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Abstract: In this paper, we study the problem of the monotonicity on general Lp-mixed

projection bodies and general Lp-mixed centroid bodies. By using analytic inequality theory, some

monotonic inequalities of quermassintegrals and dual quermassintegrals for general Lp-mixed pro-

jection bodies and general Lp-mixed centroid bodies are obtained, which generalizes the problem

of the monotonicity for the form of volume on Lp-projection bodies and Lp-centroid bodies.
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1 Introduction

Let Kn denote the set of convex bodies (compact, convex subsets with non-empty interi-
ors) in Euclidean space Rn. The set of convex bodies containing the origin in their interiors,
we write Kn

o . Sn
o denotes the set of star bodies (about the origin) in Rn. The unit ball in Rn

and its surface will be denoted by B and Sn−1, respectively. V (K) denotes the n-dimensional
volume of a body K and write V (B) = ωn.

For K ∈ Kn, its support function, hK=h(K, ·): Rn → R, is defined by (see [1, 2])

h(K,x) = max{x · y : y ∈ K}, x ∈ Rn,

where x · y denotes the standard inner product of x and y.
The conception of Lp-centroid body was introduced by Lutwak and Zhang (see [3]). For

each compact star-shaped (about the origin) K in Rn and real p ≥ 1, the Lp-centroid body,
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ΓpK, of K is an origin-symmetric convex body which support function is defined by

hp
ΓpK(u) =

1
cn,pV (K)

∫

K

| u · x |p dx

=
1

cn,p(n + p)V (K)

∫

Sn−1

| u · v |p ρn+p
K (v)dS(v)

(1.1)

for any u ∈ Sn−1, where the integration is in connection with Lebesgue measure on Sn−1

and
cn,p =

ωn+p

ω2ωnωp−1

. (1.2)

In 2000, Lutwak, Yang and Zhang in [4] put forward the notion of Lp-projection body.
For K ∈ Kn

o and real p ≥ 1, the Lp-projection body, ΠpK, of K is an origin-symmetric
convex body whose support function is given by

hp
ΠpK(u) = αn,p

∫

Sn−1

| u · v |p dSp(K, v) (1.3)

for all u ∈ Sn−1. Here Sp(K, ·) is the Lp-surface area measure of K,

αn,p =
1

nωncn−2,p

, (1.4)

and cn−2,p satisfies (1.2). At the same time, they (see [4]) proved the Lp-Petty projec-
tion inequality and Lp-Busemann-Petty centroid inequality. For the Lp-centroid bodies and
Lp-projection bodies, some scholars made a series of researches and gained several results
(see [5–15]). In particular, Wang, Lu and Leng in [12] established the following monotonic
inequalities.

Theorem 1.A Let K, L ∈ Kn
o and p ≥ 1. If for any Q ∈ Kn

o , Vp(K, Q) ≤ Vp(L,Q), then
V (ΠpK) ≤ V (ΠpL) with equality for p = 1 if and only if ΠpK and ΠpL are translates, for
p > 1 if and only if ΠpK = ΠpL, here Vp(M, N) denotes the Lp-mixed volume of M, N ∈ Kn

o .
Theorem 1.B Let K,L ∈ Kn

o and p ≥ 1. If for any Q ∈ Kn
o , Vp(K, Q) ≤ Vp(L,Q),

then V (Π∗pK) ≥ V (Π∗pL) with equality if and only if ΠpK = ΠpL, here Π∗pM denotes the
polar of ΠpM .

Theorem 1.C Let K, L ∈ Sn
o and p ≥ 1. If for any Q ∈ Sn

o , Ṽ−p(K, Q) ≤ Ṽ−p(L,Q),
then

V (ΓpK)−
p
n

V (K)
≥ V (ΓpL)−

p
n

V (L)

with equality for p = 1 if and only if ΓpK and ΓpL are translates, for p > 1 if and only if
ΓpK = ΓpL, here Ṽ−p(M, N) denotes the Lp-dual mixed volume of M, N ∈ Sn

o .
Theorem 1.D Let K,L ∈ Sn

o and p ≥ 1. If for any Q ∈ Sn
o , Ṽ−p(K, Q) ≤ Ṽ−p(L,Q),

then
V (Γ∗pK)

p
n

V (K)
≥ V (Γ∗pL)

p
n

V (L)

with equality if and only if ΓpK = ΓpL, here Γ∗pM denotes the polar of ΓpM .
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Ludwig (see [16]) introduced a function ϕτ : R→ [0,+∞) given by ϕτ (t) = |t|+ τt for
τ ∈ [−1, 1]. Using this function, Ludwig [16] defined general Lp-projection bodies as follows:
for K ∈ Kn

o , p ≥ 1 and τ ∈ [−1, 1], general Lp-projection body, Πτ
pK ∈ Kn

o , of K with
support function by

hp
Πτ

pK(u) = αn,p(τ)
∫

Sn−1

ϕτ (u · v)p
dSp(K, v), (1.5)

where
αn,p(τ) =

2αn,p

(1 + τ)p + (1− τ)p
, (1.6)

and αn,p satisfies (1.4). For every τ ∈ [−1, 1], the normalization is chosen such that Πτ
pB = B.

Clearly, if τ = 0, then Πτ
pK = Π0

pK = ΠpK.
Regarding general Lp-projection bodies, Wang and Wan (see [17]) studied the Shephard

type problem. Wang and Feng (see [18]) established general Lp-Petty affine projection
inequality. Wang and Wang (see [19]) gave the extremums of quermassintegrals and dual
quermassintegrals for general Lp-projection bodies and their polar.

Subsequently, according to definition (1.1) of Lp-centroid bodies, Feng, Wang and Lu
(see [20]) imported the notion of general Lp-centroid bodies. For K ∈ Sn

o , p ≥ 1 and
τ ∈ [−1, 1], the general Lp-centroid body, Γτ

pK ∈ Kn
o , of K which support function is defined

by

hp
Γτ

pK(u) =
1

cn,p(τ)V (K)

∫

K

ϕτ (u · x)pdx

=
γn,p(τ)
V (K)

∫

Sn−1

ϕτ (u · v)pρn+p
K (v)dS(v),

(1.7)

where

γn,p(τ) =
1

(n + p)cn,p(τ)
, (1.8)

cn,p(τ) =
1
2
cn,p[(1 + τ)p + (1− τ)p],

and cn,p satisfies (1.2). The normalization is chosen such that Γτ
pB = B for every τ ∈ [−1, 1],

and Γ0
pK = ΓpK.

From the definition of Lp-projection body, Wang and Leng (see [21]) gave the following
concept of Lp-mixed projection body. For each K ∈ Kn

o , real p ≥ 1 and i = 0, 1, · · · , n−1, the
Lp-mixed projection body, Πp,iK, of K is an origin-symmetric convex body, which support
function is defined by

hp
Πp,iK

(u) = αn,p

∫

Sn−1

| u · v |p dSp,i(K, v) (1.9)

for any u ∈ Sn−1, the positive Borel measure Sp,i(K, ·) on Sn−1 is absolutely continuous
with respect to Si(K, ·), and has the Radon-Nikodym derivative

dSp,i(K, ·)
dSi(K, ·) = h1−p(K, ·). (1.10)



No. 3 Some monotonic inequalities for general Lp-mixed projection bodies · · · · · · 347

By definitions (1.9) and (1.3), we easily know that Πp,0K = ΠpK.
Just as the definition of the Lp-mixed projection body, Lp-mixed centroid body was

introduced by Wang, Leng and Lu (see [11]). If K ⊂ Rn is compact star-shaped about the
origin, p ≥ 1, i ∈ R, then the Lp-mixed centroid body, Γp,iK, of K is the origin-symmetric
convex body whose support function is given by

hp
Γp,iK

(u) =
1

(n + p)cn,pV (K)

∫

Sn−1

| u · v |p ρn+p−i
K (v)dS(v)

for every u ∈ Sn−1. From this and definition (1.1), we have Γp,0K = ΓpK.

For the studies of Lp-mixed projection bodies and Lp-mixed centroid bodies, Wang and
Leng [21] demonstrated the Petty projection inequality for Lp-mixed projection bodies, and
then, Wang, Leng and Lu [11] obtained the forms of quermassintegrals and dual quermass-
integrals of Theorem 1.A and Theorem 1.B. Moreover, on one hand, associated with the
definition of quermassintegrals, Wang and Leng [10] extended Theorem 1.C to the quer-
massintegrals; on the other hand, Wang, Lu and Leng [13] gave the dual quermassintegrals
form for Theorem 1.D. In regard to the studies of the Lp-mixed projection bodies and the
Lp-mixed centroid bodies, see also [22–25].

According to definitions (1.5) and (1.9), general Lp-mixed projection bodies were raised
by Wan and Wang [26]. For K ∈ Kn

o , p ≥ 1, τ ∈ [−1, 1] and i = 0, 1, · · · , n− 1, the general
Lp-mixed projection bodies, Πτ

p,iK ∈ Kn
o , whose support function is provided by

hp
Πτ

p,iK
(u) = αn,p(τ)

∫

Sn−1

ϕτ (u · v)pdSp,i(K, v). (1.11)

From (1.11) and (1.5), if i = 0, then Πτ
p,0K = Πτ

pK.
Similar to Wan and Wang’s idea, we define general Lp-mixed centroid bodies as follows:

for K ∈ Sn
o , p ≥ 1, τ ∈ [−1, 1] and i is any real, the general Lp-mixed centroid body,

Γτ
p,iK ∈ Kn

o , of K is presented by

hp
Γτ

p,iK
(u) =

γn,p(τ)
V (K)

∫

Sn−1

ϕτ (u · v)pρn+p−i
K (v)dS(v), (1.12)

where γn,p(τ) is the same as (1.8). Especially, if i = 0, by definitions (1.12) and (1.7), we
easily get Γτ

p,0K = Γτ
pK.

In this article, we first extend Theorem 1.A and Theorem 1.B to quermassintegrals and
dual quermassintegrals, which can be stated as follows.

Theorem 1.1 Let K,L ∈ Kn
o , p ≥ 1, τ ∈ [−1, 1] and i, j = 0, 1, · · · , n − 1. If for any

Q ∈ Kn
o ,

Wp,j(K, Q) ≤ Wp,j(L,Q),

then

Wi(Πτ
p,jK) ≤ Wi(Πτ

p,jL). (1.13)
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Equality holds in (1.13) for p = 1 if and only if Πτ
p,jK and Πτ

p,jL are translates; for p > 1
if and only if Πτ

p,jK = Πτ
p,jL. Here Wp,j(M, N) (j = 0, 1, · · · , n − 1) denotes the Lp-mixed

quermassintegrals of M, N ∈ Kn
o .

Theorem 1.2 Let K,L ∈ Kn
o , p ≥ 1, τ ∈ [−1, 1], real i 6= n and j = 0, 1, · · · , n− 1. If

for any Q ∈ Kn
o ,

Wp,j(K, Q) ≤ Wp,j(L,Q),

then for i < n,
W̃i(Π

τ,∗
p,jK) ≥ W̃i(Π

τ,∗
p,jL); (1.14)

for n < i < n + p or i > n + p,

W̃i(Π
τ,∗
p,jK) ≤ W̃i(Π

τ,∗
p,jL). (1.15)

Equality holds in (1.14) or (1.15) for i 6= n + p if and only if Πτ
p,jK = Πτ

p,jL. For i = n + p,
inequality (1.15) is identic.

Moreover, we establish the following inequalities of quermassintegrals and dual quer-
massintegrals for general Lp-mixed centroid bodies, which is regarded as a generalization of
Theorem 1.C and Theorem 1.D.

Theorem 1.3 Let K, L ∈ Sn
o , p ≥ 1, τ ∈ [−1, 1], real i 6= n and j = 0, 1, · · · , n− 1. If

for any Q ∈ Sn
o ,

W̃−p,i(K, Q) ≤ W̃−p,i(L,Q),

then
Wj(Γτ

p,iK)−
p

n−j

V (K)
≥ Wj(Γτ

p,iL)−
p

n−j

V (L)
. (1.16)

Equality holds in (1.16) for p = 1 if and only if Γτ
p,iK and Γτ

p,iL are translates, for p >

1 if and only if Γτ
p,iK = Γτ

p,iL. Here W̃−p,j(M, N) (j 6= n) denotes the Lp-dual mixed
quermassintegrals of M, N ∈ Sn

o .
Theorem 1.4 Let K, L ∈ Sn

o , p ≥ 1, τ ∈ [−1, 1], real i, j 6= n. If for any Q ∈ Sn
o ,

W̃−p,i(K, Q) ≤ W̃−p,i(L,Q),

then
W̃j(Γ

τ,∗
p,i K)

p
n−j

V (K)
≥ W̃j(Γ

τ,∗
p,i L)

p
n−j

V (L)
. (1.17)

Equality holds in (1.17) for j 6= n + p if and only if Γτ
p,iK = Γτ

p,iL. For j = n + p, inequality
(1.17) is identic.

Obviously, taking i = j = τ = 0 in Theorems 1.1–1.4, then inequalities (1.13)–(1.17)
reduce to Theorems 1.A–1.D, respectively.

This paper is organized as follows. In section 2, we provide some basic notions and
results. Section 3 gives the proofs of Theorems 1.1–1.4.

2 Basic Notions
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2.1 Radial Functions and Polar Bodies

If K is a compact star-shaped (about the origin) set in Rn, then its radial function,
ρK = ρ(K, ·) : Rn \ {0} −→ [0,+∞), is defined by (see [2])

ρ(K, u) = max{λ ≥ 0 : λ · u ∈ K}, u ∈ Sn−1.

If ρK is positive and continuous, then K is viewed as a star body (about the origin). Two star
bodies K and L will be dilates (of one another) if ρK(u)/ρL(u) is independent of u ∈ Sn−1.

If K is a nonempty subset of Rn, then the polar set K∗ of K is defined by (see [1, 2])

K∗ = {x ∈ Rn : x · y ≤ 1, y ∈ K}.

If K ∈ Kn
o , it follows that (K∗)∗ = K and

hK∗ =
1

ρK

, ρK∗ =
1

hK

. (2.1)

2.2 Lp-Minkowski and Lp-Harmonic Radial Combinations

For K, L ∈ Kn
o , real p ≥ 1 and λ, µ ≥ 0 (not both zero), the Lp-Minkowski combination

(also called the Firey Lp-combination), λ ·K +p µ · L ∈ Kn
o , of K and L is defined by (see

[27])
h(λ ·K +p µ · L, ·)p = λh(K, ·)p + µh(L, ·)p,

where the operation λ ·K denotes Firey scalar multiplication. Obviously, Firey scalar mul-
tiplication and usual scalar multiplication are related by λ ·K = λ

1
p K.

For K, L ∈ Sn
o , p ≥ 1, λ, µ ≥ 0 (not both zero), the Lp-harmonic radial combination,

λ ? K +−p µ ? L ∈ Sn
o , of K and L is defined by (see [28])

ρ(λ ? K +−p µ ? L, ·)−p = λρ(K, ·)−p + µρ(L, ·)−p.

Here λ?K denotes Lp-harmonic radial scalar multiplication, and we can see λ?K = λ−
1
p K.

Note that for convex bodies, the Lp-harmonic radial combination was investigated by Firey
(see [29]).

2.3 Quermassintegrals and Lp-Mixed Quermassintegrals

If K ∈ Kn, the quermassintegrals Wi(K) (i = 0, 1, · · · , n− 1) of K are defined by (see
[1, 2])

Wi(K) =
1
n

∫

Sn−1

hK(u)dSi(K,u), (2.2)

where Si(K, ·) (i = 0, 1, · · · , n− 1) is the mixed surface area measure of K ∈ Kn, S0(K, ·) is
the surface area measure of K. In particular, we easily see that

W0(K) = V (K). (2.3)
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In [30], Lutwak defined the Lp-mixed quermassintegrals and showed that for K,L ∈ Kn
o ,

p ≥ 1 and i = 0, 1, · · · , n − 1, the Lp-mixed quermassintegrals Wp,i(K, L) has the following
integral representation

Wp,i(K, L) =
1
n

∫

Sn−1

hp
L(u)dSp,i(K, u). (2.4)

Here Sp,i(K, ·) (i = 0, 1, · · · , n − 1) satisfies (1.10). The case i = 0, Sp,0(K, ·) is just the
Lp-surface area measure Sp(K, ·) of K ∈ Kn

o .

From (2.2), (2.4) and (1.10), it follows immediately that for each K ∈ Kn
o and p ≥ 1,

Wp,i(K, K) = Wi(K). (2.5)

For the Lp-mixed quermassintegrals Wp,i(K,L), Lutwak [30] established the following
Minkowski inequality

Theorem 2.A If K, L ∈ Kn
o , p ≥ 1 and i = 0, 1, · · · , n− 1, then

Wp,i(K,L) ≥ Wi(K)
n−p−i

n−i Wi(L)
p

n−i (2.6)

with equality for p = 1 if and only if K and L are homothetic, for p > 1 if and only if K

and L are dilates.

2.4 Dual Quermassintegrals and Lp-Dual Mixed Quermassintegrals

For K ∈ Sn
o and real i, the dual quermassintegrals, W̃i(K), of K are defined by (see

[31])

W̃i(K) =
1
n

∫

Sn−1

ρ(K,u)n−idS(u). (2.7)

Obviously,

W̃0(K) =
1
n

∫

Sn−1

ρ(K, u)ndS(u) = V (K). (2.8)

In 2005, Wang and Leng [32] introduced the Lp-dual mixed quermassintegrals as follows:
for K, L ∈ Sn

o , p ≥ 1 and real i 6= n, the Lp-dual mixed quermassintegrals, W̃−p,i(K,L), of
K and L are given by

W̃−p,i(K, L) =
1
n

∫

Sn−1

ρn+p−i
K (u)ρ−p

L (u)dS(u). (2.9)

From formula (2.9) and definition (2.7), we get

W̃−p,i(K, K) = W̃i(K). (2.10)

For the Lp-dual mixed quermassintegrals, Wang and Leng (see [32]) proved the following
Minkowski inequality.

Theorem 2.B If K, L ∈ Sn
o , p ≥ 1, real i 6= n, then for i < n or n < i < n + p,

W̃−p,i(K,L) ≥ W̃i(K)
n+p−i

n−i W̃i(L)−
p

n−i ; (2.11)
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for i > n + p,

W̃−p,i(K,L) ≤ W̃i(K)
n+p−i

n−i W̃i(L)−
p

n−i . (2.12)

Equality holds in each inequality if and only if K and L are dilates.

3 Proofs of Theorems

In this section, we prove Theorems 1.1–1.4. First, the following lemmas are necessary.

Lemma 3.1 If K, L ∈ Kn
o , p ≥ 1, τ ∈ [−1, 1] and i, j = 0, 1, · · · , n− 1, then

Wp,i(K, Πτ
p,jL) = Wp,j(L,Πτ

p,iK). (3.1)

Proof According to definitions (2.4) and (1.11), and using Fubini theorem, we get

Wp,i(K, Πτ
p,jL) =

1
n

∫

Sn−1

h(Πτ
p,jL, u)pdSp,i(K, u)

=
1
n

∫

Sn−1

αn,p(τ)
∫

Sn−1

ϕτ (u · v)pdSp,j(L, v)dSp,i(K, u)

=
1
n

∫

Sn−1

αn,p(τ)
∫

Sn−1

ϕτ (u · v)pdSp,i(K, u)dSp,j(L, v)

=
1
n

∫

Sn−1

h(Πτ
p,iK, v)pdSp,j(L, v)

= Wp,j(L,Πτ
p,iK).

Lemma 3.2 If K ∈ Kn
o , p ≥ 1, τ ∈ [−1, 1], real i 6= n and j = 0, 1, · · · , n− 1, then for

any M ∈ Sn
o ,

Wp,j(K, Γτ
p,iM) =

2ωn

V (M)
W̃−p,i(M, Πτ,∗

p,jK). (3.2)

Proof From definitions (2.4), (2.9) and (1.12), and using ncn−2,p = (n+p)cn,p, we have

Wp,j(K, Γτ
p,iM) =

1
n

∫

Sn−1

hp
Γτ

p,iM
(v)dSp,j(K, v)

=
γn,p(τ)
nV (M)

∫

Sn−1

∫

Sn−1

ϕτ (u · v)pρn+p−i
M (u)dS(u)dSp,j(K, v)

=
2ωn

nV (M)

∫

Sn−1

ρn+p−i
M (u)ρ−p

Πτ,∗
p,j K

(u)dS(u)

=
2ωn

V (M)
W̃−p,i(M, Πτ,∗

p,jK).

Lemma 3.3 If K, L ∈ Sn
o , p ≥ 1, τ ∈ [−1, 1] and reals i, j 6= n, then

W̃−p,j(K, Γτ,∗
p,i L)

V (K)
=

W̃−p,i(L,Γτ,∗
p,jK)

V (L)
. (3.3)
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Proof Due to considerations (2.9), (1.12), (2.1) and Fubini theorem, we obtain

W̃−p,j(K, Γτ,∗
p,i L)

V (K)

=
1

nV (K)

∫

Sn−1

ρn+p−j
K (u)ρ−p

Γτ,∗
p,i L

(u)dS(u)

=
1

nV (K)

∫

Sn−1

ρn+p−j
K (u)hp

Γτ
p,iL

(u)dS(u)

=
γn,p(τ)

nV (K)V (L)

∫

Sn−1

ρn+p−j
K (u)

∫

Sn−1

ϕτ (u · v)pρn+p−i
L (v)dS(v)dS(u)

=
γn,p(τ)

nV (K)V (L)

∫

Sn−1

ρn+p−i
L (v)

∫

Sn−1

ϕτ (u · v)pρn+p−j
K (u)dS(u)dS(v)

=
1

nV (L)

∫

Sn−1

ρn+p−i
L (v)hp

Γτ
p,jK(v)dS(v)

=
1

nV (L)

∫

Sn−1

ρn+p−i
L (v)ρ−p

Γτ,∗
p,j K

(v)dS(v)

=
W̃−p,i(L,Γτ,∗

p,jK)
V (L)

.

Proof of Theorem 1.1 Since K,L ∈ Kn
o , p ≥ 1, j = 0, 1, · · · , n − 1, and for any

Q ∈ Kn
o ,

Wp,j(K, Q) ≤ Wp,j(L,Q), (3.4)

thus for any M ∈ Kn
o , let Q = Πτ

p,iM , where τ ∈ [−1, 1] and i = 0, 1, · · · , n − 1, then (3.4)
gives

Wp,j(K, Πτ
p,iM) ≤ Wp,j(L,Πτ

p,iM). (3.5)

By (3.1), we see that (3.5) can be written as the following inequality

Wp,i(M, Πτ
p,jK) ≤ Wp,i(M, Πτ

p,jL). (3.6)

Taking M = Πτ
p,jL in (3.6), and using (2.5) and inequality (2.6), we get

Wi(Πτ
p,jL) ≥ Wp,i(Πτ

p,jL,Πτ
p,jK) ≥ Wi(Πτ

p,jL)
n−p−i

n−i Wi(Πτ
p,jK)

p
n−i ,

namely,
Wi(Πτ

p,jL)
p

n−i ≥ Wi(Πτ
p,jK)

p
n−i . (3.7)

Notice that 0 ≤ i < n and p ≥ 1, then inequality (3.7) can be expressed by

Wi(Πτ
p,jK) ≤ Wi(Πτ

p,jL),

this is just inequality (1.13).
According to the equality conditions of inequality (2.6), we see that equality holds in

inequality (1.13) for p = 1 if and only if Πτ
p,jK and Πτ

p,jL are translates, for p > 1 if and
only if Πτ

p,jK = Πτ
p,jL.
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Proof of Theorem 1.2 For K, L ∈ Kn
o , p ≥ 1, j = 0, 1, · · · , n−1, and for any Q ∈ Kn

o ,

Wp,j(K, Q) ≤ Wp,j(L,Q),

so, let Q = Γτ
p,iM for any M ∈ Sn

o , where τ ∈ [−1, 1] and real i 6= n, n + p. We get

Wp,j(K, Γτ
p,iM) ≤ Wp,j(L,Γτ

p,iM).

From (3.2), we know that

W̃−p,i(M, Πτ,∗
p,jK) ≤ W̃−p,i(M, Πτ,∗

p,jL). (3.8)

For i < n or n < i < n + p, taking M = Πτ,∗
p,jL in inequality (3.8), and using (2.10) and

inequality (2.11), we obtain that

W̃i(Π
τ,∗
p,jL) ≥ W̃−p,i(Π

τ,∗
p,jL,Πτ,∗

p,jK)

≥ W̃i(Π
τ,∗
p,jL)

n+p−i
n−i W̃i(Π

τ,∗
p,jK)−

p
n−i ,

that is
W̃i(Π

τ,∗
p,jK)−

p
n−i ≤ W̃i(Π

τ,∗
p,jL)−

p
n−i . (3.9)

Therefore, for i < n, inequality (3.9) has the following simple form

W̃i(Π
τ,∗
p,jK) ≥ W̃i(Π

τ,∗
p,jL),

this yields inequality (1.14); for n < i < n + p, inequality (3.9) shows

W̃i(Π
τ,∗
p,jK) ≤ W̃i(Π

τ,∗
p,jL),

i.e., inequality (1.15) is obtained.
Similarly, for i > n + p, taking M = Πτ,∗

p,jK in (3.8), and utilizing (2.10) and inequality
(2.12), we easily obtain that

W̃i(Π
τ,∗
p,jK) ≤ W̃−p,i(Π

τ,∗
p,jK, Πτ,∗

p,jL)

≤ W̃i(Π
τ,∗
p,jK)

n+p−i
n−i W̃i(Π

τ,∗
p,jL)−

p
n−i ,

namely,
W̃i(Π

τ,∗
p,jK)−

p
n−i ≤ W̃i(Π

τ,∗
p,jL)−

p
n−i ,

notice that i > n + p, we get inequality (1.15).
According to equality conditions of inequalities (2.11) and (2.12), we know that for

i 6= n+p, equality holds in (1.14) or (1.15) if and only if Πτ,∗
p,jK = Πτ,∗

p,jL, i.e., Πτ
p,jK = Πτ

p,jL.
For i = n + p, by (3.8) and (2.9) we know that inequality (1.15) still holds.

Proof of Theorem 1.3 For K, L ∈ Sn
o , p ≥ 1, real i 6= n and any Q ∈ Sn

o , since
W̃−p,i(K,Q) ≤ W̃−p,i(L,Q), therefore, for any M ∈ Kn

o , τ ∈ [−1, 1] and j = 0, 1, · · · , n− 1,
let Q = Πτ,∗

p,jM , we get

W̃−p,i(K, Πτ,∗
p,jM) ≤ W̃−p,i(L,Πτ,∗

p,jM).
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Together with (3.2), we obtain

V (K)Wp,j(M, Γτ
p,iK) ≤ V (L)Wp,j(M, Γτ

p,iL). (3.10)

Taking M = Γτ
p,iL in inequality (3.10), and using (2.4) and inequality (2.6), we have

V (L)Wj(Γτ
p,iL) ≥ V (K)Wp,j(Γτ

p,iL,Γτ
p,iK)

≥ V (K)Wj(Γτ
p,iL)

n−p−j
n−j Wj(Γτ

p,iK)
p

n−j ,

namely,
Wj(Γτ

p,iK)−
p

n−j

V (K)
≥ Wj(Γτ

p,iL)−
p

n−j

V (L)
,

this is just inequality (1.16).
According to the condition of equality in (2.6), we know that equality holds in inequality

(1.16) for p = 1 if and only if Γτ
p,iK and Γτ

p,iL are translates, for p > 1 if and only if
Γτ

p,iK = Γτ
p,iL.

Proof of Theorem 1.4 For K, L ∈ Sn
o , p ≥ 1, real i 6= n and any Q ∈ Sn

o , because
W̃−p,i(K,Q) ≤ W̃−p,i(L,Q), thus let Q = Γτ,∗

p,jM for any M ∈ Sn
o , where τ ∈ [−1, 1] and real

j 6= n, then
W̃−p,i(K, Γτ,∗

p,jM) ≤ W̃−p,i(L,Γτ,∗
p,jM).

From (3.3), we get

V (K)W̃−p,j(M, Γτ,∗
p,i K) ≤ V (L)W̃−p,j(M, Γτ,∗

p,i L). (3.11)

For j < n or n < j < n + p, taking M = Γτ,∗
p,i L in (3.11), and together with inequality

(2.11), we have

V (L)W̃j(Γ
τ,∗
p,i L) ≥ V (K)W̃−p,j(Γ

τ,∗
p,i L,Γτ,∗

p,i K)

≥ V (K)W̃j(Γ
τ,∗
p,i L)

n+p−j
n−j W̃j(Γ

τ,∗
p,i K)−

p
n−j ,

i.e.,

W̃j(Γ
τ,∗
p,i K)

p
n−j

V (K)
≥ W̃j(Γ

τ,∗
p,i L)

p
n−j

V (L)
.

This is inequality (1.17).
For j > n + p, let M = Γτ,∗

p,i K in (3.11), and together with inequality (2.12), we have

V (K)W̃j(Γ
τ,∗
p,i K) ≤ V (L)W̃−p,j(Γ

τ,∗
p,i K, Γτ,∗

p,i L)

≤ V (L)W̃j(Γ
τ,∗
p,i K)

n+p−j
n−j W̃j(Γ

τ,∗
p,i L)−

p
n−j ,

namely,
W̃j(Γ

τ,∗
p,i K)

p
n−j

V (K)
≥ W̃j(Γ

τ,∗
p,i L)

p
n−j

V (L)
,
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this yields inequality (1.17).
According to equality conditions of inequalities (2.11) and (2.12), we see that for j 6=

n+p, equality holds in (1.17) if and only if Γτ,∗
p,i K = Γτ,∗

p,i L, i.e., Γτ
p,iK = Γτ

p,iL. For j = n+p,
by (3.11) and (2.9), we see that inequality (1.17) is still true.
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关于广义Lp-混合投影体与广义Lp-混合质心体的单调不等式

石 伟1,王卫东1,2

(1.三峡大学理学院数学系, 湖北宜昌 443002)

(2.三峡大学数学研究中心, 湖北宜昌 443002)

摘要: 本文研究了广义Lp-混合投影体及广义Lp-混合质心体的单调性问题. 利用解析不等式, 获得了

广义Lp-混合投影体与广义Lp-混合质心体的均质积分与对偶均质积分形式的单调不等式, 推广了Lp-投影体

及Lp-质心体的体积形式的单调性.
关键词: 广义Lp-混合投影体; 广义Lp-混合质心体; 单调不等式
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