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Abstract: In this paper, by using Hardy space’s properties and elementary calculations, we

study boundary characterization and boundary multipliers of analytic Moerry space, and Toeplitz

operators acting on Hardy space to analytic Moerry space are also investigated. For the above

questions, the necessary and sufficient conditions are obtained.
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1 Introduction

Denote by T the boundary of the open unit disk D in the complex plane C. Let H(D)

be the space of analytic functions in D. For 0 < p < ∞, the Hardy space H p(D) consists of

functions f ∈ H(D) such that

‖f‖Hp = sup
0<r<1

(
1

2π

∫ 2π

0

|f(reiθ)|pdθ

)1/p

< ∞.

Let H∞ be the space of bounded analytic function on D consisting of functions f ∈ H(D)

with

‖f‖∞ = sup
z∈D

|f(z)| < ∞.

We refer to [1, 2] for Hp and H∞ spaces.

For λ ∈ (0, 1], denote by L2,λ(T) the Morrey space of all Lebesgue measurable functions

f on T that satisfy

‖f‖L2,λ(T) = sup
I⊆T

(
|I|−λ

∫

I

|f(ζ) − fI |
2|dζ|

) 1

2

< ∞,
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where |I| denotes the length of the arc I and

fI =
1

|I|

∫

I

f(ζ)|dζ|.

Clearly, L2,1(T) coincides with BMO(T), the space of functions with bounded mean oscilla-

tion on T (cf. [3, 4]). Similar to a norm on BMO(T) given in [4, p. 68], a norm on L2,λ(T)

can be defined by

|||f |||L2,λ(T) =

∣∣∣∣
∫

T

f |dζ|

∣∣∣∣ + ‖f‖L2,λ(T).

From Xiao’s monograph [5, p. 52],

BMO(T) ⊆ L2,λ1(T) ⊆ L2,λ2(T) ⊆ L2(T), 0 < λ2 < λ1 < 1.

It is well known that if f ∈ H2, then its non-tangential limit f(ζ) exists almost everywhere

for ζ ∈ T. For λ ∈ (0, 1], the analytic Morrey space L2,λ(D) is the set of f ∈ H2 with

f(ζ) ∈ L2,λ(T). It is clear that L2,1(D) is BMOA, the analytic space of functions with

bounded mean oscillation (cf. [3, 4]). For λ ∈ (0, 1], L2,λ(D) is located between BMOA

and H2. It is worth mentioning that there exists a isomorphism relation between analytic

Morrey spaces and Möbius invariant Qp spaces via fractional order derivatives of functions

(see [6]). Recall that for 0 < p < ∞, a function f ∈ H(D) belongs to the space Qp if

sup
a∈D

∫

D

|f ′(z)|2
(
1 − |σa(z)|2

)p
dA(z) < ∞,

where dA is the area Lebesgue measure on D and σa(z) = a−z
1−az

is the Möbius transformation

of the unit disk D interchanging a and 0. See [5, 7] for a general exposition on Qp spaces.

Recently, the interest in L2,λ(D) spaces grew rapidly (cf. [8–13]).

An important problem of studying function spaces is to characterize the multipliers of

such spaces. For a Banach function space X, denote by M(X) the class of all multipliers on

X. Namely,

M(X) = {f ∈ X : fg ∈ X for all g ∈ X}.

Bao and Pau [14] characterized boundary multipliers of Qp spaces. Stegenga [15] described

multipliers of BMO(T) which is equal to L2,1(T). It is natural to consider multipliers of

L2,λ(T) with λ ∈ (0, 1) in this paper.

Given a function ϕ ∈ L2(T). Let Tϕ be the Toeplitz operator on H2 with symbol ϕ

defined by

Tϕf(z) =
1

2π

∫

T

ϕ(ζ)f(ζ)

1 − ζz
|dζ|, f ∈ H2, z ∈ D.

For the study of Toeplitz operators on Hardy spaces and Bergman spaces, see, for example,

[16, 17]. We refer to [9] for the results of Toeplitz operators on L2,λ(D) spaces.

The aim of this paper is to consider boundary multiplies and Toeplitz operators associ-

ated with analytic Morrey spaces. In Section 2, using a characterization of L2,λ(T) in terms
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of functions with absolute values, we characterize the multipliers of L2,λ(T). In Section 3,

we characterize the boundedness and compactness of Toeplitz operators from Hardy spaces

to analytic Morrey spaces.

Throughout this paper, we write a . b if there exists a constant C such that a ≤ Cb.

Also, the symbol a ≈ b means that a . b . a.

2 Boundary Multiplies of Analytic Morrey Spaces

By the study of certain integral operators on analytic Morrey spaces, Li, Liu and Lou

[8] proved that M(L2,λ(D)) = H∞. In this section, applying a characterization of L2,λ(T)

in terms of absolute values of functions, we characterize M(L2,λ(T)), boundary multiplies of

analytic Morrey spaces.

Given f ∈ L2(T), let f̂ be the Poisson extension of f . Namely,

f̂(z) =

∫

T

f(ζ)dµz(ζ), z ∈ D,

where

dµz(ζ) =
1 − |z|2

2π|ζ − z|2
|dζ|.

Let 0 < λ < 1. From [5, p.52], f ∈ L2,λ(T) if and only if

sup
z∈D

(1 − |z|2)1−λ

∫

D

|∇f̂(w)|2(1 − |σz(w)|2)dA(w) < ∞, (2.1)

where ∇ is the Laplace operator. Also, f ∈ L2,λ(D) if and only if

‖f‖L2,λ(D) = sup
z∈D

(1 − |z|2)1−λ

∫

D

|f ′(w)|2(1 − |σz(w)|2)dA(w) < ∞. (2.2)

We need the following useful inequality (see [18, Lemma 2.5]).

Lemma A Suppose that s > −1, r, t ≥ 0, and r + t − s > 2. If t < s + 2 < r, then

∫

D

(1 − |w|2)s

|1 − wz|r|1 − wζ|t
dA(w) .

(1 − |z|2)2+s−r

|1 − zζ|t

for all z, ζ ∈ D.

Now we characterize L2,λ(T) via absolute values of functions as follows. See [9] for the

analytic version of the following result.

Theorem 2.1 Let 0 < λ < 1 and f ∈ L2(T). Then f ∈ L2,λ(T) if and only if

sup
a∈D

(1 − |a|2)1−λ

∫

D

∫

T

|f(ζ)|2dµz(ζ)|σ′
a(z)|2dA(z) < ∞.

Proof Let f ∈ L2(T). It is well known (cf. [19, p. 564]) that

∫

T

|f(ζ)|2dµz(ζ) − |f̂(z)|2 ≈

∫

D

|∇f̂(w)|2(1 − |σz(w)|2)dA(w)
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for all z ∈ D. Combining this with the Fubini theorem, we obtain that for any a ∈ D,

∫

D

∫

T

|f(ζ)|2dµz(ζ)|σ′
a(z)|2dA(z)−

∫

D

|f̂(z)|2|σ′
a(z)|2dA(z)

≈

∫

D

|∇f̂(w)|2
∫

D

(1 − |σz(w)|2)|σ′
a(z)|2dA(z)dA(w)

≈ (1 − |a|2)2
∫

D

|∇f̂(w)|2(1 − |w|2)

∫

D

1 − |z|2

|1 − zw|2|1 − az|4
dA(z)dA(w).

By Lemma A and the same argument in [19, p. 563], we get that

∫

D

1 − |z|2

|1 − zw|2|1 − az|4
dA(z) ≈

1

(1 − |a|2)|1 − aw|2
.

Thus,

∫

D

∫

T

|f(ζ)|2dµz(ζ)|σ′
a(z)|2dA(z)−

∫

D

|f̂(z)|2|σ′
a(z)|2dA(z)

≈

∫

D

|∇f̂(w)|2
(1 − |a|2)(1 − |w|2)

|1 − aw|2
dA(w)

≈

∫

D

|∇f̂(w)|2(1 − |σa(w)|2)dA(w) (2.3)

for all a ∈ D.

Let

sup
a∈D

(1 − |a|2)1−λ

∫

D

∫

T

|f(ζ)|2dµz(ζ)|σ′
a(z)|2dA(z) < ∞.

From (2.1) and (2.3), we get that f ∈ L2,λ(T).

On the other hand, let f ∈ L2,λ(T). Without loss of generality, we may assume that f is

real valued. Denote by f̃ the harmonic conjugate function of f̂ . Set g = f̂ + if̃ . The Cauchy-

Riemann equations give |∇f̂(z)| ≈ |g′(z)|. Thus g ∈ L2,λ(D). By the growth estimates of

functions in L2,λ(D) (cf. [8, Lemma 2]), one gets that

|f̂(z)| ≤ |g(z)| . (1 − |z|)
λ−1

2 ‖g‖L2,λ(D)

for all z ∈ D. Consequently,

sup
a∈D

(1 − |a|2)1−λ

∫

D

|f̂(z)|2|σ′
a(z)|2dA(z)

. ‖g‖2
L2,λ(D) sup

a∈D

(1 − |a|2)3−λ

∫

D

(1 − |z|)λ−1

|1 − az|4
dA(z)

. ‖g‖2
L2,λ(D).

Combining this with (2.3), f ∈ L2,λ(T), we get that

sup
a∈D

(1 − |a|2)1−λ

∫

D

∫

T

|f(ζ)|2dµz(ζ)|σ′
a(z)|2dA(z) < ∞.
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The proof is completed.

Denote by L∞(T) the space of essentially bounded measurable functions on T. Using

Theorem 2.1, we characterize multipliers of L2,λ(T) as follows.

Theorem 2.2 Let 0 < λ < 1. Then M(L2,λ(T)) = L∞(T).

Proof Let f ∈ L∞(T) and g ∈ L2,λ(T). From Theorem 2.1, one gets that

sup
a∈D

(1 − |a|2)1−λ

∫

D

∫

T

|f(ζ)g(ζ)|2dµz(ζ)|σ′
a(z)|2dA(z)

≤ ‖f‖L∞(T) sup
a∈D

(1 − |a|2)1−λ

∫

D

∫

T

|g(ζ)|2dµz(ζ)|σ′
a(z)|2dA(z)

< ∞.

Applying Theorem again, we know that fg ∈ L2,λ(T). Thus L∞(T) ⊆ M(L2,λ(T)).

On the other hand, let f ∈ M(L2,λ(T)). By the closed graph theorem, there exists a

positive constant C such that |||fg|||L2,λ(T) ≤ C|||g|||L2,λ(T) for any g ∈ L2,λ(T). Set h = f/C.

Clearly, h ∈ L2,λ(T). We deduce that |||hn|||L2,λ(T) ≤ |||h|||L2,λ(T) for all positive integer n.

As mentioned in Section 1, L2,λ(T) ⊆ L2(T). Form the closed graph theorem again, there

exists a positive constant C1 satisfying

(∫

T

|f(ζ)|2|dζ|

)1/2

≤ C1|||f |||L2,λ(T)

for all f ∈ L2,λ(T). Consequently,

(∫

T

|hn(ζ)|2|dζ|

)1/2

≤ C1|||h
n|||L2,λ(T) ≤ C1|||h|||L2,λ(T) < ∞.

Since n is arbitrary, we know that h ∈ L∞(T). Hence f ∈ L∞(T). The proof is completed.

3 Toeplitz Operators from Hardy Spaces to Analytic Morrey Spaces

In this section, we characterize the boundedness and compactness of Toeplitz operators

from the Hardy space Hp to the analytic Morrey space L2,1− 2

p (D) for 2 < p < ∞. Toeplitz

operators on analytic Morrey spaces were investigated in [9]. We refer to [8] for the study

of some integral operators from Hp to L2,1− 2

p (D) for 2 < p < ∞.

Following [9], we use a norm of L2,λ(D), λ ∈ (0, 1), defined by

|||f |||L2,λ(D) = |f(0)| + sup
w∈D

(
(1 − |w|2)1−λ

∫

D

∫

T

|f(ζ)|2dµz(ζ)|σ′
w(z)|2dA(z)

)1/2

.

The following well-known lemma can be found in [17].

Lemma B Suppose s > 0 and t > −1. Then there exists a positive constant C such

that ∫

D

(1 − |w|2)t

|1 − z̄w|2+t+s
dA(w) ≤

C

(1 − |z|2)s

for all z ∈ D.
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Applying some well-known results of Toeplitz operators and composition operators on

Hardy spaces, we characterize the boundedness of Tϕ from Hardy spaces to analytic Morrey

spaces as follows.

Theorem 3.3 Let 2 < p < ∞ and ϕ ∈ L2(T). Then the Toeplitz operator Tϕ is

bounded from Hp to L2,1− 2

p (T) if and only if ϕ ∈ L∞(T).

Proof Suppose that Tϕ is bounded from Hp to L2,1− 2

p (D). For b ∈ D, let

fb(z) =
(1 − |b|2)1−

1

p

1 − bz
, z ∈ D.

Note that p > 2. By the well known estimates in [20, p. 9], one gets that

sup
b∈D

∫ 2π

0

|fb(e
iθ)|pdθ = sup

b∈D

(1 − |b|2)p−1

∫ 2π

0

1

|1 − beiθ|p
dθ < ∞.

Thus functions fb belong to Hp uniformly for all b ∈ D. Consequently,

∞ > |||Tϕfb|||
2

L
2,1− 2

p (D)
& (1 − |b|2)

2

p

∫

D

∫

T

|Tϕfb(ζ)|2dµz(ζ)|σ′
b(z)|2dA(z)

≈ (1 − |b|2)
2

p

∫

D

∫

T

|Tϕfb(ζ)|2dµσb(z)(ζ)dA(z)

& (1 − |b|2)
2

p

∫

D

|Tϕfb(σb(z))|2dA(z)

& (1 − |b|2)
2

p |Tϕfb(b)|
2.

Note that

(1 − |b|2)
2

p |Tϕfb(b)|
2 =

1

4π2

∣∣∣∣
∫

T

ϕ(ζ)(1 − |b|2)

(1 − ζb)(1 − bζ)
|dζ|

∣∣∣∣
2

= |ϕ̂(b)|2.

Thus sup
b∈D

|ϕ̂(b)| < ∞. By [1, p. 5], ϕ ∈ L∞(T).

On the other hand, let ϕ ∈ L∞(T). It is well known that Tϕ is bounded on Hp (cf.

[21–23]). Namely, ‖Tϕg‖Hp . ‖ϕ‖L∞(T)‖g‖Hp for all g ∈ Hp. Let f ∈ Hp, we deduce that

|||Tϕf |||
L

2,1− 2

p (D)

=|Tϕf(0)| + sup
w∈D

(
(1 − |w|2)

2

p

∫

D

∫

T

∣∣∣ 1

2π

∫

T

ϕ(ζ)f(ζ)

1 − ζξ
|dζ|

∣∣∣
2

dµz(ξ)|σ
′
w(z)|2dA(z)

)1/2

.‖ϕ‖L∞(T)‖f‖H1 + sup
w∈D

(
(1 − |w|2)

2

p

∫

D

∫

T

∣∣∣ 1

2π

∫

T

ϕ(ζ)f(ζ)

1 − ζσz(ξ)
|dζ|

∣∣∣
2

|dξ||σ′
w(z)|2dA(z)

)1/2

.‖ϕ‖L∞(T)‖f‖Hp + sup
w∈D

(
(1 − |w|2)

2

p

∫

D

‖(Tϕf) ◦ σz‖
2
H2 |σ′

w(z)|2dA(z)
)1/2

.‖ϕ‖L∞(T)‖f‖Hp + sup
w∈D

(
(1 − |w|2)

2

p

∫

D

‖(Tϕf) ◦ σz‖
2
Hp |σ′

w(z)|2dA(z)
)1/2

.

By the well-known characterization of composition operators on H p (cf. [17, Theorem

11.12]), we get that

‖(Tϕf) ◦ σz‖Hp ≤

(
1 + |z|

1 − |z|

)1/p

‖Tϕf‖Hp .
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Thus,

|||Tϕf |||
L

2,1− 2

p (D)

. ‖ϕ‖L∞(T)‖f‖Hp + sup
w∈D

(
(1 − |w|2)

2

p ‖Tϕf‖2
Hp

∫

D

(1 − |z|)−2/p|σ′
w(z)|2dA(z)

)1/2

. ‖ϕ‖L∞(T)‖f‖Hp + ‖ϕ‖L∞(T)‖f‖Hp sup
w∈D

(
(1 − |w|2)

2

p
+2

∫

D

(1 − |z|)−2/p

|1 − wz|4
dA(z)

)1/2

.

Note that p > 2. By Lemma B, we get that |||Tϕf |||
L

2,1− 2

p (D)
. ‖ϕ‖L∞(T)‖f‖Hp . The proof

is completed.

We characterize the compactness of Toeplitz operators from Hp to L2,1− 2

p (T) as follows.

Theorem 3.4 Let 2 < p < ∞ and ϕ ∈ L∞(T). Then the Toeplitz operator Tϕ is

compact from Hp to L2,1− 2

p (D) if and only if ϕ = 0.

Proof It suffices to prove the necessity. Let {an}
∞
n=1 ⊆ D be a sequence such that

|an| → 1 as n → ∞. Set

fn(z) =
(1 − |an|

2)1−
1

p

1 − anz
, z ∈ T.

As explained in the proof of Theorem 3.3, sup
n

‖fn‖Hp < ∞. Clearly, fn → 0 uniformly on

compact subsets of D as n → ∞. Since Tϕ is compact, we get that

lim
n→∞

‖Tϕfn‖
L

2,1− 2

p (D)
= 0.

By the proof of Theorem 3.3, one gets that |ϕ̂(an)| . ‖Tϕfn‖
L

2,1− 2

p (D)
for all n. Consequently,

|ϕ̂(an)| → 0, n → ∞. Since an is arbitrary and ϕ̂ is harmonic, by the maximum principle,

ϕ̂ ≡ 0 on D. Hence ϕ = 0 on T. We finish the proof.
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