CHARACTERIZATION OF A CLASS OF PROPER HOLOMORPHIC MAPS FROM \mathbb{B}^{n} TO \mathbb{B}^{N}

YANG Bi－tao，YIN Wan－ke
（School of Mathematics and Statistics，Wuhan University，Wuhan 430072，China）

Abstract

The paper is concerned with the study of rational proper holomorphic maps from the unit ball \mathbb{B}^{n} to the unit ball \mathbb{B}^{N} ．When the geometric rank of the maps are κ_{0} and $N=n+\frac{\left(2 n-\kappa_{0}-1\right) \kappa_{0}}{2}$ ，we give a characterization of their normalized maps．

Keywords：proper holomorphic maps；holomorphic classification；geometric rank；degener－ acy rank

2010 MR Subject Classification：32H35
Document code：A Article ID：0255－7797（2019）03－0317－08

1 Introduction

Let \mathbb{B}^{n} be the unit ball in \mathbb{C}^{N} ，and denote by $\operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ the collection of all proper holomorphic rational maps from \mathbb{B}^{n} to \mathbb{B}^{N} ．Let $\mathbb{H}_{n}=\left\{(z, w) \in \mathbb{C}^{n-1} \times \mathbb{C} \mid \operatorname{Im}(w)>\right.$ $\left.|z|^{2}\right\}$ be the Siegel upper half space and denote by $\operatorname{Rat}\left(\mathbb{H}_{n}, \mathbb{H}_{N}\right)$ the collection of all proper holomorphic rational maps from \mathbb{H}_{n} to \mathbb{H}_{N} ．By the Cayley transform，we can identify \mathbb{B}^{n} with \mathbb{H}_{n} ，and identify $\operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ with $\operatorname{Rat}\left(\mathbb{H}_{n}, \mathbb{H}_{N}\right)$ ．We say that $f, g \in \operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ are spherically equivalent（or equivalent，for short）if there are $\sigma \in \operatorname{Aut}\left(\mathbb{B}^{n}\right)$ and $\tau \in \operatorname{Aut}\left(\mathbb{B}^{N}\right)$ such that $f=\tau \circ g \circ \sigma$ ．

The study of proper holomorphic maps can date back to the work of Poincaré［17］． Alexander［1］proved that for equal dimensional case，the map must be an automorphism． For the different dimensional case，by the combining efforts of $[5,8,19]$ ，we know that for $N \in(n, 2 n-1)$ with $n \geq 2$ ，any map $F \in \operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ is spherically equivalent to the map $(z, 0)$ ．This is now called the first gap theorem．

For the second gap theorem，Huang－Ji－Xu［11］proved that any map $F \in \operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ with $N \in(2 n, 3 n-3)$ and $n \geq 4$ ，must equivalent to a map of the form $(G, 0)$ with $G \in$ $\operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{2 n}\right)$ ．Together with the classification theorems Huang－Ji［10］and Hamada［7］， $\operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{2 n}\right)$ must equivalent to $(z, 0)$ or $\left(G_{1}, 0\right)$ or $\left(G_{2}, 0\right)$ ，where $G_{1} \in \operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{2 n-1}\right)$ is the Whitney map and $G_{2} \in \operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{2 n}\right)$ is in the D＇Angelo family．

[^0]Biography：Yang Bitao（1992－），male，born at Suizhou，Hubei，master，major in several complex variables．

In [12], Huang-Ji-Yin proved the third gap theorem. Namely, when $N \in(3 n, 4 n-7)$ and $n \geq 8$, any map $F \in \operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ must be equivalent to a map of the form $(G, 0)$ with $G \in \operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{3 n}\right)$. The classification problem for $N=3 n-3$ is achieved by [2]. When $N \geq$ $3 n-2$, the map is no longer monomials and can be very complicated. In fact, [6] constructed a family of maps in $\operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{3 n-2}\right)$, which can not be equivalent to any polynomial maps. Recently, Gul-Ji-Yin [14] gave a characterization of maps in $\operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{3 n-2}\right)$. The interesting reader can refer to $[3,4,9,12,15,16,18]$ for other related mapping problems between balls.

It seems to be quite less in known for $N \geq 3 n-2$. The present paper is devoted to a characterization of proper holomorphic maps from \mathbb{B}^{n} to \mathbb{B}^{N} with geometric rank κ_{0} and $N=n+\frac{\left(2 n-\kappa_{0}-1\right) \kappa_{0}}{2}$. We now state our main theorem, with some terminology to be defined in the next section.

Theorem 1.1 (1) Let $F \in \operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ with the geometric rank of F being κ_{0} and $N=n+\frac{\left(2 n-\kappa_{0}-1\right) \kappa_{0}}{2}$. Suppose that $\frac{\kappa_{0}\left(\kappa_{0}+1\right)}{2}<n$ and F is normalized, then it takes the following form

$$
\begin{align*}
f_{j} & =\frac{1}{q}\left(z_{j} q+\frac{i}{2} \mu_{j} z_{j} w\right) \quad \text { for } 1 \leq j \leq \kappa_{0}, f_{k}=z_{k} \quad \text { for } \kappa_{0}+1 \leq k \leq n-1, \\
\phi_{j j} & =\frac{1}{q}\left(\mu_{j j} z_{j}^{2}+e_{j, j j} z_{j} w\right) \quad \text { for } 1 \leq j \leq \kappa_{0}, \\
\phi_{j k} & =\frac{1}{q}\left(\mu_{j k} z_{j} z_{k}+e_{j, j k} z_{k} w+e_{k, j k} z_{j} w\right) \quad \text { for } 1 \leq j<k \leq \kappa_{0}, \tag{1.1}\\
\phi_{j \alpha} & =\frac{1}{q} \mu_{j \alpha} z_{j} z_{\alpha} \quad \text { for } 1 \leq j \leq \kappa_{0}<\alpha \leq n-1, \\
g & =w
\end{align*}
$$

where

$$
\begin{align*}
& q=q(z, w)=1+q^{(1)}(z)+E w, q^{(1)}(z)=-2 i \sum_{j=1}^{\kappa_{0}} \frac{\mu_{1 j} \overline{e_{1,1 j}}}{\mu_{1}} z_{j}, e_{j, j i}=\frac{\mu_{j} \mu_{1 i}}{\mu_{1} \mu_{i j}} e_{1,1 i}, \tag{1.2}\\
& 0<\mu_{1} \leq \mu_{2}=\cdots=\mu_{\kappa_{0}},\left|e_{1,11}\right|^{2}=\frac{1}{4}\left(\mu_{2}^{2}-\mu_{1}^{2}\right), \quad \operatorname{Im}(E)=-\frac{\mu_{2}^{2}}{4 \mu_{1}}
\end{align*}
$$

(2) Conversely, if F is defined by (1.1) and (1.2), then the map F is in $\operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ with $N=n+\frac{\left(2 n-\kappa_{0}-1\right) \kappa_{0}}{2}$.

2 Preliminaries

Let $F=(f, \phi, g)=(\widetilde{f}, g)=\left(f_{1}, \cdots, f_{n-1}, \phi_{1}, \cdots, \phi_{N-n}, g\right)$ be a non-constant rational CR map from an open subset M of $\partial \mathbb{H}_{n}$ into $\partial \mathbb{H}_{N}$ with $F(0)=0$. For each $p \in M$ close to 0 , we write $\sigma_{p}^{0} \in \operatorname{Aut}\left(\mathbb{H}_{n}\right)$ for the map sending (z, w) to $\left(z+z_{0}, w+w_{0}+2 i\left\langle z, \overline{z_{0}}\right\rangle\right)$ and write $\tau_{p}^{F} \in \operatorname{Aut}\left(\mathbb{H}_{N}\right)$ for the map

$$
\tau_{p}^{F}\left(z^{*}, w^{*}\right)=\left(z^{*}-\widetilde{f}\left(z_{0}, w_{0}\right), w^{*}-\overline{g\left(z_{0}, w_{0}\right)}-2 i\left\langle z^{*}, \overline{\left.\widetilde{f}\left(z_{0}, w_{0}\right)\right\rangle}\right)\right.
$$

Then F is equivalent to $F_{p}=\tau_{p}^{F} \circ F \circ \sigma_{p}^{0}=\left(f_{p}, \phi_{p}, g_{p}\right)$. Notice that $F_{0}=F$ and $F_{p}(0)=0$. The following theorem is important for understanding the geometric properties of $\operatorname{Prop}\left(\mathbb{H}_{n}, \mathbb{H}_{N}\right)$.

Lemma 2.1 Let $F \in \operatorname{Prop}_{2}\left(\mathbb{H}_{n}, \mathbb{H}_{N}\right)$ with $2 \leq n \leq N$. For each $p \in \partial \mathbb{H}_{n}$, there is an automorphism $\tau_{p}^{* *} \in \operatorname{Aut}_{0}\left(\mathbb{H}_{N}\right)$ such that $F_{p}^{* *}:=\tau_{p}^{* *} \circ F_{p}$ satisfies the following normalization

$$
f_{p}^{* *}=z+\frac{i}{2} a_{p}^{* *(1)}(z) w+o_{w t}(3), \phi_{p}^{* *}=\phi_{p}^{* *(2)}(z)+o_{w t}(2), g_{p}^{* *}=w+o_{w t}(4)
$$

with

$$
\left\langle\bar{z}, a_{p}^{* *(1)}(z)\right\rangle|z|^{2}=\left|\phi_{p}^{* *(2)}(z)\right|^{2}
$$

Here we use the notation $h^{(k)}(z)$ to denote a polynomial h which has degree k in z, and a function $h(z, \bar{z}, u)$ is said to be quantity $o_{w t}(m)$ if $h\left(t z, t \bar{z}, t^{2} u\right) /|t|^{m} \rightarrow 0$ uniformly for (z, u) on any small compact subset of 0 as $t(\in \mathbb{R}) \rightarrow 0$.

Now, we are in a position to the definition of the geometric rank. Write $\mathcal{A}(p):=$ $-2 i\left(\left.\frac{\partial^{2}\left(f_{p}\right)_{l}^{* *}}{\partial z_{j} \partial w}\right|_{0}\right)_{1 \leq j, l \leq(n-1)}$. Then the geometric rank of F at p is defined to be the rank of the $(n-1) \times(n-1)$ matrix $\mathcal{A}(p)$, which is denoted by $R k_{F}(p)$. Notice that $R k_{F}(p)$ is a lower semi-continuous function on p, it is independent of the choice of $\tau_{p}^{* *}(p)$, and depends only on p and F. Define the geometric rank of F to be $\kappa_{0}(F)=\max _{p \in \partial \mathbb{H}_{n}} R k_{F}(p)$. Define the geometric rank of $F \in \operatorname{Prop}_{2}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ to be the one for the map $\rho_{N}^{-1} \circ F \circ \rho_{n} \in \operatorname{Prop}_{2}\left(\mathbb{H}_{n}, \mathbb{H}_{N}\right)$.

When $1 \leq \kappa_{0} \leq n-2$, a nice normalization was achieved by [9] and [11].
Theorem 2.2 Suppose that $F \in \operatorname{Prop}_{3}\left(\mathbb{H}_{n}, \mathbb{H}_{N}\right)$ has geometric rank $1 \leq \kappa_{0} \leq n-2$ with $F(0)=0$. Then there are $\sigma \in \operatorname{Aut}\left(\mathbb{H}_{n}\right)$ and $\tau \in \operatorname{Aut}\left(\mathbb{H}_{N}\right)$ such that $\tau \circ F \circ \sigma$ takes the following form, which is still denoted by $F=(f, \phi, g)$ for convenience of notation

$$
\left\{\begin{array}{l}
f_{l}=\sum_{j=1}^{\kappa_{0}} z_{j} f_{l j}^{*}(z, w), l \leq \kappa_{0} \tag{2.1}\\
f_{j}=z_{j}, \text { for } \kappa_{0}+1 \leq j \leq n-1 \\
\phi_{l k}=\mu_{l k} z_{l} z_{k}+\sum_{j=1}^{\kappa_{0}} z_{j} \phi_{l k j}^{*} \text { for } \quad(l, k) \in \mathcal{S}_{0} \\
\phi_{l k}=O_{w t}(3), \quad(l, k) \in \mathcal{S}_{1} \\
g=w, \\
f_{l j}^{*}(z, w)=\delta_{l}^{j}+\frac{i \delta_{l}^{j} \mu_{l}}{2} w+b_{l j}^{(1)}(z) w+O_{w t}(4) \\
\phi_{l k j}^{*}(z, w)=O_{w t}(2), \quad(l, k) \in \mathcal{S}_{0} \\
\phi_{l k}=\sum_{j=1}^{\kappa_{0}} z_{j} \phi_{l k j}^{*}=O_{w t}(3) \text { for }(l, k) \in \mathcal{S}_{1}
\end{array}\right.
$$

Here, for $1 \leq \kappa_{0} \leq n-2$, we write $\mathcal{S}=\mathcal{S}_{0} \cup \mathcal{S}_{1}$, the index set for all components of ϕ, where

$$
\begin{aligned}
& \mathcal{S}_{0}=\left\{(j, l): 1 \leq j \leq \kappa_{0}, 1 \leq l \leq n-1, j \leq l\right\} \\
& \mathcal{S}_{1}=\left\{(j, l): j=\kappa_{0}+1, \kappa_{0}+1 \leq l \leq \kappa_{0}+N-n-\frac{\left(2 n-\kappa_{0}-1\right) \kappa_{0}}{2}\right\}
\end{aligned}
$$

and

$$
\mu_{j l}= \begin{cases}\sqrt{\mu_{j}+\mu_{l}} & \text { for } j<l \leq \kappa_{0} \tag{2.2}\\ \sqrt{\mu_{j}} & \text { if } j \leq \kappa_{0}<l \text { or if } j=l \leq \kappa_{0}\end{cases}
$$

Here we can assume $\mu_{1} \leq \mu_{2} \leq \cdots \leq \mu_{\kappa_{0}}$. By [2], we can further assume that

$$
\begin{equation*}
e_{1,1 \alpha}=0 \text { for } \kappa_{0}+1 \leq \alpha \leq n-1 . \tag{2.3}
\end{equation*}
$$

A map $F \in \operatorname{Rat}\left(\mathbb{H}_{n}, \mathbb{H}_{N}\right)$ is called a normalized map if F takes form (2.1) with (2.3). Notice that any $F \in \operatorname{Rat}\left(\mathbb{H}_{n}, \mathbb{H}_{N}\right)$ can not be further normalized except some rotations in $\phi_{l k}$ with $(l, k) \in \mathcal{S}_{1}$.

Next we introduce some notations that will be use during the proof of our main theorem. Let $F=(f, \phi, g) \in \operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ be as in Theorem 1.1. Denote by $\sharp(A)$ the number of elements in the set A. Then we have $N=\sharp(f)+\sharp(\phi)+\sharp(g)$ and $\sharp(\phi)=\sharp\left(\mathcal{S}_{0}\right)+\sharp\left(\mathcal{S}_{1}\right)$. Notice that $\sharp(f)=n-1, \sharp(g)=1, \sharp\left(\mathcal{S}_{0}\right)=n \kappa_{0}-\frac{\left(\kappa_{0}+1\right) \kappa_{0}}{2}$. Hence $\sharp\left(\mathcal{S}_{1}\right)=N-n-\sharp\left(\mathcal{S}_{0}\right)=0$, which means we do not have the \mathcal{S}_{1} part in the map.

For any rational holomorphic map $H=\frac{\left(P_{1}, \cdots, P_{m}\right)}{Q}$ on \mathbb{C}^{n}, where $\left\{P_{j}, Q\right\}$ are relatively prime holomorphic polynomials, the degree of H is defined to be

$$
\operatorname{deg}(H):=\max \left\{\operatorname{deg}\left(P_{j}\right), \operatorname{deg}(Q), 1 \leq j \leq m\right\}
$$

For any holomorphic map $P(z, w)$, we will use the following notations

$$
P(z, w)=\sum_{|\alpha|=j, k \geq 0} P^{(\alpha, k)} z^{\alpha} w^{k}=\sum_{j, k} P^{(j, k)}(z) \cdot w^{k}
$$

where $P^{(j, k)}(z)$ is a homogeneous polynomial with respect to z of degree j.

2 Proof of the Main Theorem

This section is devoted to the proof of Theorem 1.1.
By [15, Theorem 1.1], we know $\operatorname{deg} F=2$. From (4.2)-(4.4) of [15], we obtain

$$
\begin{align*}
& e_{i, j k}=0, \quad \forall j, k \neq i \text { or } \kappa_{0}+1 \leq j \leq n-1 \text { or } \kappa_{0}+1 \leq k \leq n-1, \tag{3.1}\\
& \mu_{j} \mu_{i l} e_{l, i l}=\mu_{l} \mu_{i j} e_{j, i j} \text { for } 1 \leq i, j, l \leq \kappa_{0} . \tag{3.2}
\end{align*}
$$

From (5.3) of [15], we get

$$
\begin{align*}
& f_{\mu}(z, 0)=z_{\mu} \text { for } 1 \leq \mu \leq n-1, \\
& \phi_{j j}(z, 0)=\frac{\mu_{j j} z_{j}^{2}}{1-2 i \sum_{j=1}^{\kappa_{0}} \overline{A_{j}} z_{j}} \text { for } 1 \leq j \leq \kappa_{0}, \\
& \phi_{j k}(z, 0)=\frac{\mu_{j k} z_{j} z_{k}}{1-2 i \sum_{j=1}^{\kappa_{0}} \overline{A_{j}} z_{j}} \text { for } 1 \leq j<k \leq \kappa_{0}, \tag{3.3}\\
& \phi_{j \alpha}(z, 0)=\frac{\mu_{j \alpha} z_{j} z_{\alpha}}{1-2 i \sum_{j=1}^{\kappa_{0}} \overline{A_{j}} z_{j}} \text { for } 1 \leq j \leq \kappa_{0}<\alpha \leq n-1 .
\end{align*}
$$

Here we have set $A_{j}=\frac{\mu_{1 j} e_{1,1 j}}{\mu_{1}}$.

Notice that the degree of F must be 2. Together with the normalization properties in (2.1), the expression of F must have the following form

$$
\begin{align*}
f_{j} & =\frac{1}{q}\left(z_{j} q+\frac{\mu_{j}}{2} i z_{j} w\right) \quad \text { for } 1 \leq j \leq \kappa_{0}, f_{k}=z_{k} \quad \text { for } \kappa_{0}+1 \leq k \leq n-1 \\
\phi_{j j} & =\frac{1}{q}\left(\mu_{j j} z_{j}^{2}+e_{j, j j} z_{j} w\right) \quad \text { for } 1 \leq j \leq \kappa_{0} \\
\phi_{j k} & =\frac{1}{q}\left(\mu_{j k} z_{j} z_{k}+e_{j, j k} z_{k} w+e_{k, j k} z_{j} w\right) \quad \text { for } 1 \leq j<k \leq \kappa_{0} \tag{3.4}\\
\phi_{j \alpha} & =\frac{1}{q} \mu_{j \alpha} z_{j} z_{\alpha} \quad \text { for } 1 \leq j \leq \kappa_{0}<\alpha \leq n-1 \\
g & =w
\end{align*}
$$

Here we have set $q=1-2 i \sum_{j=1}^{\kappa_{0}} \overline{A_{j}} z_{j}+E w$. In what follows, we write $q^{(1)}(z)=-2 i \sum_{j=1}^{\kappa_{0}} \overline{A_{j}} z_{j}$.
Since F maps $\partial \mathbb{B}^{n}$ to $\partial \mathbb{B}^{N}$, we have the basic equation

$$
\begin{equation*}
\operatorname{Im} w=|f|^{2}+|\phi|^{2} \text { for } \operatorname{Im} w=|z|^{2} \tag{3.5}
\end{equation*}
$$

Substituting (3.4) into this equation, we obtain, for $\operatorname{Im} w=|z|^{2}$, the following

$$
\begin{align*}
|z|^{2}|q|^{2} & =\sum_{j=1}^{\kappa_{0}}\left|z_{j} q+\frac{i}{2} \mu_{j} z_{j} w\right|^{2}+\sum_{j=\kappa_{0}+1}^{n-1}\left|z_{j} q\right|^{2}+\sum_{j=1}^{\kappa_{0}}\left|\mu_{j j} z_{j}^{2}+e_{j, j j} z_{j} w\right|^{2} \tag{3.6}\\
& +\sum_{1 \leq j<k \leq \kappa_{0}}\left|\mu_{j k} z_{j} z_{k}+e_{j, j k} z_{k} w+e_{k, k j} z_{j} w\right|^{2}+\sum_{1 \leq j \leq \kappa_{0}<\alpha \leq n-1}\left|\mu_{j \alpha} z_{j} z_{\alpha}\right|^{2} .
\end{align*}
$$

After a quick simplification, we obtain

$$
\begin{align*}
& \sum_{j=1}^{\kappa_{0}}\left|z_{j}\right|^{2}\left\{2 \operatorname{Re}\left(\frac{i}{2} \mu_{j} \bar{w}\left(1+q^{(1)}(z)+E w\right)\right)-\frac{\mu_{j}^{2}}{4}\left(u^{2}+|z|^{4}\right)\right\}=\sum_{j=1}^{\kappa_{0}}\left|\mu_{j j} z_{j}^{2}+e_{j, j j} z_{j} w\right|^{2} \tag{3.7}\\
& +\sum_{1 \leq j<k \leq \kappa_{0}}\left|\mu_{j k} z_{j} z_{k}+e_{j, j k} z_{k} w+e_{k, k j} z_{j} w\right|^{2}+\left.\sum_{j=1}^{\kappa_{0}}\left|\mu_{j}\right| z_{j}\right|^{2} \cdot\left(|z|^{2}-\sum_{j=1}^{\kappa_{0}}\left|z_{j}\right|^{2}\right)
\end{align*}
$$

Consideration of the Degree 4 Terms By considering the degree 4 terms, we get

$$
\begin{align*}
& \sum_{j=1}^{\kappa_{0}}\left|z_{j}^{2}\right|\left\{2 \operatorname{Re}\left(\frac{i}{2} \mu_{j}\left(-i|z|^{2}\right)+\frac{i}{2} \mu_{j} u\left(q^{(1)}(z)+E u\right)\right)-\frac{\mu_{j}^{2}}{4} u^{2}\right\} \\
= & \sum_{j=1}^{\kappa_{0}}\left|\mu_{j j} z_{j}^{2}+e_{j, j j} z_{j} u\right|^{2}+\sum_{1 \leq j<k \leq \kappa_{0}}\left|\mu_{j k} z_{j} z_{k}+e_{j, j k} z_{k} u+e_{k, k j} z_{j} u\right|^{2} \tag{3.8}\\
& +\left.\sum_{j=1}^{\kappa_{0}} \mu_{j} z_{j}\right|^{2} \cdot\left(|z|^{2}-\sum_{j=1}^{\kappa_{0}} \mu_{j}\left|z_{j}\right|^{2}\right)
\end{align*}
$$

Collecting $z^{\alpha} \bar{z}^{\beta} u^{2}$ term with $|\alpha|=|\beta|=1$, we obtain

$$
\begin{equation*}
\sum_{j=1}^{\kappa_{0}}\left|z_{j}^{2}\right|\left\{2 \operatorname{Re}\left(\frac{i}{2} \mu_{j} u \cdot E u\right)-\frac{\mu_{j}^{2}}{4} u^{2}\right\}=\sum_{j=1}^{\kappa_{0}}\left|e_{j, j j} z_{j} u\right|^{2}+\sum_{1 \leq j<k \leq \kappa_{0}}\left|e_{j, j k} z_{k} u+e_{k, k j} z_{j} u\right|^{2} \tag{3.9}
\end{equation*}
$$

By considering the coefficients of $\left|z_{j}\right|^{2} u$ terms with $1 \leq j \leq \kappa_{0}$ and $z_{j} \overline{z_{k}} u$ terms with $1 \leq j<k \leq \kappa_{0}$, respectively, we get

$$
\begin{equation*}
\operatorname{Re}\left(i \mu_{j} E\right)-\frac{1}{4} \mu_{j}^{2}=\sum_{k=1}^{\kappa_{0}}\left|e_{j, j k}\right|^{2}, e_{j, j k} \cdot e_{k, j k}=0 \text { for } 1 \leq j<k \leq \kappa_{0} \tag{3.10}
\end{equation*}
$$

Combining this with (3.2), we know only one of $e_{1,1 j} 1 \leq j \leq \kappa_{0}$ is non zero. From (3.2) and (3.10), we obtain

$$
\frac{1}{4} \mu_{j}=\operatorname{Re}\left(i \mu_{j} E\right)-\sum_{k=1}^{\kappa_{0}} \frac{1}{\mu_{j}}\left|\frac{\mu_{j} \mu_{1 k}}{\mu_{1} \mu_{k j}} e_{1,1 k}\right|^{2}
$$

Together with $\mu_{1} \leq \cdots \leq \mu_{\kappa_{0}}$, we get $e_{1,12}=\cdots=e_{1,1 \kappa_{0}}=0$ and $\mu_{2}=\cdots=\mu_{\kappa_{0}}$. Furthermore, we obtain

$$
\begin{align*}
& \frac{1}{4}\left(\mu_{1}-\mu_{2}\right)=\frac{1}{\mu_{2}}\left|e_{2,12}\right|^{2}-\frac{1}{\mu_{1}}\left|e_{1,11}\right|^{2}=\frac{\mu_{2}-\left(\mu_{1}+\mu_{2}\right)}{\mu_{1}\left(\mu_{1}+\mu_{2}\right)}\left|e_{1,11}\right|^{2}=-\frac{1}{\mu_{1}+\mu_{2}}\left|e_{1,11}\right|^{2} . \\
& \operatorname{Im}(E)=-\frac{1}{4} \mu_{1}-\frac{1}{\mu_{1}} \cdot \frac{\mu_{2}^{2}-\mu_{1}^{2}}{4}=-\frac{\mu_{2}^{2}}{4 \mu_{1}} \tag{3.11}
\end{align*}
$$

Thus

$$
\begin{equation*}
\left|e_{1,11}\right|^{2}=\frac{1}{4}\left(\mu_{2}^{2}-\mu_{1}^{2}\right), \quad \operatorname{Im}(E)=-\frac{\mu_{2}^{2}}{4 \mu_{1}} \tag{3.12}
\end{equation*}
$$

Collecting $z^{\alpha} \bar{z}^{\beta}$ term with $|\alpha|=|\beta|=2$, we obtain

$$
\begin{align*}
\sum_{j=1}^{\kappa_{0}}\left|z_{j}^{2}\right| \operatorname{Re}\left(\mu_{j}|z|^{2}\right)= & \sum_{j=1}^{\kappa_{0}} \mu_{j}\left|z_{j}\right|^{4}+\sum_{1 \leq j<k \leq \kappa_{0}}\left(\mu_{j}+\mu_{k}\right)\left|z_{j} z_{k}\right|^{2} \tag{3.13}\\
& +\sum_{j=1}^{\kappa_{0}} \mu_{j}\left|z_{j}\right|^{2} \cdot\left(|z|^{2}-\sum_{k=1}^{\kappa_{0}}\left|z_{k}\right|^{2}\right)
\end{align*}
$$

This equation is a trivial formula.
Collecting $z^{\alpha} \bar{z}^{\beta} u$ term with $|\alpha|+|\beta|=3$, we obtain

$$
\begin{align*}
& \sum_{j=1}^{\kappa_{0}}\left|z_{j}^{2}\right| \cdot 2 \operatorname{Re}\left(\frac{i}{2} \mu_{j} q^{(1)}(z)\right) \\
= & \sum_{j=1}^{\kappa_{0}} 2 \operatorname{Re}\left(\mu_{j j} \overline{z_{j}^{2}} \cdot e_{j, j j} z_{j}\right)+\sum_{1 \leq j<k \leq \kappa_{0}} 2 \operatorname{Re}\left(\mu_{j k} \overline{z_{j} z_{k}} \cdot\left(e_{j, j k} z_{k}+e_{k, j k} z_{j}\right)\right) . \tag{3.14}
\end{align*}
$$

We can easily derive from this equation the following

$$
\begin{equation*}
-\frac{i}{2} \mu_{j} \cdot 2 i \frac{\mu_{i j}}{\mu_{j}} e_{1,1 j}=\mu_{j j} e_{j, j j}, \quad e_{j, j k} \cdot e_{k, j k}=0 \text { for } 1 \leq j<k \leq \kappa_{0} . \tag{3.15}
\end{equation*}
$$

These equations were achieved before and we do not get new equations.

Consideration of the Degree 5 Terms By considering the degree 5 terms, we get

$$
\begin{align*}
& \sum_{j=1}^{\kappa_{0}}\left|z_{j}^{2}\right| \cdot 2 \operatorname{Re}\left\{\frac{i}{2} \mu_{j}\left(-i|z|^{2}\right) \cdot q^{(1)}(z)\right\}=\sum_{j=1}^{\kappa_{0}} 2 \operatorname{Re}\left\{\mu_{j j}{\overline{z_{j}}}^{2} \cdot e_{j, j j} z_{j}\left(i|z|^{2}\right)\right\} \tag{3.16}\\
& +\sum_{1 \leq j<k \leq \kappa_{0}} 2 \operatorname{Re}\left\{\mu_{j k} \overline{z_{j} z_{k}} \cdot\left(e_{j, j k} z_{j}\left(i|z|^{2}\right)+e_{k, k j} z_{k}\left(i|z|^{2}\right)\right)\right\}
\end{align*}
$$

Deleting $|z|^{2}$ from both sides and consider the terms $z_{j}{\overline{z_{j}}}^{2}$ and $\left|z_{j}^{2} \overline{z_{k}}\right|$, respectively, we can easily derive from this equation the following

$$
\begin{equation*}
-\frac{i}{2} \mu_{j} \cdot 2 i \frac{\mu_{i j}}{\mu_{j}} e_{1,1 j}=\mu_{j j} e_{j, j j}, \quad e_{j, j k} \cdot e_{k, j k}=0 \text { for } 1 \leq j<k \leq \kappa_{0} \tag{3.17}
\end{equation*}
$$

As before, we do not get new equations.
Consideration of the Degree 6 Terms By considering the degree 6 terms, we get

$$
\begin{align*}
& \sum_{j=1}^{\kappa_{0}}\left|z_{j}^{2}\right| \cdot 2 \operatorname{Re}\left\{\frac{i}{2} \mu_{j} \cdot E|z|^{4}-\frac{\mu_{j}^{2}}{4}|z|^{4}\right\} \\
= & \sum_{j=1}^{\kappa_{0}}\left|e_{j, j j} z_{j}\right|^{2} \cdot|z|^{4}+\sum_{1 \leq j<k \leq \kappa_{0}}\left|e_{j, j k} z_{j}+e_{k, k j} z_{k}\right|^{2} \cdot|z|^{4} \tag{3.18}
\end{align*}
$$

Notice that this equation is equivalent to (3.10).
In conclusion, the map F must be of form (1.1) with relations in (1.2). The arguments above also showed that this map is indeed a map in $\operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$. This completes the proof of Theorem 1.1.

References

[1] Alexander H. Proper holomorphic maps in \mathbf{C}^{n} [J]. Indiana Univ. Math. Journal, 1977, 26: 137-146.
[2] Andrew J, Huang X, Ji S, Yin W. Mapping \mathbb{B}^{n} into $\mathbb{B}^{3 n-3}$ [J]. Comm. Anal. Geom., 2016, 24(2): 270-300.
[3] Chen X, Ji S Yin W. Mappings between balls with geometric and degeneracy rank two [J]. Sci. China Math., https://doi.org/10.1007/s11425-017-9214-6, 2018.
[4] Ebenfelt P. Partial rigidity of degenerate CR embeddings into spheres [J]. Advances in Math., 2013, 239: 72-96.
[5] Faran J. The linearity of proper holomorphic maps between balls in the low codimension case [J]. J. Diff. Geom., 1986, 24: 15-17.
[6] Faran F, Huang X, Ji S, Zhang Y. Rational and polynomial maps between balls [J]. Pure Appl. Math. Quarterly, 2010, 6(3): 829-842.
[7] Hamada H. Rational proper holomorphic maps from \mathbf{B}^{n} into $\mathbf{B}^{2 n}$ [J]. Math. Ann., 2005, 331 (3): 693-711.
[8] Huang X. On a linearity problem of proper holomorphic mappings between balls in complex spaces of different dimensions [J]. J. Diff. Geom., 1999, 51(1): 13-33.
[9] Huang X. On a semi-rigidity property for holomorphic maps [J]. Asian J. Math., 2003, 7: 463-492.
［10］Huang X，Ji S．Mapping \mathbb{B}^{n} into $\mathbb{B}^{2 n-1}$［J］．Invent．Math．，2001，145：219－250．
［11］Huang X，Ji S，Xu D．A new gap phenomenon for proper holomorphic mappings from \mathbb{B}^{n} to \mathbb{B}^{N} ［J］．Math．Research Letter，2006，3（4）：515－529．
［12］Huang X，Ji S，Yin W．Recent progress on two problems in several complex variables［J］．Pro－ ceedings of International Congress of Chinese Mathematicians 2007，Vol．I，563－575，International Press， 2009.
［13］Huang X，Ji S，Yin W．On the third gap for proper holomorphic maps between balls［J］．Math． Ann．，2014，358：115－142．
［14］Gul N，Ji S，Yin W．Characterization of holomorphic maps from n－ball to $3 n-2$－ball［J］．preprint．
［15］Ji S，Yin W．Upper boundary points of the gap intervals for rational maps between balls［J］．Asian J．Math．，2018， 22 （3）：493－506．
［16］Lebl J．Normal forms，hermitian operators，and CR maps of spheres and hyperquadrics［J］．Michigan Math．J．，2011， 60 （3）：603－628．
［17］Poincaré H．Les fonctions analytiques de deux variables et la représentation conforme［J］．Ren．Cire． Mat．Palermo，1907， 23 （2）：185－220
［18］Yuan Y，Zhang Y．Rigidity for local holomorphic isometric embeddings from \mathbb{B}^{n} into $\mathbb{B}^{N_{1}} \times \cdots \times \mathbb{B}^{N_{m}}$ up to conformal factors［J］．J．Differential Geom．，2012， 90 （2）：329－349．
［19］Webster S．On mapping an（ $n+1$ ）－ball in the complex space［J］．Pac．J．Math．，1979，81：267－272．

一类 \mathbb{B}^{n} 到 \mathbb{B}^{N} 上全纯逆紧映射的刻画

杨必韬，尹万科

（武汉大学数学与统计学院，湖北武汉 430072）
摘要：本文主要研究单位球 \mathbb{B}^{n} 到单位球 \mathbb{B}^{N} 上全纯逆紧映射的问题。对于 \mathbb{B}^{n} 到 \mathbb{B}^{N} 的全纯逆紧映射映射，当其几何秩为 κ_{0} 且 $N=n+\frac{\left(2 n-\kappa_{0}-1\right) \kappa_{0}}{2}$ 时，给出了其正规化映射的一个刻画。

关键词：全纯逆紧映射；全纯等价；几何秩；退化秩
$\mathrm{MR}(2010)$ 主题分类号： 32 H 35 中图分类号：O174．56

[^0]: ＊Received date：2017－12－26 Accepted date：2018－04－11
 Foundation item：The second author is supported in part by National Natural Science Foundation of China（11571260； 11722110 ）．

