dual mixed quermassintegrals, $\widetilde{W}_{-p, i}(K, L)$, of K and L are given by

$$
\begin{equation*}
\widetilde{W}_{-p, i}(K, L)=\frac{1}{n} \int_{S^{n-1}} \rho_{K}^{n+p-i}(u) \rho_{L}^{-p}(u) d S(u) . \tag{2.9}
\end{equation*}
$$

From formula (2.9) and definition (2.7), we get

$$
\begin{equation*}
\widetilde{W}_{-p, i}(K, K)=\widetilde{W}_{i}(K) \tag{2.10}
\end{equation*}
$$

For the L_{p}-dual mixed quermassintegrals, Wang and Leng (see [32]) proved the following Minkowski inequality.

Theorem 2.B If $K, L \in \mathcal{S}_{o}^{n}, p \geq 1$, real $i \neq n$, then for $i<n$ or $n<i<n+p$,

$$
\begin{equation*}
\widetilde{W}_{-p, i}(K, L) \geq \widetilde{W}_{i}(K)^{\frac{n+p-i}{n-i}} \widetilde{W}_{i}(L)^{-\frac{p}{n-i}} \tag{2.11}
\end{equation*}
$$

for $i>n+p$,

$$
\begin{equation*}
\widetilde{W}_{-p, i}(K, L) \leq \widetilde{W}_{i}(K)^{\frac{n+p-i}{n-i}} \widetilde{W}_{i}(L)^{-\frac{p}{n-i}} \tag{2.12}
\end{equation*}
$$

Equality holds in each inequality if and only if K and L are dilates.

3 Proofs of Theorems

In this section, we prove Theorems 1.1-1.4. First, the following lemmas are necessary.
Lemma 3.1 If $K, L \in \mathcal{K}_{o}^{n}, p \geq 1, \tau \in[-1,1]$ and $i, j=0,1, \cdots, n-1$, then

$$
\begin{equation*}
W_{p, i}\left(K, \Pi_{p, j}^{\tau} L\right)=W_{p, j}\left(L, \Pi_{p, i}^{\tau} K\right) \tag{3.1}
\end{equation*}
$$

Proof According to definitions (2.4) and (1.11), and using Fubini theorem, we get

$$
\begin{aligned}
W_{p, i}\left(K, \Pi_{p, j}^{\tau} L\right) & =\frac{1}{n} \int_{S^{n-1}} h\left(\Pi_{p, j}^{\tau} L, u\right)^{p} d S_{p, i}(K, u) \\
& =\frac{1}{n} \int_{S^{n-1}} \alpha_{n, p}(\tau) \int_{S^{n-1}} \varphi_{\tau}(u \cdot v)^{p} d S_{p, j}(L, v) d S_{p, i}(K, u) \\
& =\frac{1}{n} \int_{S^{n-1}} \alpha_{n, p}(\tau) \int_{S^{n-1}} \varphi_{\tau}(u \cdot v)^{p} d S_{p, i}(K, u) d S_{p, j}(L, v) \\
& =\frac{1}{n} \int_{S^{n-1}} h\left(\Pi_{p, i}^{\tau} K, v\right)^{p} d S_{p, j}(L, v) \\
& =W_{p, j}\left(L, \Pi_{p, i}^{\tau} K\right)
\end{aligned}
$$

Lemma 3.2 If $K \in \mathcal{K}_{o}^{n}, p \geq 1, \tau \in[-1,1]$, real $i \neq n$ and $j=0,1, \cdots, n-1$, then for any $M \in \mathcal{S}_{o}^{n}$,

$$
\begin{equation*}
W_{p, j}\left(K, \Gamma_{p, i}^{\tau} M\right)=\frac{2 \omega_{n}}{V(M)} \widetilde{W}_{-p, i}\left(M, \Pi_{p, j}^{\tau, *} K\right) \tag{3.2}
\end{equation*}
$$

Proof From definitions (2.4), (2.9) and (1.12), and using $n c_{n-2, p}=(n+p) c_{n, p}$, we have

$$
\begin{aligned}
W_{p, j}\left(K, \Gamma_{p, i}^{\tau} M\right) & =\frac{1}{n} \int_{S^{n-1}} h_{\Gamma_{p, i}^{\tau} M}^{p}(v) d S_{p, j}(K, v) \\
& =\frac{\gamma_{n, p}(\tau)}{n V(M)} \int_{S^{n-1}} \int_{S^{n-1}} \varphi_{\tau}(u \cdot v)^{p} \rho_{M}^{n+p-i}(u) d S(u) d S_{p, j}(K, v) \\
& =\frac{2 \omega_{n}}{n V(M)} \int_{S^{n-1}} \rho_{M}^{n+p-i}(u) \rho_{\Pi_{p, j}^{\tau, *} K}^{-p}(u) d S(u) \\
& =\frac{2 \omega_{n}}{V(M)} \widetilde{W}_{-p, i}\left(M, \Pi_{p, j}^{\tau, *} K\right)
\end{aligned}
$$

Lemma 3.3 If $K, L \in \mathcal{S}_{o}^{n}, p \geq 1, \tau \in[-1,1]$ and reals $i, j \neq n$, then

$$
\begin{equation*}
\frac{\widetilde{W}_{-p, j}\left(K, \Gamma_{p, i}^{\tau, *} L\right)}{V(K)}=\frac{\widetilde{W}_{-p, i}\left(L, \Gamma_{p, j}^{\tau, *} K\right)}{V(L)} \tag{3.3}
\end{equation*}
$$

Proof Due to considerations (2.9), (1.12), (2.1) and Fubini theorem, we obtain

$$
\begin{aligned}
& \frac{\widetilde{W}_{-p, j}\left(K, \Gamma_{p, i}^{\tau, *} L\right)}{V(K)} \\
= & \frac{1}{n V(K)} \int_{S^{n-1}} \rho_{K}^{n+p-j}(u) \rho_{\Gamma_{p, i}^{r, *} L}^{-p}(u) d S(u) \\
= & \frac{1}{n V(K)} \int_{S^{n-1}} \rho_{K}^{n+p-j}(u) h_{\Gamma_{p, i}^{\tau}}^{p}(u) d S(u) \\
= & \frac{\gamma_{n, p}(\tau)}{n V(K) V(L)} \int_{S^{n-1}} \rho_{K}^{n+p-j}(u) \int_{S^{n-1}} \varphi_{\tau}(u \cdot v)^{p} \rho_{L}^{n+p-i}(v) d S(v) d S(u) \\
= & \frac{\gamma_{n, p}(\tau)}{n V(K) V(L)} \int_{S^{n-1}} \rho_{L}^{n+p-i}(v) \int_{S^{n-1}} \varphi_{\tau}(u \cdot v)^{p} \rho_{K}^{n+p-j}(u) d S(u) d S(v) \\
= & \frac{1}{n V(L)} \int_{S^{n-1}} \rho_{L}^{n+p-i}(v) h_{\Gamma_{p, j}^{\tau} K}^{p}(v) d S(v) \\
= & \frac{1}{n V(L)} \int_{S^{n-1}} \rho_{L}^{n+p-i}(v) \rho_{\Gamma_{p, j}^{\tau, *} K}^{-p}(v) d S(v) \\
= & \frac{\widetilde{W}_{-p, i}\left(L, \Gamma_{p, j}^{\tau, *} K\right)}{V(L)} .
\end{aligned}
$$

Proof of Theorem 1.1 Since $K, L \in \mathcal{K}_{o}^{n}, p \geq 1, j=0,1, \cdots, n-1$, and for any $Q \in \mathcal{K}_{o}^{n}$,

$$
\begin{equation*}
W_{p, j}(K, Q) \leq W_{p, j}(L, Q) \tag{3.4}
\end{equation*}
$$

thus for any $M \in \mathcal{K}_{o}^{n}$, let $Q=\Pi_{p, i}^{\tau} M$, where $\tau \in[-1,1]$ and $i=0,1, \cdots, n-1$, then (3.4) gives

$$
\begin{equation*}
W_{p, j}\left(K, \Pi_{p, i}^{\tau} M\right) \leq W_{p, j}\left(L, \Pi_{p, i}^{\tau} M\right) \tag{3.5}
\end{equation*}
$$

By (3.1), we see that (3.5) can be written as the following inequality

$$
\begin{equation*}
W_{p, i}\left(M, \Pi_{p, j}^{\tau} K\right) \leq W_{p, i}\left(M, \Pi_{p, j}^{\tau} L\right) . \tag{3.6}
\end{equation*}
$$

Taking $M=\Pi_{p, j}^{\tau} L$ in (3.6), and using (2.5) and inequality (2.6), we get

$$
W_{i}\left(\Pi_{p, j}^{\tau} L\right) \geq W_{p, i}\left(\Pi_{p, j}^{\tau} L, \Pi_{p, j}^{\tau} K\right) \geq W_{i}\left(\Pi_{p, j}^{\tau} L\right)^{\frac{n-p-i}{n-i}} W_{i}\left(\Pi_{p, j}^{\tau} K\right)^{\frac{p}{n-i}},
$$

namely,

$$
\begin{equation*}
W_{i}\left(\Pi_{p, j}^{\tau} L\right)^{\frac{p}{n-i}} \geq W_{i}\left(\Pi_{p, j}^{\tau} K\right)^{\frac{p}{n-i}} \tag{3.7}
\end{equation*}
$$

Notice that $0 \leq i<n$ and $p \geq 1$, then inequality (3.7) can be expressed by

$$
W_{i}\left(\Pi_{p, j}^{\tau} K\right) \leq W_{i}\left(\Pi_{p, j}^{\tau} L\right),
$$

this is just inequality (1.13).
According to the equality conditions of inequality (2.6), we see that equality holds in inequality (1.13) for $p=1$ if and only if $\Pi_{p, j}^{\tau} K$ and $\Pi_{p, j}^{\tau} L$ are translates, for $p>1$ if and only if $\Pi_{p, j}^{\tau} K=\Pi_{p, j}^{\tau} L$.

Proof of Theorem 1.2 For $K, L \in \mathcal{K}_{o}^{n}, p \geq 1, j=0,1, \cdots, n-1$, and for any $Q \in \mathcal{K}_{o}^{n}$,

$$
W_{p, j}(K, Q) \leq W_{p, j}(L, Q)
$$

so, let $Q=\Gamma_{p, i}^{\tau} M$ for any $M \in \mathcal{S}_{o}^{n}$, where $\tau \in[-1,1]$ and real $i \neq n, n+p$. We get

$$
W_{p, j}\left(K, \Gamma_{p, i}^{\tau} M\right) \leq W_{p, j}\left(L, \Gamma_{p, i}^{\tau} M\right)
$$

From (3.2), we know that

$$
\begin{equation*}
\widetilde{W}_{-p, i}\left(M, \Pi_{p, j}^{\tau, *} K\right) \leq \widetilde{W}_{-p, i}\left(M, \Pi_{p, j}^{\tau, *} L\right) \tag{3.8}
\end{equation*}
$$

For $i<n$ or $n<i<n+p$, taking $M=\Pi_{p, j}^{\tau, *} L$ in inequality (3.8), and using (2.10) and inequality (2.11), we obtain that

$$
\begin{aligned}
\widetilde{W}_{i}\left(\Pi_{p, j}^{\tau, *} L\right) & \geq \widetilde{W}_{-p, i}\left(\Pi_{p, j}^{\tau, *} L, \Pi_{p, j}^{\tau, *} K\right) \\
& \geq \widetilde{W}_{i}\left(\Pi_{p, j}^{\tau, *} L\right)^{\frac{n+p-i}{n-i}} \widetilde{W}_{i}\left(\Pi_{p, j}^{\tau, *} K\right)^{-\frac{p}{n-i}},
\end{aligned}
$$

that is

$$
\begin{equation*}
\widetilde{W}_{i}\left(\Pi_{p, j}^{\tau, *} K\right)^{-\frac{p}{n-i}} \leq \widetilde{W}_{i}\left(\Pi_{p, j}^{\tau, *} L\right)^{-\frac{p}{n-i}} . \tag{3.9}
\end{equation*}
$$

Therefore, for $i<n$, inequality (3.9) has the following simple form

$$
\widetilde{W}_{i}\left(\Pi_{p, j}^{\tau, *} K\right) \geq \widetilde{W}_{i}\left(\Pi_{p, j}^{\tau, *} L\right)
$$

this yields inequality (1.14); for $n<i<n+p$, inequality (3.9) shows

$$
\widetilde{W}_{i}\left(\Pi_{p, j}^{\tau, *} K\right) \leq \widetilde{W}_{i}\left(\Pi_{p, j}^{\tau, *} L\right)
$$

i.e., inequality (1.15) is obtained.

Similarly, for $i>n+p$, taking $M=\Pi_{p, j}^{\tau, *} K$ in (3.8), and utilizing (2.10) and inequality (2.12), we easily obtain that

$$
\begin{aligned}
\widetilde{W}_{i}\left(\Pi_{p, j}^{\tau, *} K\right) & \leq \widetilde{W}_{-p, i}\left(\Pi_{p, j}^{\tau, *} K, \Pi_{p, j}^{\tau, *} L\right) \\
& \leq \widetilde{W}_{i}\left(\Pi_{p, j}^{\tau, *} K\right)^{\frac{n+p-i}{n-i}} \widetilde{W}_{i}\left(\Pi_{p, j}^{\tau, *} L\right)^{-\frac{p}{n-i}}
\end{aligned}
$$

namely,

$$
\widetilde{W}_{i}\left(\Pi_{p, j}^{\tau, *} K\right)^{-\frac{p}{n-i}} \leq \widetilde{W}_{i}\left(\Pi_{p, j}^{\tau, *} L\right)^{-\frac{p}{n-i}}
$$

notice that $i>n+p$, we get inequality (1.15).
According to equality conditions of inequalities (2.11) and (2.12), we know that for $i \neq n+p$, equality holds in (1.14) or (1.15) if and only if $\Pi_{p, j}^{\tau, *,} K=\Pi_{p, j}^{\tau, *} L$, i.e., $\Pi_{p, j}^{\tau} K=\Pi_{p, j}^{\tau} L$. For $i=n+p$, by (3.8) and (2.9) we know that inequality (1.15) still holds.

Proof of Theorem 1.3 For $K, L \in \mathcal{S}_{o}^{n}, p \geq 1$, real $i \neq n$ and any $Q \in \mathcal{S}_{o}^{n}$, since $\widetilde{W}_{-p, i}(K, Q) \leq \widetilde{W}_{-p, i}(L, Q)$, therefore, for any $M \in \mathcal{K}_{o}^{n}, \tau \in[-1,1]$ and $j=0,1, \cdots, n-1$, let $Q=\Pi_{p, j}^{\tau, *} M$, we get

$$
\widetilde{W}_{-p, i}\left(K, \Pi_{p, j}^{\tau, *} M\right) \leq \widetilde{W}_{-p, i}\left(L, \Pi_{p, j}^{\tau, *} M\right)
$$

Together with (3.2), we obtain

$$
\begin{equation*}
V(K) W_{p, j}\left(M, \Gamma_{p, i}^{\tau} K\right) \leq V(L) W_{p, j}\left(M, \Gamma_{p, i}^{\tau} L\right) \tag{3.10}
\end{equation*}
$$

Taking $M=\Gamma_{p, i}^{\tau} L$ in inequality (3.10), and using (2.4) and inequality (2.6), we have

$$
\begin{aligned}
V(L) W_{j}\left(\Gamma_{p, i}^{\tau} L\right) & \geq V(K) W_{p, j}\left(\Gamma_{p, i}^{\tau} L, \Gamma_{p, i}^{\tau} K\right) \\
& \geq V(K) W_{j}\left(\Gamma_{p, i}^{\tau} L\right)^{\frac{n-p-j}{n-j}} W_{j}\left(\Gamma_{p, i}^{\tau} K\right)^{\frac{p}{n-j}},
\end{aligned}
$$

namely,

$$
\frac{W_{j}\left(\Gamma_{p, i}^{\tau} K\right)^{-\frac{p}{n-j}}}{V(K)} \geq \frac{W_{j}\left(\Gamma_{p, i}^{\tau} L\right)^{-\frac{p}{n-j}}}{V(L)}
$$

this is just inequality (1.16).
According to the condition of equality in (2.6), we know that equality holds in inequality (1.16) for $p=1$ if and only if $\Gamma_{p, i}^{\tau} K$ and $\Gamma_{p, i}^{\tau} L$ are translates, for $p>1$ if and only if $\Gamma_{p, i}^{\tau} K=\Gamma_{p, i}^{\tau} L$.

Proof of Theorem 1.4 For $K, L \in \mathcal{S}_{o}^{n}, p \geq 1$, real $i \neq n$ and any $Q \in \mathcal{S}_{o}^{n}$, because $\widetilde{W}_{-p, i}(K, Q) \leq \widetilde{W}_{-p, i}(L, Q)$, thus let $Q=\Gamma_{p, j}^{\tau, *} M$ for any $M \in \mathcal{S}_{o}^{n}$, where $\tau \in[-1,1]$ and real $j \neq n$, then

$$
\widetilde{W}_{-p, i}\left(K, \Gamma_{p, j}^{\tau, *} M\right) \leq \widetilde{W}_{-p, i}\left(L, \Gamma_{p, j}^{\tau, *} M\right)
$$

From (3.3), we get

$$
\begin{equation*}
V(K) \widetilde{W}_{-p, j}\left(M, \Gamma_{p, i}^{\tau, *} K\right) \leq V(L) \widetilde{W}_{-p, j}\left(M, \Gamma_{p, i}^{\tau, *} L\right) \tag{3.11}
\end{equation*}
$$

For $j<n$ or $n<j<n+p$, taking $M=\Gamma_{p, i}^{\tau, *} L$ in (3.11), and together with inequality (2.11), we have

$$
\begin{aligned}
V(L) \widetilde{W}_{j}\left(\Gamma_{p, i}^{\tau, *} L\right) & \geq V(K) \widetilde{W}_{-p, j}\left(\Gamma_{p, i}^{\tau, *} L, \Gamma_{p, i}^{\tau, *} K\right) \\
& \geq V(K) \widetilde{W}_{j}\left(\Gamma_{p, i}^{\tau, *} L\right)^{\frac{n+p-j}{n-j}} \widetilde{W}_{j}\left(\Gamma_{p, i}^{\tau, *} K\right)^{-\frac{p}{n-j}}
\end{aligned}
$$

i.e.,

$$
\frac{\widetilde{W}_{j}\left(\Gamma_{p, i}^{\tau, *} K\right)^{\frac{p}{n-j}}}{V(K)} \geq \frac{\widetilde{W}_{j}\left(\Gamma_{p, i}^{\tau, *} L\right)^{\frac{p}{n-j}}}{V(L)} .
$$

This is inequality (1.17).
For $j>n+p$, let $M=\Gamma_{p, i}^{\tau, *} K$ in (3.11), and together with inequality (2.12), we have

$$
\begin{aligned}
V(K) \widetilde{W}_{j}\left(\Gamma_{p, i}^{\tau, *} K\right) & \leq V(L) \widetilde{W}_{-p, j}\left(\Gamma_{p, i}^{\tau, *} K, \Gamma_{p, i}^{\tau, *} L\right) \\
& \leq V(L) \widetilde{W}_{j}\left(\Gamma_{p, i}^{\tau, *} K\right)^{\frac{n+p-j}{n-j}} \widetilde{W}_{j}\left(\Gamma_{p, i}^{\tau, *} L\right)^{-\frac{p}{n-j}}
\end{aligned}
$$

namely,

$$
\frac{\widetilde{W}_{j}\left(\Gamma_{p, i}^{\tau, *} K\right)^{\frac{p}{n-j}}}{V(K)} \geq \frac{\widetilde{W}_{j}\left(\Gamma_{p, i}^{\tau, *} L\right)^{\frac{p}{n-j}}}{V(L)}
$$

this yields inequality (1.17).
According to equality conditions of inequalities (2.11) and (2.12), we see that for $j \neq$ $n+p$, equality holds in (1.17) if and only if $\Gamma_{p, i}^{\tau, *} K=\Gamma_{p, i}^{\tau, *} L$, i.e., $\Gamma_{p, i}^{\tau} K=\Gamma_{p, i}^{\tau} L$. For $j=n+p$, by (3.11) and (2.9), we see that inequality (1.17) is still true.

References

[1] Gardner R J. Geometric tomography (2nd ed.) [M]. Cambridge, UK: Cambridge Univ. Press, 2006.
[2] Schneider R. Convex bodies: the Brunn-Minkowski theory (2nd ed.) [M]. Cambridge: Cambridge University Press, 2014.
[3] Lutwak E, Zhang Gaoyong. Blaschke-Santaló inequalities [J]. J. Diff. Geom., 1997, 47(1): 1-16.
[4] Lutwak E, Yang D, Zhang Gaoyong. L_{p} affine isoperimetric inequalities [J]. J. Diff. Geom., 2000, 56(1): 111-132.
[5] Wang Weidong. On reverses of the L_{p}-Busemann-Petty centroid inequality and its applications [J]. Wuhan Univ. J. Nat. Sci., 2010, 15(4): 292-296.
[6] Wang Weidong, Leng Gangsong. Inequalities relating to L_{p}-version of Petty's conjectured projection inequality [J]. Appl. Math. Mech., 2007, 28(2): 269-276.
[7] Wang Weidong, Leng Gangsong. On the monotonicity of L_{p}-centroid body [J]. J. Sys. Sci. Math. Scis., 2008, 28(2): 154-162 (in Chinese).
[8] Wang Weidong, Leng Gangsong. Some affine isoperimetric inequalities associated with L_{p}-affine surface area [J]. Houston J. Math., 2008, 34(2): 443-453.
[9] Wang Weidong, Leng Gangsong. On the L_{p}-version of the Petty's conjectured projection inequality and applications [J]. Taiwan. J. Math., 2008, 12(5): 1067-1086.
[10] Wang Weidong, Leng Gangsong. Inequalities of the quermassintegrals for the L_{p}-projection body and the L_{p}-centroid body [J]. Acta Math. Sci., 2010, 30B(1): 359-368.
[11] Wang Weidong, Leng Gangsong, Lu Fenghong. On Brunn-Minkowski inequality for the quermassintegrals and dual quermassintegrals of L_{p}-projection bodies [J]. Chinese Math. Ann., 2008, 29A(2): 209-220 (in Chinese).
[12] Wang Weidong, Lu Fenghong, Leng Gangsong. A type of monotonicity on the L_{p} centroid body and L_{p} projection body [J]. Math. Inequal. Appl., 2005, 8(4): 735-742.
[13] Wang Weidong, Lu Fenghong, Leng Gangsong. On monotonicity properties of the L_{p}-centroid bodies [J]. Math. Inequal. Appl., 2013, 16(3): 645-655.
[14] Wang Weidong, Wei Daijun, Xiang Yu. On monotony for the L_{p}-projection body [J]. Chinese Adv. Math., 2008, 37(6): 690-700 (in Chinese).
[15] Wang Weidong, Wei Daijun, Xiang Yu. On reverses of the L_{p}-Petty projection inequality [J]. Chin. Quart. J. Math., 2009, 24(4): 491-498.
[16] Ludwig M. Minkowski valuations [J]. Trans. Amer. Math. Soc., 2005, 357(10): 4191-4213.
[17] Wang Weidong, Wan Xiaoyan. Shephard type problems for general L_{p}-projection bodies [J]. Taiwan. J. Math., 2012, 16(5): 1749-1762.
[18] Wang Weidong, Feng Yibin. A general L_{p}-version of Petty's affine projection inequality [J]. Taiwan. J. Math., 2013, 17(2): 517-528.
[19] Wang Weidong, Wang Jianye. Extremum of geometric functionals involving general L_{p}-projection bodies [J]. J. Inequal. Appl., 2016, 2016: 1-16.
［20］Feng Yibin，Wang Weidong，Lu Fenghong．Some inequalities on general L_{p}－centroid bodies［J］． Math．Inequal．Appl．，2015，18（1）：39－49．
［21］Wang Weidong，Leng Gangsong．The Petty projection inequality for L_{p}－mixed projection bodies ［J］．Acta Math．Sinica（English Series），2007，23（8）：1485－1494．
［22］Feng Yibin，Wang Weidong．The Shephard type problems and monotonicity for L_{p}－mixed centroid body［J］．Indian J．Pure Appl．Math．，2014，45（3）：265－283．
［23］Liu Lijuan，Wang Wei，He Binwu．Fourier transform and L_{p}－mixed projection bodies［J］．Bull． Korean Math．Soc．，2010，47（5）：1011－1023．
［24］Ma Tongyi．On L_{p}－mixed centroid bodies and dual L_{p}－mixed centroid bodies［J］．Acta Math．Sinica （Chinese Series），2010，53（2）：301－314．
［25］Wang Weidong，Wan Xiaoyan．L_{p}－mixed projection bodies and L_{p}－mixed quermassintegrals［J］．J． Math．Inequal．，2014，8（4）：879－888．
［26］Wan Xiaoyan，Wang Weidong．Petty projection inequalities for the general L_{p}－mixed projection bodies［J］．Wuhan Univ．J．Nat．Sci．，2012，17（3）：190－194．
［27］Firey W J．p－means of convex bodies［J］．Math．Scand．，1962，10：17－24．
［28］Lutwak E．The Brunn－Minkowski－Firey theory II：affine and geominimal surface areas［J］．Adv． Math．，1996，118（2）：244－294．
［29］Firey W J．Mean cross－section measures of harmonic means of convex bodies［J］．Pacific J．Math．， 1961，11（4）：1263－1266．
［30］Lutwak E．The Brunn－Minkowski－Firey theory I：mixed volumes and the Minkowski problem［J］．J． Diff．Geom．，1993，38（1）：131－150．
［31］Lutwak E．Dual mixed volumes［J］．Pacific J．Math．，1975，58（2）：531－538．
［32］Wang Weidong，Leng Gangsong．L_{p}－dual mixed quermassintegrals［J］．Indian J．Pure Appl．Math．， 2005，36（4）：177－188．

关于广义 L_{p}－混合投影体与广义 L_{p}－混合质心体的单调不等式

> 石 伟 1, 王卫东 ${ }^{1,2}$
> (1. 三峡大学理学院数学系, 湖北 宜昌 443002)
> (2.三峡大学数学研究中心, 湖北 宜昌 443002)

摘要：本文研究了广义 L_{p}－混合投影体及广义 L_{p}－混合质心体的单调性问题．利用解析不等式，获得了广义 L_{p}－混合投影体与广义 L_{p}－混合质心体的均质积分与对偶均质积分形式的单调不等式，推广了 L_{p}－投影体及 L_{p}－质心体的体积形式的单调性。

关键词：广义 L_{p}－混合投影体；广义 L_{p}－混合质心体；单调不等式
MR（2010）主题分类号：52A20；52A40 中图分类号：O184

[^0]: ＊Received date：2018－03－28 Accepted date：2018－08－22
 Foundation item：Supported by the Natural Science Foundation of China（11371224）and Excel－ lent Foundation of Graduate Student of China Three Gorges University（2017YPY077）．

 Biography：Shi Wei（1992－），male，born at Longnan，Gansu，master，major in convex geometry and analysis．

