SOME MONOTONIC INEQUALITIES FOR GENERAL L_p -MIXED PROJECTION BODIES AND GENERAL L_p -MIXED CENTROID BODIES

SHI Wei¹, WANG Wei-dong^{1,2}

 (1.Department of Mathematics, College of Science, China Three Gorges University, Yichang 443002, China)
 (2.Three Gorges Mathematical Research Center, China Three Gorges University, Yichang 443002, China)

Abstract: In this paper, we study the problem of the monotonicity on general L_p -mixed projection bodies and general L_p -mixed centroid bodies. By using analytic inequality theory, some monotonic inequalities of quermassintegrals and dual quermassintegrals for general L_p -mixed projection bodies and general L_p -mixed centroid bodies are obtained, which generalizes the problem of the monotonicity for the form of volume on L_p -projection bodies and L_p -centroid bodies.

Keywords: general L_p -mixed projection body; general L_p -mixed centroid body; monotonic inequality

2010 MR Subject Classification: 52A20; 52A40 Document code: A Article ID: 0255-7797(2019)03-0344-13

1 Introduction

Let \mathcal{K}^n denote the set of convex bodies (compact, convex subsets with non-empty interiors) in Euclidean space \mathbb{R}^n . The set of convex bodies containing the origin in their interiors, we write \mathcal{K}_o^n . \mathcal{S}_o^n denotes the set of star bodies (about the origin) in \mathbb{R}^n . The unit ball in \mathbb{R}^n and its surface will be denoted by B and S^{n-1} , respectively. V(K) denotes the *n*-dimensional volume of a body K and write $V(B) = \omega_n$.

For $K \in \mathcal{K}^n$, its support function, $h_K = h(K, \cdot)$: $\mathbb{R}^n \to \mathbb{R}$, is defined by (see [1, 2])

$$h(K, x) = \max\{x \cdot y : y \in K\}, \quad x \in \mathbb{R}^n,$$

where $x \cdot y$ denotes the standard inner product of x and y.

The conception of L_p -centroid body was introduced by Lutwak and Zhang (see [3]). For each compact star-shaped (about the origin) K in \mathbb{R}^n and real $p \ge 1$, the L_p -centroid body,

^{*} Received date: 2018-03-28 Accepted date: 2018-08-22

Foundation item: Supported by the Natural Science Foundation of China (11371224) and Excellent Foundation of Graduate Student of China Three Gorges University (2017YPY077).

Biography: Shi Wei (1992–), male, born at Longnan, Gansu, master, major in convex geometry and analysis.

 $\Gamma_p K$, of K is an origin-symmetric convex body which support function is defined by

$$h_{\Gamma_{p}K}^{p}(u) = \frac{1}{c_{n,p}V(K)} \int_{K} |u \cdot x|^{p} dx$$

= $\frac{1}{c_{n,p}(n+p)V(K)} \int_{S^{n-1}} |u \cdot v|^{p} \rho_{K}^{n+p}(v) dS(v)$ (1.1)

for any $u \in S^{n-1}$, where the integration is in connection with Lebesgue measure on S^{n-1} and

$$c_{n,p} = \frac{\omega_{n+p}}{\omega_2 \omega_n \omega_{p-1}}.$$
(1.2)

In 2000, Lutwak, Yang and Zhang in [4] put forward the notion of L_p -projection body. For $K \in \mathcal{K}_o^n$ and real $p \geq 1$, the L_p -projection body, $\Pi_p K$, of K is an origin-symmetric convex body whose support function is given by

$$h^{p}_{\Pi_{p}K}(u) = \alpha_{n,p} \int_{S^{n-1}} | u \cdot v |^{p} dS_{p}(K, v)$$
(1.3)

for all $u \in S^{n-1}$. Here $S_p(K, \cdot)$ is the L_p -surface area measure of K,

$$\alpha_{n,p} = \frac{1}{n\omega_n c_{n-2,p}},\tag{1.4}$$

and $c_{n-2,p}$ satisfies (1.2). At the same time, they (see [4]) proved the L_p -Petty projection inequality and L_p -Busemann-Petty centroid inequality. For the L_p -centroid bodies and L_p -projection bodies, some scholars made a series of researches and gained several results (see [5–15]). In particular, Wang, Lu and Leng in [12] established the following monotonic inequalities.

Theorem 1.A Let $K, L \in \mathcal{K}_o^n$ and $p \ge 1$. If for any $Q \in \mathcal{K}_o^n$, $V_p(K, Q) \le V_p(L, Q)$, then $V(\prod_p K) \le V(\prod_p L)$ with equality for p = 1 if and only if $\prod_p K$ and $\prod_p L$ are translates, for p > 1 if and only if $\prod_p K = \prod_p L$, here $V_p(M, N)$ denotes the L_p -mixed volume of $M, N \in \mathcal{K}_o^n$.

Theorem 1.B Let $K, L \in \mathcal{K}_o^n$ and $p \ge 1$. If for any $Q \in \mathcal{K}_o^n$, $V_p(K, Q) \le V_p(L, Q)$, then $V(\Pi_p^*K) \ge V(\Pi_p^*L)$ with equality if and only if $\Pi_p K = \Pi_p L$, here $\Pi_p^* M$ denotes the polar of $\Pi_p M$.

Theorem 1.C Let $K, L \in \mathcal{S}_o^n$ and $p \ge 1$. If for any $Q \in \mathcal{S}_o^n$, $\widetilde{V}_{-p}(K, Q) \le \widetilde{V}_{-p}(L, Q)$, then

$$\frac{V(\Gamma_p K)^{-\frac{p}{n}}}{V(K)} \ge \frac{V(\Gamma_p L)^{-\frac{p}{n}}}{V(L)}$$

with equality for p = 1 if and only if $\Gamma_p K$ and $\Gamma_p L$ are translates, for p > 1 if and only if $\Gamma_p K = \Gamma_p L$, here $\widetilde{V}_{-p}(M, N)$ denotes the L_p -dual mixed volume of $M, N \in \mathcal{S}_o^n$.

Theorem 1.D Let $K, L \in \mathcal{S}_o^n$ and $p \ge 1$. If for any $Q \in \mathcal{S}_o^n$, $\widetilde{V}_{-p}(K, Q) \le \widetilde{V}_{-p}(L, Q)$, then

$$\frac{V(\Gamma_p^*K)^{\frac{p}{n}}}{V(K)} \ge \frac{V(\Gamma_p^*L)^{\frac{p}{n}}}{V(L)}$$

with equality if and only if $\Gamma_p K = \Gamma_p L$, here $\Gamma_p^* M$ denotes the polar of $\Gamma_p M$.

Ludwig (see [16]) introduced a function $\varphi_{\tau} : \mathbb{R} \to [0, +\infty)$ given by $\varphi_{\tau}(t) = |t| + \tau t$ for $\tau \in [-1, 1]$. Using this function, Ludwig [16] defined general L_p -projection bodies as follows: for $K \in \mathcal{K}_o^n$, $p \ge 1$ and $\tau \in [-1, 1]$, general L_p -projection body, $\Pi_p^{\tau} K \in \mathcal{K}_o^n$, of K with support function by

$$h^p_{\Pi^{\tau}_p K}(u) = \alpha_{n,p}(\tau) \int_{S^{n-1}} \varphi_{\tau}(u \cdot v)^p dS_p(K, v), \qquad (1.5)$$

where

$$\alpha_{n,p}(\tau) = \frac{2\alpha_{n,p}}{(1+\tau)^p + (1-\tau)^p},$$
(1.6)

and $\alpha_{n,p}$ satisfies (1.4). For every $\tau \in [-1, 1]$, the normalization is chosen such that $\Pi_p^{\tau} B = B$. Clearly, if $\tau = 0$, then $\Pi_p^{\tau} K = \Pi_p^0 K = \Pi_p K$.

Regarding general L_p -projection bodies, Wang and Wan (see [17]) studied the Shephard type problem. Wang and Feng (see [18]) established general L_p -Petty affine projection inequality. Wang and Wang (see [19]) gave the extremums of quermassintegrals and dual quermassintegrals for general L_p -projection bodies and their polar.

Subsequently, according to definition (1.1) of L_p -centroid bodies, Feng, Wang and Lu (see [20]) imported the notion of general L_p -centroid bodies. For $K \in S_o^n$, $p \ge 1$ and $\tau \in [-1, 1]$, the general L_p -centroid body, $\Gamma_p^{\tau} K \in \mathcal{K}_o^n$, of K which support function is defined by

$$h_{\Gamma_p^{\tau}K}^p(u) = \frac{1}{c_{n,p}(\tau)V(K)} \int_K \varphi_{\tau}(u \cdot x)^p dx$$

$$= \frac{\gamma_{n,p}(\tau)}{V(K)} \int_{S^{n-1}} \varphi_{\tau}(u \cdot v)^p \rho_K^{n+p}(v) dS(v),$$
 (1.7)

where

$$\gamma_{n,p}(\tau) = \frac{1}{(n+p)c_{n,p}(\tau)},$$

$$c_{n,p}(\tau) = \frac{1}{2}c_{n,p}[(1+\tau)^p + (1-\tau)^p],$$
(1.8)

and $c_{n,p}$ satisfies (1.2). The normalization is chosen such that $\Gamma_p^{\tau}B = B$ for every $\tau \in [-1, 1]$, and $\Gamma_p^0K = \Gamma_pK$.

From the definition of L_p -projection body, Wang and Leng (see [21]) gave the following concept of L_p -mixed projection body. For each $K \in \mathcal{K}_o^n$, real $p \ge 1$ and $i = 0, 1, \dots, n-1$, the L_p -mixed projection body, $\Pi_{p,i}K$, of K is an origin-symmetric convex body, which support function is defined by

$$h^{p}_{\Pi_{p,i}K}(u) = \alpha_{n,p} \int_{S^{n-1}} |u \cdot v|^{p} dS_{p,i}(K,v)$$
(1.9)

for any $u \in S^{n-1}$, the positive Borel measure $S_{p,i}(K, \cdot)$ on S^{n-1} is absolutely continuous with respect to $S_i(K, \cdot)$, and has the Radon-Nikodym derivative

$$\frac{dS_{p,i}(K,\cdot)}{dS_i(K,\cdot)} = h^{1-p}(K,\cdot).$$
(1.10)

By definitions (1.9) and (1.3), we easily know that $\Pi_{p,0}K = \Pi_p K$.

Just as the definition of the L_p -mixed projection body, L_p -mixed centroid body was introduced by Wang, Leng and Lu (see [11]). If $K \subset \mathbb{R}^n$ is compact star-shaped about the origin, $p \geq 1$, $i \in \mathbb{R}$, then the L_p -mixed centroid body, $\Gamma_{p,i}K$, of K is the origin-symmetric convex body whose support function is given by

$$h^{p}_{\Gamma_{p,i}K}(u) = \frac{1}{(n+p)c_{n,p}V(K)} \int_{S^{n-1}} | \ u \cdot v |^{p} \ \rho^{n+p-i}_{K}(v) dS(v)$$

for every $u \in S^{n-1}$. From this and definition (1.1), we have $\Gamma_{p,0}K = \Gamma_p K$.

For the studies of L_p -mixed projection bodies and L_p -mixed centroid bodies, Wang and Leng [21] demonstrated the Petty projection inequality for L_p -mixed projection bodies, and then, Wang, Leng and Lu [11] obtained the forms of quermassintegrals and dual quermassintegrals of Theorem 1.A and Theorem 1.B. Moreover, on one hand, associated with the definition of quermassintegrals, Wang and Leng [10] extended Theorem 1.C to the quermassintegrals; on the other hand, Wang, Lu and Leng [13] gave the dual quermassintegrals form for Theorem 1.D. In regard to the studies of the L_p -mixed projection bodies and the L_p -mixed centroid bodies, see also [22–25].

According to definitions (1.5) and (1.9), general L_p -mixed projection bodies were raised by Wan and Wang [26]. For $K \in \mathcal{K}_o^n$, $p \ge 1$, $\tau \in [-1, 1]$ and $i = 0, 1, \dots, n-1$, the general L_p -mixed projection bodies, $\prod_{p,i}^{\tau} K \in \mathcal{K}_o^n$, whose support function is provided by

$$h^{p}_{\Pi^{\tau}_{p,i}K}(u) = \alpha_{n,p}(\tau) \int_{S^{n-1}} \varphi_{\tau}(u \cdot v)^{p} dS_{p,i}(K,v).$$
(1.11)

From (1.11) and (1.5), if i = 0, then $\Pi_{p,0}^{\tau} K = \Pi_{p}^{\tau} K$.

Similar to Wan and Wang's idea, we define general L_p -mixed centroid bodies as follows: for $K \in \mathcal{S}_o^n$, $p \ge 1$, $\tau \in [-1,1]$ and *i* is any real, the general L_p -mixed centroid body, $\Gamma_{p,i}^{\tau} K \in \mathcal{K}_o^n$, of *K* is presented by

$$h^{p}_{\Gamma^{\tau}_{p,i}K}(u) = \frac{\gamma_{n,p}(\tau)}{V(K)} \int_{S^{n-1}} \varphi_{\tau}(u \cdot v)^{p} \rho_{K}^{n+p-i}(v) dS(v), \qquad (1.12)$$

where $\gamma_{n,p}(\tau)$ is the same as (1.8). Especially, if i = 0, by definitions (1.12) and (1.7), we easily get $\Gamma_{p,0}^{\tau}K = \Gamma_p^{\tau}K$.

In this article, we first extend Theorem 1.A and Theorem 1.B to quermassintegrals and dual quermassintegrals, which can be stated as follows.

Theorem 1.1 Let $K, L \in \mathcal{K}_o^n$, $p \ge 1$, $\tau \in [-1, 1]$ and $i, j = 0, 1, \dots, n-1$. If for any $Q \in \mathcal{K}_o^n$,

$$W_{p,j}(K,Q) \le W_{p,j}(L,Q),$$

then

$$W_i(\Pi_{p,j}^{\tau}K) \le W_i(\Pi_{p,j}^{\tau}L).$$
 (1.13)

Vol. 39

Equality holds in (1.13) for p = 1 if and only if $\prod_{p,j}^{\tau} K$ and $\prod_{p,j}^{\tau} L$ are translates; for p > 1 if and only if $\prod_{p,j}^{\tau} K = \prod_{p,j}^{\tau} L$. Here $W_{p,j}(M,N)$ $(j = 0, 1, \dots, n-1)$ denotes the L_p -mixed quermassintegrals of $M, N \in \mathcal{K}_o^n$.

Theorem 1.2 Let $K, L \in \mathcal{K}_o^n$, $p \ge 1$, $\tau \in [-1, 1]$, real $i \ne n$ and $j = 0, 1, \dots, n-1$. If for any $Q \in \mathcal{K}_o^n$,

$$W_{p,j}(K,Q) \le W_{p,j}(L,Q),$$

then for i < n,

$$\widetilde{W}_{i}(\Pi_{p,j}^{\tau,*}K) \ge \widetilde{W}_{i}(\Pi_{p,j}^{\tau,*}L);$$
(1.14)

for n < i < n + p or i > n + p,

$$\widetilde{W}_i(\Pi_{p,j}^{\tau,*}K) \le \widetilde{W}_i(\Pi_{p,j}^{\tau,*}L).$$
(1.15)

Equality holds in (1.14) or (1.15) for $i \neq n+p$ if and only if $\prod_{p,j}^{\tau} K = \prod_{p,j}^{\tau} L$. For i = n+p, inequality (1.15) is identic.

Moreover, we establish the following inequalities of quermassintegrals and dual quermassintegrals for general L_p -mixed centroid bodies, which is regarded as a generalization of Theorem 1.C and Theorem 1.D.

Theorem 1.3 Let $K, L \in \mathcal{S}_o^n$, $p \ge 1$, $\tau \in [-1, 1]$, real $i \ne n$ and $j = 0, 1, \dots, n-1$. If for any $Q \in \mathcal{S}_o^n$,

$$\widetilde{W}_{-p,i}(K,Q) \leq \widetilde{W}_{-p,i}(L,Q)$$

then

$$\frac{W_j(\Gamma_{p,i}^{\tau}K)^{-\frac{p}{n-j}}}{V(K)} \ge \frac{W_j(\Gamma_{p,i}^{\tau}L)^{-\frac{p}{n-j}}}{V(L)}.$$
(1.16)

Equality holds in (1.16) for p = 1 if and only if $\Gamma_{p,i}^{\tau}K$ and $\Gamma_{p,i}^{\tau}L$ are translates, for p > 1 if and only if $\Gamma_{p,i}^{\tau}K = \Gamma_{p,i}^{\tau}L$. Here $\widetilde{W}_{-p,j}(M,N)$ $(j \neq n)$ denotes the L_p -dual mixed quermassintegrals of $M, N \in \mathcal{S}_o^n$.

Theorem 1.4 Let $K, L \in S_o^n, p \ge 1, \tau \in [-1, 1]$, real $i, j \ne n$. If for any $Q \in S_o^n$,

$$\overline{W}_{-p,i}(K,Q) \le \overline{W}_{-p,i}(L,Q),$$

then

$$\frac{\widetilde{W}_{j}(\Gamma_{p,i}^{\tau,*}K)^{\frac{p}{n-j}}}{V(K)} \ge \frac{\widetilde{W}_{j}(\Gamma_{p,i}^{\tau,*}L)^{\frac{p}{n-j}}}{V(L)}.$$
(1.17)

Equality holds in (1.17) for $j \neq n+p$ if and only if $\Gamma_{p,i}^{\tau}K = \Gamma_{p,i}^{\tau}L$. For j = n+p, inequality (1.17) is identic.

Obviously, taking $i = j = \tau = 0$ in Theorems 1.1–1.4, then inequalities (1.13)–(1.17) reduce to Theorems 1.A–1.D, respectively.

This paper is organized as follows. In section 2, we provide some basic notions and results. Section 3 gives the proofs of Theorems 1.1–1.4.

2 Basic Notions

2.1 Radial Functions and Polar Bodies

If K is a compact star-shaped (about the origin) set in \mathbb{R}^n , then its radial function, $\rho_K = \rho(K, \cdot) : \mathbb{R}^n \setminus \{0\} \longrightarrow [0, +\infty)$, is defined by (see [2])

$$\rho(K, u) = \max\{\lambda \ge 0 : \lambda \cdot u \in K\}, \quad u \in S^{n-1}.$$

If ρ_K is positive and continuous, then K is viewed as a star body (about the origin). Two star bodies K and L will be dilates (of one another) if $\rho_K(u)/\rho_L(u)$ is independent of $u \in S^{n-1}$.

If K is a nonempty subset of \mathbb{R}^n , then the polar set K^* of K is defined by (see [1, 2])

$$K^* = \{ x \in \mathbb{R}^n : x \cdot y \le 1, y \in K \}.$$

If $K \in \mathcal{K}_o^n$, it follows that $(K^*)^* = K$ and

$$h_{K^*} = \frac{1}{\rho_K}, \quad \rho_{K^*} = \frac{1}{h_K}.$$
 (2.1)

2.2 L_p-Minkowski and L_p-Harmonic Radial Combinations

For $K, L \in \mathcal{K}_o^n$, real $p \ge 1$ and $\lambda, \mu \ge 0$ (not both zero), the L_p -Minkowski combination (also called the Firey L_p -combination), $\lambda \cdot K +_p \mu \cdot L \in \mathcal{K}_o^n$, of K and L is defined by (see [27])

$$h(\lambda \cdot K +_p \mu \cdot L, \cdot)^p = \lambda h(K, \cdot)^p + \mu h(L, \cdot)^p,$$

where the operation $\lambda \cdot K$ denotes Firey scalar multiplication. Obviously, Firey scalar multiplication and usual scalar multiplication are related by $\lambda \cdot K = \lambda^{\frac{1}{p}} K$.

For $K, L \in \mathcal{S}_o^n$, $p \ge 1$, $\lambda, \mu \ge 0$ (not both zero), the L_p -harmonic radial combination, $\lambda \star K +_{-p} \mu \star L \in \mathcal{S}_o^n$, of K and L is defined by (see [28])

$$\rho(\lambda \star K +_{-p} \mu \star L, \cdot)^{-p} = \lambda \rho(K, \cdot)^{-p} + \mu \rho(L, \cdot)^{-p}.$$

Here $\lambda \star K$ denotes L_p -harmonic radial scalar multiplication, and we can see $\lambda \star K = \lambda^{-\frac{1}{p}} K$. Note that for convex bodies, the L_p -harmonic radial combination was investigated by Firey (see [29]).

2.3 Quermassintegrals and L_p -Mixed Quermassintegrals

If $K \in \mathcal{K}^n$, the quermassintegrals $W_i(K)$ $(i = 0, 1, \dots, n-1)$ of K are defined by (see [1, 2])

$$W_i(K) = \frac{1}{n} \int_{S^{n-1}} h_K(u) dS_i(K, u), \qquad (2.2)$$

where $S_i(K, \cdot)$ $(i = 0, 1, \dots, n-1)$ is the mixed surface area measure of $K \in \mathcal{K}^n$, $S_0(K, \cdot)$ is the surface area measure of K. In particular, we easily see that

$$W_0(K) = V(K).$$
 (2.3)

In [30], Lutwak defined the L_p -mixed quermassintegrals and showed that for $K, L \in \mathcal{K}_o^n$, $p \geq 1$ and $i = 0, 1, \dots, n-1$, the L_p -mixed quermassintegrals $W_{p,i}(K, L)$ has the following integral representation

$$W_{p,i}(K,L) = \frac{1}{n} \int_{S^{n-1}} h_L^p(u) dS_{p,i}(K,u).$$
(2.4)

Here $S_{p,i}(K, \cdot)$ $(i = 0, 1, \dots, n-1)$ satisfies (1.10). The case i = 0, $S_{p,0}(K, \cdot)$ is just the L_p -surface area measure $S_p(K, \cdot)$ of $K \in \mathcal{K}_o^n$.

From (2.2), (2.4) and (1.10), it follows immediately that for each $K \in \mathcal{K}_{o}^{n}$ and $p \geq 1$,

$$W_{p,i}(K,K) = W_i(K).$$
 (2.5)

For the L_p -mixed quermassintegrals $W_{p,i}(K, L)$, Lutwak [30] established the following Minkowski inequality

Theorem 2.A If $K, L \in \mathcal{K}_o^n$, $p \ge 1$ and $i = 0, 1, \dots, n-1$, then

$$W_{p,i}(K,L) \ge W_i(K)^{\frac{n-p-i}{n-i}} W_i(L)^{\frac{p}{n-i}}$$
 (2.6)

with equality for p = 1 if and only if K and L are homothetic, for p > 1 if and only if K and L are dilates.

2.4 Dual Quermassintegrals and L_p-Dual Mixed Quermassintegrals

For $K \in \mathcal{S}_o^n$ and real *i*, the dual quermassintegrals, $\widetilde{W}_i(K)$, of *K* are defined by (see [31])

$$\widetilde{W}_{i}(K) = \frac{1}{n} \int_{S^{n-1}} \rho(K, u)^{n-i} dS(u).$$
(2.7)

Obviously,

$$\widetilde{W}_{0}(K) = \frac{1}{n} \int_{S^{n-1}} \rho(K, u)^{n} dS(u) = V(K).$$
(2.8)

In 2005, Wang and Leng [32] introduced the L_p -dual mixed quermassintegrals as follows: for $K, L \in \mathcal{S}_o^n$, $p \ge 1$ and real $i \ne n$, the L_p -dual mixed quermassintegrals, $\widetilde{W}_{-p,i}(K, L)$, of K and L are given by

$$\widetilde{W}_{-p,i}(K,L) = \frac{1}{n} \int_{S^{n-1}} \rho_K^{n+p-i}(u) \rho_L^{-p}(u) dS(u).$$
(2.9)

From formula (2.9) and definition (2.7), we get

$$W_{-p,i}(K,K) = W_i(K).$$
 (2.10)

For the L_p -dual mixed quermassintegrals, Wang and Leng (see [32]) proved the following Minkowski inequality.

Theorem 2.B If $K, L \in \mathcal{S}_o^n$, $p \ge 1$, real $i \ne n$, then for i < n or n < i < n + p,

$$\widetilde{W}_{-p,i}(K,L) \ge \widetilde{W}_i(K)^{\frac{n+p-i}{n-i}} \widetilde{W}_i(L)^{-\frac{p}{n-i}};$$
(2.11)

for i > n + p,

No. 3

$$\widetilde{W}_{-p,i}(K,L) \le \widetilde{W}_i(K)^{\frac{n+p-i}{n-i}} \widetilde{W}_i(L)^{-\frac{p}{n-i}}.$$
(2.12)

Equality holds in each inequality if and only if K and L are dilates.

3 Proofs of Theorems

In this section, we prove Theorems 1.1–1.4. First, the following lemmas are necessary. **Lemma 3.1** If $K, L \in \mathcal{K}_o^n$, $p \ge 1$, $\tau \in [-1, 1]$ and $i, j = 0, 1, \dots, n-1$, then

$$W_{p,i}(K, \Pi_{p,j}^{\tau}L) = W_{p,j}(L, \Pi_{p,i}^{\tau}K).$$
(3.1)

Proof According to definitions (2.4) and (1.11), and using Fubini theorem, we get

$$\begin{split} W_{p,i}(K,\Pi_{p,j}^{\tau}L) &= \frac{1}{n} \int_{S^{n-1}} h(\Pi_{p,j}^{\tau}L,u)^p dS_{p,i}(K,u) \\ &= \frac{1}{n} \int_{S^{n-1}} \alpha_{n,p}(\tau) \int_{S^{n-1}} \varphi_{\tau}(u \cdot v)^p dS_{p,j}(L,v) dS_{p,i}(K,u) \\ &= \frac{1}{n} \int_{S^{n-1}} \alpha_{n,p}(\tau) \int_{S^{n-1}} \varphi_{\tau}(u \cdot v)^p dS_{p,i}(K,u) dS_{p,j}(L,v) \\ &= \frac{1}{n} \int_{S^{n-1}} h(\Pi_{p,i}^{\tau}K,v)^p dS_{p,j}(L,v) \\ &= W_{p,j}(L,\Pi_{p,i}^{\tau}K). \end{split}$$

Lemma 3.2 If $K \in \mathcal{K}_o^n$, $p \ge 1$, $\tau \in [-1, 1]$, real $i \ne n$ and $j = 0, 1, \dots, n-1$, then for any $M \in \mathcal{S}_o^n$,

$$W_{p,j}(K, \Gamma_{p,i}^{\tau}M) = \frac{2\omega_n}{V(M)}\widetilde{W}_{-p,i}(M, \Pi_{p,j}^{\tau,*}K).$$
(3.2)

Proof From definitions (2.4), (2.9) and (1.12), and using $nc_{n-2,p} = (n+p)c_{n,p}$, we have

$$\begin{split} W_{p,j}(K,\Gamma_{p,i}^{\tau}M) &= \frac{1}{n} \int_{S^{n-1}} h_{\Gamma_{p,i}^{\tau}M}^{p}(v) dS_{p,j}(K,v) \\ &= \frac{\gamma_{n,p}(\tau)}{nV(M)} \int_{S^{n-1}} \int_{S^{n-1}} \varphi_{\tau}(u \cdot v)^{p} \rho_{M}^{n+p-i}(u) dS(u) dS_{p,j}(K,v) \\ &= \frac{2\omega_{n}}{nV(M)} \int_{S^{n-1}} \rho_{M}^{n+p-i}(u) \rho_{\Pi_{p,j}^{\tau,*}K}^{-p}(u) dS(u) \\ &= \frac{2\omega_{n}}{V(M)} \widetilde{W}_{-p,i}(M, \Pi_{p,j}^{\tau,*}K). \end{split}$$

Lemma 3.3 If $K, L \in \mathcal{S}_o^n, p \ge 1, \tau \in [-1, 1]$ and reals $i, j \ne n$, then

$$\frac{\widetilde{W}_{-p,j}(K,\Gamma_{p,i}^{\tau,*}L)}{V(K)} = \frac{\widetilde{W}_{-p,i}(L,\Gamma_{p,j}^{\tau,*}K)}{V(L)}.$$
(3.3)

Proof Due to considerations (2.9), (1.12), (2.1) and Fubini theorem, we obtain

$$\begin{split} & \frac{W_{-p,j}(K,\Gamma_{p,i}^{\tau,*}L)}{V(K)} \\ &= \frac{1}{nV(K)} \int_{S^{n-1}} \rho_{K}^{n+p-j}(u) \rho_{\Gamma_{p,i}^{\tau,*}L}^{-p}(u) dS(u) \\ &= \frac{1}{nV(K)} \int_{S^{n-1}} \rho_{K}^{n+p-j}(u) h_{\Gamma_{p,i}}^{p}(u) dS(u) \\ &= \frac{\gamma_{n,p}(\tau)}{nV(K)V(L)} \int_{S^{n-1}} \rho_{K}^{n+p-j}(u) \int_{S^{n-1}} \varphi_{\tau}(u \cdot v)^{p} \rho_{L}^{n+p-i}(v) dS(v) dS(u) \\ &= \frac{\gamma_{n,p}(\tau)}{nV(K)V(L)} \int_{S^{n-1}} \rho_{L}^{n+p-i}(v) \int_{S^{n-1}} \varphi_{\tau}(u \cdot v)^{p} \rho_{K}^{n+p-j}(u) dS(u) dS(v) \\ &= \frac{1}{nV(L)} \int_{S^{n-1}} \rho_{L}^{n+p-i}(v) h_{\Gamma_{p,j}^{\tau,*}K}^{p}(v) dS(v) \\ &= \frac{1}{nV(L)} \int_{S^{n-1}} \rho_{L}^{n+p-i}(v) \rho_{\Gamma_{p,j}^{\tau,*}K}^{-p}(v) dS(v) \\ &= \frac{\widetilde{W}_{-p,i}(L, \Gamma_{p,j}^{\tau,*}K)}{V(L)}. \end{split}$$

Proof of Theorem 1.1 Since $K, L \in \mathcal{K}_o^n$, $p \ge 1$, $j = 0, 1, \dots, n-1$, and for any $Q \in \mathcal{K}_o^n$,

$$W_{p,j}(K,Q) \le W_{p,j}(L,Q),$$
 (3.4)

thus for any $M \in \mathcal{K}_o^n$, let $Q = \prod_{p,i}^{\tau} M$, where $\tau \in [-1, 1]$ and $i = 0, 1, \dots, n-1$, then (3.4) gives

$$W_{p,j}(K, \Pi_{p,i}^{\tau}M) \le W_{p,j}(L, \Pi_{p,i}^{\tau}M).$$
 (3.5)

By (3.1), we see that (3.5) can be written as the following inequality

$$W_{p,i}(M, \Pi_{p,j}^{\tau}K) \le W_{p,i}(M, \Pi_{p,j}^{\tau}L).$$
 (3.6)

Taking $M = \prod_{p,j}^{\tau} L$ in (3.6), and using (2.5) and inequality (2.6), we get

$$W_i(\Pi_{p,j}^{\tau}L) \ge W_{p,i}(\Pi_{p,j}^{\tau}L, \Pi_{p,j}^{\tau}K) \ge W_i(\Pi_{p,j}^{\tau}L)^{\frac{n-p-i}{n-i}} W_i(\Pi_{p,j}^{\tau}K)^{\frac{p}{n-i}},$$

namely,

$$W_i(\Pi_{p,j}^{\tau}L)^{\frac{p}{n-i}} \ge W_i(\Pi_{p,j}^{\tau}K)^{\frac{p}{n-i}}.$$
(3.7)

Notice that $0 \le i < n$ and $p \ge 1$, then inequality (3.7) can be expressed by

$$W_i(\Pi_{p,j}^{\tau}K) \le W_i(\Pi_{p,j}^{\tau}L),$$

this is just inequality (1.13).

According to the equality conditions of inequality (2.6), we see that equality holds in inequality (1.13) for p = 1 if and only if $\prod_{p,j}^{\tau} K$ and $\prod_{p,j}^{\tau} L$ are translates, for p > 1 if and only if $\prod_{p,j}^{\tau} K = \prod_{p,j}^{\tau} L$.

Proof of Theorem 1.2 For $K, L \in \mathcal{K}_o^n, p \ge 1, j = 0, 1, \dots, n-1$, and for any $Q \in \mathcal{K}_o^n$,

 $W_{p,j}(K,Q) \le W_{p,j}(L,Q),$

so, let $Q = \Gamma_{p,i}^{\tau} M$ for any $M \in \mathcal{S}_o^n$, where $\tau \in [-1, 1]$ and real $i \neq n, n+p$. We get

$$W_{p,j}(K, \Gamma_{p,i}^{\tau}M) \le W_{p,j}(L, \Gamma_{p,i}^{\tau}M).$$

From (3.2), we know that

$$\widetilde{W}_{-p,i}(M,\Pi_{p,j}^{\tau,*}K) \le \widetilde{W}_{-p,i}(M,\Pi_{p,j}^{\tau,*}L).$$
(3.8)

For i < n or n < i < n + p, taking $M = \prod_{p,j}^{\tau,*}L$ in inequality (3.8), and using (2.10) and inequality (2.11), we obtain that

$$\begin{split} \widetilde{W}_{i}(\Pi_{p,j}^{\tau,*}L) &\geq \widetilde{W}_{-p,i}(\Pi_{p,j}^{\tau,*}L,\Pi_{p,j}^{\tau,*}K) \\ &\geq \widetilde{W}_{i}(\Pi_{p,j}^{\tau,*}L)^{\frac{n+p-i}{n-i}}\widetilde{W}_{i}(\Pi_{p,j}^{\tau,*}K)^{-\frac{p}{n-i}}, \end{split}$$

that is

$$\widetilde{W}_{i}(\Pi_{p,j}^{\tau,*}K)^{-\frac{p}{n-i}} \leq \widetilde{W}_{i}(\Pi_{p,j}^{\tau,*}L)^{-\frac{p}{n-i}}.$$
(3.9)

Therefore, for i < n, inequality (3.9) has the following simple form

$$\widetilde{W}_i(\Pi_{p,j}^{\tau,*}K) \ge \widetilde{W}_i(\Pi_{p,j}^{\tau,*}L),$$

this yields inequality (1.14); for n < i < n + p, inequality (3.9) shows

$$\widetilde{W}_i(\Pi_{p,j}^{\tau,*}K) \le \widetilde{W}_i(\Pi_{p,j}^{\tau,*}L),$$

i.e., inequality (1.15) is obtained.

Similarly, for i > n + p, taking $M = \prod_{p,j}^{\tau,*} K$ in (3.8), and utilizing (2.10) and inequality (2.12), we easily obtain that

$$\begin{aligned} \widetilde{W}_{i}(\Pi_{p,j}^{\tau,*}K) &\leq \widetilde{W}_{-p,i}(\Pi_{p,j}^{\tau,*}K,\Pi_{p,j}^{\tau,*}L) \\ &\leq \widetilde{W}_{i}(\Pi_{p,j}^{\tau,*}K)^{\frac{n+p-i}{n-i}}\widetilde{W}_{i}(\Pi_{p,j}^{\tau,*}L)^{-\frac{p}{n-i}}, \end{aligned}$$

namely,

$$\widetilde{W}_i(\Pi_{p,j}^{\tau,*}K)^{-\frac{p}{n-i}} \le \widetilde{W}_i(\Pi_{p,j}^{\tau,*}L)^{-\frac{p}{n-i}},$$

notice that i > n + p, we get inequality (1.15).

According to equality conditions of inequalities (2.11) and (2.12), we know that for $i \neq n+p$, equality holds in (1.14) or (1.15) if and only if $\Pi_{p,j}^{\tau,*}K = \Pi_{p,j}^{\tau,*}L$, i.e., $\Pi_{p,j}^{\tau}K = \Pi_{p,j}^{\tau}L$. For i = n + p, by (3.8) and (2.9) we know that inequality (1.15) still holds.

Proof of Theorem 1.3 For $K, L \in S_o^n$, $p \ge 1$, real $i \ne n$ and any $Q \in S_o^n$, since $\widetilde{W}_{-p,i}(K,Q) \le \widetilde{W}_{-p,i}(L,Q)$, therefore, for any $M \in \mathcal{K}_o^n$, $\tau \in [-1,1]$ and $j = 0, 1, \dots, n-1$, let $Q = \prod_{p,j}^{\tau,*} M$, we get

$$\widetilde{W}_{-p,i}(K,\Pi_{p,j}^{\tau,*}M) \leq \widetilde{W}_{-p,i}(L,\Pi_{p,j}^{\tau,*}M).$$

Together with (3.2), we obtain

$$V(K)W_{p,j}(M,\Gamma_{p,i}^{\tau}K) \le V(L)W_{p,j}(M,\Gamma_{p,i}^{\tau}L).$$
(3.10)

Taking $M = \Gamma_{p,i}^{\tau} L$ in inequality (3.10), and using (2.4) and inequality (2.6), we have

$$V(L)W_{j}(\Gamma_{p,i}^{\tau}L) \geq V(K)W_{p,j}(\Gamma_{p,i}^{\tau}L,\Gamma_{p,i}^{\tau}K)$$
$$\geq V(K)W_{j}(\Gamma_{p,i}^{\tau}L)^{\frac{n-p-j}{n-j}}W_{j}(\Gamma_{p,i}^{\tau}K)^{\frac{p}{n-j}},$$

namely,

$$\frac{W_j(\Gamma_{p,i}^{\tau}K)^{-\frac{p}{n-j}}}{V(K)} \ge \frac{W_j(\Gamma_{p,i}^{\tau}L)^{-\frac{p}{n-j}}}{V(L)},$$

this is just inequality (1.16).

According to the condition of equality in (2.6), we know that equality holds in inequality (1.16) for p = 1 if and only if $\Gamma_{p,i}^{\tau} K$ and $\Gamma_{p,i}^{\tau} L$ are translates, for p > 1 if and only if $\Gamma_{p,i}^{\tau} K = \Gamma_{p,i}^{\tau} L$.

Proof of Theorem 1.4 For $K, L \in \mathcal{S}_o^n$, $p \ge 1$, real $i \ne n$ and any $Q \in \mathcal{S}_o^n$, because $\widetilde{W}_{-p,i}(K,Q) \le \widetilde{W}_{-p,i}(L,Q)$, thus let $Q = \Gamma_{p,j}^{\tau,*}M$ for any $M \in \mathcal{S}_o^n$, where $\tau \in [-1,1]$ and real $j \ne n$, then

$$\widetilde{W}_{-p,i}(K,\Gamma_{p,j}^{\tau,*}M) \le \widetilde{W}_{-p,i}(L,\Gamma_{p,j}^{\tau,*}M)$$

From (3.3), we get

$$V(K)\widetilde{W}_{-p,j}(M,\Gamma_{p,i}^{\tau,*}K) \le V(L)\widetilde{W}_{-p,j}(M,\Gamma_{p,i}^{\tau,*}L).$$
(3.11)

For j < n or n < j < n + p, taking $M = \Gamma_{p,i}^{\tau,*}L$ in (3.11), and together with inequality (2.11), we have

$$\begin{split} V(L)\widetilde{W}_{j}(\Gamma_{p,i}^{\tau,*}L) &\geq V(K)\widetilde{W}_{-p,j}(\Gamma_{p,i}^{\tau,*}L,\Gamma_{p,i}^{\tau,*}K) \\ &\geq V(K)\widetilde{W}_{j}(\Gamma_{p,i}^{\tau,*}L)^{\frac{n+p-j}{n-j}}\widetilde{W}_{j}(\Gamma_{p,i}^{\tau,*}K)^{-\frac{p}{n-j}}, \end{split}$$

i.e.,

$$\frac{\widetilde{W}_j(\Gamma_{p,i}^{\tau,*}K)^{\frac{p}{n-j}}}{V(K)} \ge \frac{\widetilde{W}_j(\Gamma_{p,i}^{\tau,*}L)^{\frac{p}{n-j}}}{V(L)}.$$

This is inequality (1.17).

For j > n + p, let $M = \Gamma_{p,i}^{\tau,*} K$ in (3.11), and together with inequality (2.12), we have

$$V(K)\widetilde{W}_{j}(\Gamma_{p,i}^{\tau,*}K) \leq V(L)\widetilde{W}_{-p,j}(\Gamma_{p,i}^{\tau,*}K,\Gamma_{p,i}^{\tau,*}L)$$
$$\leq V(L)\widetilde{W}_{j}(\Gamma_{p,i}^{\tau,*}K)^{\frac{n+p-j}{n-j}}\widetilde{W}_{j}(\Gamma_{p,i}^{\tau,*}L)^{-\frac{p}{n-j}},$$

namely,

$$\frac{\widetilde{W}_j(\Gamma_{p,i}^{\tau,*}K)^{\frac{p}{n-j}}}{V(K)} \geq \frac{\widetilde{W}_j(\Gamma_{p,i}^{\tau,*}L)^{\frac{p}{n-j}}}{V(L)},$$

this yields inequality (1.17).

According to equality conditions of inequalities (2.11) and (2.12), we see that for $j \neq n+p$, equality holds in (1.17) if and only if $\Gamma_{p,i}^{\tau,*}K = \Gamma_{p,i}^{\tau,*}L$, i.e., $\Gamma_{p,i}^{\tau}K = \Gamma_{p,i}^{\tau}L$. For j = n+p, by (3.11) and (2.9), we see that inequality (1.17) is still true.

References

- [1] Gardner R J. Geometric tomography (2nd ed.) [M]. Cambridge, UK: Cambridge Univ. Press, 2006.
- [2] Schneider R. Convex bodies: the Brunn-Minkowski theory (2nd ed.) [M]. Cambridge: Cambridge University Press, 2014.
- [3] Lutwak E, Zhang Gaoyong. Blaschke-Santaló inequalities [J]. J. Diff. Geom., 1997, 47(1): 1–16.
- [4] Lutwak E, Yang D, Zhang Gaoyong. L_p affine isoperimetric inequalities [J]. J. Diff. Geom., 2000, 56(1): 111–132.
- [5] Wang Weidong. On reverses of the L_p-Busemann-Petty centroid inequality and its applications [J].
 Wuhan Univ. J. Nat. Sci., 2010, 15(4): 292–296.
- [6] Wang Weidong, Leng Gangsong. Inequalities relating to L_p-version of Petty's conjectured projection inequality [J]. Appl. Math. Mech., 2007, 28(2): 269–276.
- [7] Wang Weidong, Leng Gangsong. On the monotonicity of L_p-centroid body [J]. J. Sys. Sci. Math. Scis., 2008, 28(2): 154–162 (in Chinese).
- [8] Wang Weidong, Leng Gangsong. Some affine isoperimetric inequalities associated with L_p-affine surface area [J]. Houston J. Math., 2008, 34(2): 443–453.
- [9] Wang Weidong, Leng Gangsong. On the L_p -version of the Petty's conjectured projection inequality and applications [J]. Taiwan. J. Math., 2008, 12(5): 1067–1086.
- [10] Wang Weidong, Leng Gangsong. Inequalities of the quermassintegrals for the L_p -projection body and the L_p -centroid body [J]. Acta Math. Sci., 2010, 30B(1): 359–368.
- [11] Wang Weidong, Leng Gangsong, Lu Fenghong. On Brunn-Minkowski inequality for the quermassintegrals and dual quermassintegrals of L_p -projection bodies [J]. Chinese Math. Ann., 2008, 29A(2): 209–220 (in Chinese).
- [12] Wang Weidong, Lu Fenghong, Leng Gangsong. A type of monotonicity on the L_p centroid body and L_p projection body [J]. Math. Inequal. Appl., 2005, 8(4): 735–742.
- [13] Wang Weidong, Lu Fenghong, Leng Gangsong. On monotonicity properties of the L_p -centroid bodies [J]. Math. Inequal. Appl., 2013, 16(3): 645–655.
- [14] Wang Weidong, Wei Daijun, Xiang Yu. On monotony for the L_p-projection body [J]. Chinese Adv. Math., 2008, 37(6): 690–700 (in Chinese).
- [15] Wang Weidong, Wei Daijun, Xiang Yu. On reverses of the L_p-Petty projection inequality [J]. Chin. Quart. J. Math., 2009, 24(4): 491–498.
- [16] Ludwig M. Minkowski valuations [J]. Trans. Amer. Math. Soc., 2005, 357(10): 4191–4213.
- [17] Wang Weidong, Wan Xiaoyan. Shephard type problems for general L_p-projection bodies [J]. Taiwan.
 J. Math., 2012, 16(5): 1749–1762.
- [18] Wang Weidong, Feng Yibin. A general L_p-version of Petty's affine projection inequality [J]. Taiwan.
 J. Math., 2013, 17(2): 517–528.
- [19] Wang Weidong, Wang Jianye. Extremum of geometric functionals involving general L_p-projection bodies [J]. J. Inequal. Appl., 2016, 2016: 1–16.

- [20] Feng Yibin, Wang Weidong, Lu Fenghong. Some inequalities on general L_p-centroid bodies [J]. Math. Inequal. Appl., 2015, 18(1): 39–49.
- [21] Wang Weidong, Leng Gangsong. The Petty projection inequality for L_p -mixed projection bodies [J]. Acta Math. Sinica (English Series), 2007, 23(8): 1485–1494.
- [22] Feng Yibin, Wang Weidong. The Shephard type problems and monotonicity for L_p -mixed centroid body [J]. Indian J. Pure Appl. Math., 2014, 45(3): 265–283.
- [23] Liu Lijuan, Wang Wei, He Binwu. Fourier transform and L_p -mixed projection bodies [J]. Bull. Korean Math. Soc., 2010, 47(5): 1011–1023.
- [24] Ma Tongyi. On L_p -mixed centroid bodies and dual L_p -mixed centroid bodies [J]. Acta Math. Sinica (Chinese Series), 2010, 53(2): 301–314.
- [25] Wang Weidong, Wan Xiaoyan. L_p-mixed projection bodies and L_p-mixed quermassintegrals [J]. J. Math. Inequal., 2014, 8(4): 879–888.
- [26] Wan Xiaoyan, Wang Weidong. Petty projection inequalities for the general L_p -mixed projection bodies [J]. Wuhan Univ. J. Nat. Sci., 2012, 17(3): 190–194.
- [27] Firey W J. p-means of convex bodies [J]. Math. Scand., 1962, 10: 17–24.
- [28] Lutwak E. The Brunn-Minkowski-Firey theory II: affine and geominimal surface areas [J]. Adv. Math., 1996, 118(2): 244–294.
- [29] Firey W J. Mean cross-section measures of harmonic means of convex bodies [J]. Pacific J. Math., 1961, 11(4): 1263–1266.
- [30] Lutwak E. The Brunn-Minkowski-Firey theory I: mixed volumes and the Minkowski problem [J]. J. Diff. Geom., 1993, 38(1): 131–150.
- [31] Lutwak E. Dual mixed volumes [J]. Pacific J. Math., 1975, 58(2): 531-538.
- [32] Wang Weidong, Leng Gangsong. L_p-dual mixed quermassintegrals [J]. Indian J. Pure Appl. Math., 2005, 36(4): 177–188.

关于广义L_p-混合投影体与广义L_p-混合质心体的单调不等式

石 伟¹, 王卫东^{1,2}

(1.三峡大学理学院数学系,湖北 宜昌 443002)

(2.三峡大学数学研究中心,湖北 宜昌 443002)

摘要: 本文研究了广义L_p-混合投影体及广义L_p-混合质心体的单调性问题.利用解析不等式,获得了 广义L_p-混合投影体与广义L_p-混合质心体的均质积分与对偶均质积分形式的单调不等式,推广了L_p-投影体 及L_p-质心体的体积形式的单调性.

关键词: 广义L_p-混合投影体; 广义L_p-混合质心体; 单调不等式 MR(2010)**主题分类号**: 52A20; 52A40 **中图分类号**: O184