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Abstract: In this paper, we investigate the problem of testing the conditional symmetry of
a random vector given another random vector. We propose a new test based on the concept of
conditional energy distance. The test statistic has the form of a U-statistic with random kernel.
By using the theory of U-statistic, we prove that the test statistic is asymptotically normal under
the null hypothesis of conditional symmetry and consistent against any conditional asymmetric
distribution.
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1 Introduction

In many regression models, specially the econometric models, for the purpose of iden-
tification, some distributional assumptions are often imposed on the error term. The as-
sumptions are conditional moment restrictions, independence between observations, and
conditional symmetry around zero given the independent variables. There were a few semi-
parametric estimators proposed under conditional symmetry. Manski [1] and Newey [2] es-
timated regression models under conditional symmetry. Powell [3] and Newey [4] proposed
semiparametric estimations for Tobit models under conditional symmetry.

Despite the wide use of the property of conditional symmetry, tests for conditional sym-
metry were not addressed very much in the literature. The first tests were proposed by
Powell [5] for censored regression models and by Newey and Powell [6] for linear regression
models via asymmetric least squares estimation. However these tests are unlikely to be con-
sistent against all conditional asymmetric distributions. Zheng [7] proposed a consistent test

of conditional symmetry using a kernel method, but the test statistic contains integral term
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and is hard to implement. Bai and Ng [8] proposed an alternative test for conditional sym-
metry for time series models. The test relied on the correct specification of both conditional
mean and conditional variance. Hyndman and Yao [9] developed a bootstrap test for the
symmetry of conditional density functions based on their improved methods for conditional
density estimation, but they didn’t discuss the asymptotic properties of the test statistic, so
it is not clear whether the test be consistent or not. Su [10] gave a simple consistent non-
parametric test of conditional symmetry based on the principle of conditional characteristic
functions, and he [11] also gave an unconditional method by transforming the conditional
symmetry test problem to a unconditional test one. Both of the test statistics he presented
in paper need a given characteristic function of the probability measure for the value space
of the conditional variable.

In this paper, we propose a simple test for conditional symmetry based on the concept
of conditional energy distance. The test is shown to be asymptotically normal under the
null hypothesis of conditional symmetry and consistent against any conditional asymmetric
distribution. Our test statistic only contains the Euclidean distances and kernel function, so

it is easy to compute.

2 The Test Statistic for Conditional Symmetry

Székely [12] introduced a new concept named energy distance to measure the difference
between two independent probability distributions. If X and Y are independent random
vectors in R? with cumulative distribution functions (cdf) F' and G respectively, then the

energy distance between the distributions F' and G is defined as
e(F,G)=2E|X -Y|—-E|X - X'| -E|Y —-Y|, (2.1)

where X’ is an i.i.d. copy of X and Y’ is an i.i.d. copy of Y, F is the expected value, and | . |
denotes the Euclidean norm. One can also write ¢(F,G) as €(X,Y), and call it the energy
distance of X and Y. Székely [12] proved that for real-valued random variables this distance

is exactly twice Harald Cramér’s distance, that is
2/ (F(t) - G(t)*dt =2E|X - Y| - E|X - X'| - E|Y - Y'|.

In higher dimensions, however, the two distances are different because the energy distance

is rotation invariant while Cramér’s distance is not. The equality becomes

_ 2
2E|X - Y|-E|X -X'|-ElY -Y'| = 1/ |¢X(t?t|pf§‘“(t” dt, (2.2)
Cp Jre

where ¢x(t) is X’s characteristic function and ¢y (¢) is Y’s characteristic function, ¢, =
A 1)/2
(%3
possible to use £(F, G) for testing goodness-of-fit, homogeneity, etc. in a consistent way. We

. Thus ¢(F, G) > 0 with equality to zero if and only if F' = G. This property makes it

shall draw the consistent test statistic for conditional symmetry from the thought of energy

distance.
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Let X be a p dimensional random vector in Euclidean space RP, Z be a r dimensional
random vector in Euclidean space R". Denote f(z|z) as the conditional density function of

X given Z. Consider the hypothesis
Hy: f(x|z) = f(—x|z) for allz € RP, z € S(Z), (2.3)

where S(Z) denotes the support of the density function of Z. Note that the null hypothesis

(2.3) can be expressed equivalently as
Hy: X|Z2 -Xx|z. (2.4)

Analogous to the concept of energy distance for two independent vectors, we can also
define the conditional energy distance between X and —X given Z as follows.

Definition 2.1 The conditional energy distance e(X,—X|Z) between X and —X with
finite first moment given Z is defined as the square root of

/ lpx |2 (t) — dx1z(—t)?

|t|p+1

(X, ~X|2) = [x12(t) — dxiz(~0)|I* := Ci

P

dt, (2.5)

where ¢x|z(t) is the conditional characteristic function of X given Z. Therefore Hj holds if
and only if (X, —X|Z) = 0.

Let W; = (X, Z;),i = 1,2,--- ,n be a sample from the distribution of (X, Z) and denote
W = (X,Z) = {W,Ws,--- ,W,}. Then for the specific value of £2(X,—X|Z) when given
Z =z, e(X,—X|Z) can be rewritten as the form of expectation by the following lemma.

Lemma 2.1 ¢*(X,—X|Z = z) can be rewritten as the form of
(X, ~X|Z = 2) =2E[| X, + Xo| — | X1 — Xo||Z1 = Z5 = 2]. (2.6)
Therefore, X|Z = z 2 —X|Z = z for any z if and only if
E| X1+ Xo| — | X1 — Xs||Z1 =Zy = 2] = 0.
Proof Given the event Z = z, we consider

|6x12=2(t) = dx|z=(—1)|?
:¢X|Z:z(t>m + ¢X\Z:z(_t)m

— Ox1 72 (1) dx|z=2(—t) — dx|z=2(—t)bx| 2= (t)
=FElexp(i < t,X; — Xy >)|Z) = 2, Z5 = 2]

+ Elexp(i < t,— X1+ X2 >)|Z1 = 2,25 = 2]

— Elexp(i < t, X1+ Xy >)|Z1 = 2,725 = 2]

— Elexp(i < t,—X1 — X5 >)|Zy = 2,75 = 7]
=1—FElexp(i <t, X1+ Xo>)|Z1=2,Z,=2]+1

— Elexp(i < t,— X1 — X5 >)|Z1 = 2,75 = 2]

— (1= Elexp(i < t, X1 — Xy >)|Z1 = 2,25 = z])

— (1= Elexp(i <t,—X1 + X5 >)|Zy = 2,25 = z]).
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According to the equation [12],
1 — exp(i(t, X))
[ a= a, @
we have
(X, =X|Z = 2) = || ¢x)2=:(t) = ox1z=:(-1)|

1 =z t) — =z —t 2

‘t|p+1

o Je
Let
5. = B[ 30 -x102)|. (2:8)

where f(Z) is the density function of Z. Consequently, X|Z 2_x |Z if and only if S, =0

Naturally, we can choose test statistic for Hy as

1

Un =3 Z (12X + X;5] = [Xs — X ))wi(Zr)w; (Zk)
™ i<ji<k

5 X+ X~ X~ X, DK a(Zi— Z)Ku(Z, — 2)
<<k

1

= o 2 (Kot X] = X = X K,

i<j<k

where Ky, = K(H ' (Z; — Z)).
The test statistic U,, has the advantage that it has zero mean under Hy and hence it

does not have a finite sample bias term. We show the consistent of U,, and its asymptotical

normality under Hj.
Here, we choose the Gaussian kernel

1
Kp(w) = [H|'K(H ' u) = (2r) "5 [H| ' exp ( - 5u’Hr%.)
in R", where H is a diagonal matrix diag{h,h, - ,h} determined by bandwidth h. With
the Gaussian kernel, ) w;(Z)/n is known to be consistent under the following regularity

conditions.

(C1)
/uK( )du—O/ K(u du_l/ K (u)|du < oo,

/K2 du<oo/ u)du < oco.

(C2) h" — 0 and nh"™ — oo as n — oo. This requires h to be chosen appropriately

according to n.
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(C3) The density function of Z and the conditional density function f(:|z) are twice

differentiable and all of the derivatives are bounded.

3 Asymptotical Normality of U, under Null Hypothesis

Using the theory of U-statistic discussed by Fan and Li [13] and Lee [14], we have the
following asymptotical normality.

Theorem 3.1 (Weak convergence) Assume that conditions (C1)—(C3) hold and the
second moment of X exists, if the conditional density of X given Z is symmetric and if
h — 0 and nh” — 00 as n — oo, we have nh™/2U, —%— N(0,0?), where o2 is given in
(3.5). o

Proof Let P,(Wy, Wy, W3) = (| X1+ Xa|—| X1 — X2|) K13K23. Note that P, (W;, Wa, W3)

is not symmetric with respect to Wi, Wy, W3, so we symmetrize P, as

1
Pn(le W27 W3) - g[Pn(le W27 W3) + Pn(W?n W27 Wl) + Pn(W17 W37 WQ)]’

then U,, can be expressed as a U-statistic of degree 3 with random kernel,

U, = 03% > P (Wi, Wy, Wh).
n i<j<k

Denote that

P (W;) = E[P, (W1, Wy, W3)|W;],i =1, 2,3,

P, (Wi, ,W,) = E[Py(Wy, W, W3)|[Wy, -+ W], c= 2,3,

Prni(W1) = E[P, (W1, Wy, W3)|W4],

PoeWy, -+ W) = E[P,(Wy, Wo, W3)|Wq,--- W], c= 2,3,
and

O'Zl = Var(Pnl(Wl)), 0'7212 = Var(Png(Wl, Wg)), 0'7273 = Var(Pn(Wl, WQ, Wg)) (32)

We use Lemma B.4 in Fan and Li [13] to obtain the asymptotical distribution of U, under
Hy in the following steps.
Step 1 Under Hy, EP, (W, Wy, W3) = 0. Note that

E[P, (W1, Wy, W3)| = E[(| X1 + Xa| — | X1 — Xs|) K13K >3]

:/(|5151 + o] — |21 — @2 ) K (H ™ (21 — 23)) K (H ™' (22 — 23))
- f(x1,21) f(ma, 22) f (23, 23)dxdrodrsdzydzedzs

=h*" /(|x1 + 2a| — v — 22|) K (213) K (203) f (23 + Hz13) f (21|25 + Hz13)
- f(z3 + Hzo3) f(w2]23 + Hzo3) f(23)dx1dradzr3dzo3d 23

ZhQT/K(Z13)K(223)f(23)f(23 + Hzis) f(23 + Hzs)

. (/(|.’,E1 + .’E2| — ‘l’l — .’L’2|)f(.’,131|23 —I— Hzlg)f($2|23 —|— HZQg)dfld(IQ)legdZdiZg = O
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Step 2 Under Hy, E[P, (Wi, Wy, W3)|W;] = 0. Because
E[P,(Wy, Wy, Ws5)|Wi]
—/(|:I:1 +xg| — |y — 2o ) K (H (21 — 23)) K (H (22 — 23)) f (22, 22) f (23)dxodzodzs

:hzr /(|.’E1 + .TC2| — ‘I’l — $2|)K(213)K(223)f(21 — H213)
: f(2’1 + H(213 - Z23))f($2\21 + H(Zzg - 213))d5€2d213d223

=h*" / f(z1 4 H(z23 — 213)) (21 — Hz13) K (213) K (223)

. {/(|$1 + .’E2| — |x1 — .T2|)f($2|2§1 —|— H(Zgg — 213))d$2}d213d223 = O,
which also implies that E[P,(W;, W5, W5)|W;] = 0. Moreover, note that

E[P,(Wy, Wy, Ws3)|Ws]
_/(|x1 + o| — @y — 20| ) K(H (21 — 23)) K (H ' (22 — 23)) f (21, 21) f (€2, 22)dxy daadzy dzs
=h?" / Fzs + Hzi) f 23 + Hzos) K (213) K (223)

' { /(|x1 + x| — |21 — w|) f(w1]23 + Hz1z) f (22|23 + H223)dx1dx2}dZ13dZ23
=0

implies E[P, (W3, Wy, W1)|W;] = 0. By the definition of P,, (W7, Wa, W3), we have

E[P, (Wi, Wy, Ws)|W1]
1
:g{E[Pn(Wla Wo, W3)|Wh] + E[P, (W3, Wa, W1)|[W1] + E[P, (Wi, W3, Wy)|W1]}

=0.
Step 3 02;/02, = o(n). Obviously, under Hy,
02, = EP2 (W1, Wa), 02, = EPX(Wy, Wy, Ws).
For EP2,(Wy, W3), we have

EP2, (Wi, Ws)

1
-5 {EPﬁZ(Wl, Wa) + 4E P2 (W1, Wy) + 2E Paa(Wr, Wa) Pas (Wi, Wg)}, (3.3)
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where
EP32 (W1, W3)

= [ (J st al = oy = K (o1 = 20 K G 2 = 20 e
fxr, 21) (e, 22)dxdaadzdzs

2

—h2 / (/(|x1 2| — o1 — @)K (251) K (H™ (21 — 2) + 231) f (21 + H231)d231)2
- f(z1, 21) f (22, 22)dr1daadzdzy
o / (/(|x1 o] = o1 — 2K (zon) K (22 200) (21 + Hzsn )z )
- f(x1, 22 + Hz12) f (22, 20)dx1drodzi2d2s
=0, (h").
By considering P2,(Wy, Ws3) and EP,o(Wy, Wy)P,o(W;, W3) in a similar way, we get
P2(W1, Ws) = O, (h*) and  EPuo(Wy, Wa) Pa(Wy, Ws) = O, (h™"),
which implies that o2, = EP2, (W1, W2) = O,(h*").
For EP2(Wy, Wy, Ws), we have
EPL(Wy, Wa, W)
:é(:’)EPf(Wl, Wo, W3) + 2E P, (W, Wy, W3) P, (W3, Wy, W) (3.4)

2B P, (Wy, Wa, Ws) Po(Wy, W, Wa) + 2E P, (W, Wa, W1) P (Wi, Wa, W)
with

EP2(W,, Wy, Ws)

= [ 2l = o~ 2l PR 1 = )
K?(H (29 — 23)) f(23) f (w1, 21) f (z2, 20)dx1 d2odzy dzadzs

=1 [ (214 al = o1 = 2l PR ) K o)
f(z3) f(z1, 23 + Hz13) f (22, 23 + Hz23)dr1dxodz13d203d 23

0, (k).

Similarly, we can prove the rest three terms in (3.4) are all O,(h*"), which implies that
02, = EP*(Wy, Wa, W3) = O,(h*"). Thus 02;/02, = Op(%) = o(n) holds.
Step 4 We need to prove that, when n — oo,

EG2(W1,W>3)) +n " EPp, (W1, Ws)
(EP2y (W1, Wy))?

—0,
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where

Gn(Wi, Wy) = E(Pa(Wh, W3) P (Wo, Ws)|[W5, W),
Gn(W1, W) = E(Ppa(Wi, Ws)Ppa(Wa, Ws)|[Wy, Wy).

As we discussed in Step 3, EP2,(Wy,Ws) = O,(h3"). Thus (EP2,(Wy,W))? = O,(h®").
Analogously to EP2,(Wy, Ws), we can prove that EPL, (W1, Ws) = O,(h°") by noting that

EPY, (W, Ws)

= [ (J s+ aal = lov = wa K (o1 = 20 K (2 = 2a)f )
- f(z1, 21) f (22, 29)dx1dxodz1d2s

—h‘“"/ (/(pc1 ] = [ — wa) K (2o K (H ™ (21 = 22) + 201) f (21 + 1)z )
- f(z1, 21) f (22, 22)dx1daodz1d 2y

i / </(|x1 o] — [y — s K (z) K a + 20)f (21 + Ha)dzm )|

. f(xl, 29 + H212)f(£13'2, 22)dx1d$2d212d22
=0,(h°").

4

Moreover,
Pro(W1, W3)
= /(|I1 + .I2| — |171 — I2|)K(H71(Zl — 23))K<H71(22 — Z3))f<$2, Zg)dl‘Qng
:hT /(l’l + J}2| — |.’L'1 — .’L'2|)K(H_1(21 — Zg))K(ZQg)f((IJQ, z3 + HZQg)deQdZQg,
Pra(Wy, W)
:/(|x1 + o — |21 — wo|) K (H (21 — 23)) K (H (20 — 23)) f (1, 21)dx1d2
:hr /(.’171 + $2| — |f171 — JZ‘2|)K(213)K(H_1(22 — Zg))f(l‘l, Z3 —+ HZlg)dwldzlg.

Therefore

Gn<W17 WQ)
= E(Pp2(Wy, W) Poo(Wa, W3)|Wy, W)

_h2r/ (/(|x1 + xa| — |21 — mz’)K(mg)K(H*l(zz — 23)) f(21, 23 + Hzi3)dw1dz s
/(|ZL‘1 +mo| — |21 — w2 |) K (H (21 — 23)) K (223) f (w2, 23 + Hz23)dx2d223>
. f(Zg)ng

:h3r/ (/(|5151 + @] = |@1 — 22| ) K (223) K (22 + H (21 — 22)) f (w1, 21 + H (213 + 24))d1d213



No. 2 A consistent test for conditional symmetry and its asymptotical normality 167

. /(|371 + x| — |21 — @2|) K (24) K (203) f (22, 21 + H (223 + 24))d332d2’23)

. f(Zl + HZ4)dZ4.

We can verify that EG2 (W, W2) = O,(h™) with more transformation z; = 25 + Hzo1 in
the integral. Furthermore EG2(Wy, Ws) = O,(h"™).
Therefore, under the conditions nh™ — oo and h" — 0, we obtain that

EQW,W +n 1EPA Wi, W- O,(h™) + L0, (h°" 1
gn( 1 2))2 n ng( 1 2) — P( ) Z P( ) — Op(hr) +Op( ) N 0
(EPra(Wi, W2)) Op(h°7) nh’
According to Lemma B.4 in Fan and Li [13], it follows that
nth D
U, N(0,1),
\/EO—TLQ n——oo ( )
where
1
o2, = §{EP32(W1, Wa) +4EP2, (W1, W3) + 2EPyo (W, Wy) Pao (W1, W)}
with
EP, (W, W)
2
:hBT/ (/(xl -+ .T2| — |f1§'1 — I2|)K(231)K(212 + ZSl)f(ZQ)dZBl)
. f(.’El, Zg)f(l'27 ZQ)dxldedZ‘leZQ + Op(h?)r),
EP2, (W, Ws)
2
:hST/ (/(I’l + JI2| — |£131 — $2|)K(213)f(l‘2,2’3)d$2>
. f(.’l?l, Z3)f(23)d$1d213d2'3 + Op(h37")
and

E P (Wi, Wo) Poa (Wi, W3)
Zhgr/K2(213)<|331 + x| — |21 — $2|)(/(9«“1 + | — |21 — $2|)f(332,23)d$2)
. f(Zg)f(fL'l, Zg)f(.’I)Q, ZQ)f(Zg)d.’I}ldl'glegngng + Op(hST).

Therefore, we finally obtain that nh'/?U,, PN (0,0?) with
9 2
ot =2 [ ([l = s = ma) K (20K (20 20 22
f(l'l, ZQ)f(.’KQ, Zg)dl'ld.’ll'QdZQng
2
+8/ (/(|x1 + | — |2 —x2|)f(x2,z3)d:1:2) K2(20)f (21, 23) f(25)da1dzsdze (3.5)
4 [ K2 o +aa] o = aal) ([ (o4 aal = o1~ aal) oz, )

’ f(Zz)f(.%’l, ZS)f(-T% Z2)f(2'3)d1171d$2d22d23d2’4.
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4 Consistency of U,

The following result provides the consistency of U,,.

Theorem 4.1 (Consistency) Assume that conditions (C1)—(C3) hold and the second
moment of X exists, then as n — oo, we have U, N Sq.

Proof We will complete this proof by two stepy.is.ﬁOQ

Step 1 U, = ElU,] + 0,(1).

We follow the notation in (3.1) and (3.2). According to Lee [14], we have

1 1302 3(n—3) , 1
Var(t) =gz =Gt ot + ot gl
1
= [00)02% + O(y)o% + O(-5)0%].
First, we consider o2, as follows

nl
ony = Var(Pn(Wh)) < EPZ (Wh) = E{Pﬁl(Wl) + E?[P,(Wy, Wy, Ws) |Ws]},
where

EP;,(Wh)

—/ [/(|x1 +@o| — |2y — 2|V K(H (21 — 23)) K (H (29 — 23)) f (2, ZQ)f(Zg)diL’gdeng}z
- f(xy, 21)dzdzy

2
:h4r/ [/(371 +xa| — |21 — w2|) K (231) K (232) f (2, 21 + H (231 — 232)) f (21 + HZSl)dx2d231d232i|

. f(ﬁ,'l, Zl)dxlel
:Op(hfhﬂ),
EQ{PH(W17 W27 W3)|W3]

2
:h47‘/ [/(wl —+ x2| — |$1 — m2|)K(z13)K(223)f(x1, 23 + Hzlg)f(.’EQ, 23 + HZgg)diL'ldl'delgdZQg
. f(23)d23
:Op(h‘4r)7

which means 02, < E7321(W1) = O,(h*").

Analogously to ¢2,, we can obtain that

nl»
Oy < EPL (Wi, W) = Op(h°"), 005 < EPL(W1, Wa, W3) = Op(h”").

Therefore, we get

Var(U,,) = hir [O( 1) 1+ O( )07212 + O(%)Ufﬁ]

gogg@+0<1>+0<m;yn
= 0,(1).



No. 2 A consistent test for conditional symmetry and its asymptotical normality 169

So U, = E[U,] + 0,(1) by the Chebyshev’s inequality.
Step 2 EU, = E[1e*(X, —X|2) f*(Z)] + O,(h?).
Due to the definition of P, (W7, Wy, W3), it’s easy to verify that

1 1
EU, ZWEP"(WhW%W?») = WEPn(WlaWQaWB)
1
:hgrE[ﬂXl + Xo| — | X1 — Xo|) K13 ps].

Consider E[(|X; + Xa| — | X7 — X3|)K13K>3] as follows
E[(| X1 + Xo| — [ X1 — Xo|) K13 K]
= [ mal = — s (e = ) K = 2)
a1, 22) @, 22) f (23, 2 )dar dadsdan dzodz
2/(|$1 + 2o = [z — 2o ) K (H ™ (21 — 23)) K (H (22 — 23))
< f(z1) f(x1|21) f(22) f (w2|22) f (23)dx1daodzr d2zodzs
_p2 /(|x1 | — |1 — wa]) K (213) K (225) f (25 + Hzas) f(1]25 + H 1)
- f(z3 + Hzas) f(x2]23 + Hza3) f(23)dr1daadzi3dza3dzs
=h* /(|3?1 + @2| — @1 — 22|) K (213) K (223) f (23) f (2123) f (23) f (22| 23) f (23) 21 dzadz13d 223 d 25
+ O, (h**2)
=h*" /(|~”C1 + xo| =[x — @) f(23) f(w1]25) f (23) f(wa23) f (23) dxrdadzs + Oy (R*F2)
=1 [ B0+ Xal = X0 = X)L ) + O, )
=h* BIE[(|X1 + Xao| — | X1 — Xa|)|Z]f*(2)] + O, (h*+2).
Thus, we get
EU, = E EEQ(X, 7X|Z)f2(Z)} +0,(h2).
Combining the results in Step 1 and Step 2, we can finally obtain that

U, s, = E[%sz(X, ~X12)£(2)].

n—oo
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