
Vol. 39 ( 2019 )
No. 1

数 学 杂 志
J. of Math. (PRC)

FORCED OSCILLATION OF FRACTIONAL PARTIAL

DIFFERENTIAL EQUATIONS WITH DAMPING TERM

MA Qing-xia1, LIU Ke-ying2, LIU An-ping1

(1. School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China)
(2. School of Mathematics and Information Sciences, North China University of Water Resources

and Electric Power, Zhengzhou 450045, China)

Abstract: In this paper, we study the forced oscillation of a fractional partial differential

equation with damping term subject to Robin boundary condition. Using an integration average

technique and the properties of the Riemann-Liouville calculus, we obtain some new oscillation

criteria for the fractional partial differential equations, which are the generalization of some classical

results involving partial differential equations. Two examples are given to show the applications of

our main results.
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1 Introduction

Fractional differential equations (FDE) played an important role in the modeling of
many phenomena in various fields such as viscoelasticity, electroanalytical chemistry, control
theory, many physics problems, etc. In the past few years, many articles investigated some
aspects of fractional differential equations, such as the existence, the uniqueness and stability
of solutions, the methods for explicit and numerical solutions, see for example, the books
[1–5]. Recently, the research on oscillation of various fractional differential equations was
a hot topic, see [6–9]. However, to author’s knowledge, very little is known regarding the
oscillatory behavior of fractional partial differential equations up to now, see [10–14]. In [13],
by using the generalized Riccati transformation and the properties of fractional calculus, the
author considered the forced oscillation of a fractional partial differential equation of the
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form

∂

∂t

(
Dα

0+,tu(x, t)
)

+ p(t)Dα
0+,tu(x, t)

=a(t)∆u(x, t)− q(x, t)u(x, t) + g(x, t), (x, t) ∈ Ω×R+ ≡ G

with two boundary conditions

∂u(x, t)
∂N

= ψ(x, t), (x, t) ∈ ∂Ω×R+,

u(x, t) = 0, (x, t) ∈ ∂Ω×R+,

where R+ = [0,∞), α ∈ (0, 1) is a constant, Dα
0+,tu(x, t) is the Riemann-Liouville fractional

derivative of order α with respect to t of a function u(x, t).
In this paper, we use only the properties of fractional calculus without the generalized

Riccati transformation to consider the forced oscillation of the fractional partial differential
equation with damping term of this form

∂

∂t

(
r(t)Dα

0+,tu(x, t)
)

+ p(t)Dα
0+,tu(x, t) + q(x, t)f(u(x, t))

=a(t)∆u(x, t) + g̃(x, t), (x, t) ∈ D (1.1)

with the boundary condition

∂u(x, t)
∂N

+ β(x, t)u(x, t) = 0, (x, t) ∈ D̃, (1.2)

where Ω is a bounded domain in Rn with a piecewise smooth boundary ∂Ω,∆ is the Laplacian
in Rn, N is a unit exterior normal vector to ∂Ω, β(x, t) is a continuous nonnegative function
on D̃; α ∈ (0, 1) is a constant, g̃(x, t) is the forced term of the equation.

Set R+ = (0,∞), D = Ω×R+, D̃ = ∂Ω×R+, D = Ω×R+.

We assume throughout this paper that
A1) r(t) ∈ C1(R+, R+), a(t) ∈ C(R+, R+), p(t) ∈ C(R+, R);
A2) g̃(x, t) ∈ C(D, R), q(x, t) ∈ C(D, R+) and min

x∈Ω
q(x, t) = Q(t);

A3) f(u) ∈ C(R, R) for all u 6= 0, f(u)
u
≥ k, k is a positive constant.

Definition 1.1 By a solution of problem (1.1)–(1.2), we mean a function u(x, t) which
satisfies (1.1) and the boundary condition (1.2).

Definition 1.2 A solution of problem (1.1)–(1.2) is said to be oscillatory in D if it is
neither eventually positive nor eventually negative. Otherwise it is called nonoscillatory.

2 Preliminaries

In this section, we introduce the definitions and properties of fractional integrals and
derivatives, which are useful throughout this paper. There are several kinds of definitions of
fractional integrals and derivatives [2]. In this paper, we use Riemann-Liouville definition.
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Definition 2.1 The Riemann-Liouville fractional partial derivative of order α ∈ (0, 1)
with respect to t of a function u(x, t) is defined by

(Dα
0+,tu)(x, t) =

∂

∂t

1
Γ(1− α)

∫ t

0

(t− s)−αu(x, s)ds, t > 0, (2.1)

provided the right hand side is pointwise defined on R+, where Γ(z) is the Gamma function
defined by

Γ(z) =
∫ ∞

0

tz−1e−tdt

for z > 0.
Definition 2.2 The Riemann-Liouville fractional integral of order α ∈ R+ of a function

y(t) is defined by

(Iα
0+y)(t) =

1
Γ(α)

∫ t

0

(t− s)α−1y(s)ds, t > 0, (2.2)

provided the right hand side is pointwise defined on R+.
Definition 2.3 The Riemann-Liouville fractional derivative of order α ∈ R+ of a

function y(t) is defined by

(Dα
0+y)(t) =

dn

dtn
(In−α

0+ y)(t) =
1

Γ(n− α)
dn

dtn

∫ t

0

y(s)
(t− s)α−n+1

ds, t > 0 (2.3)

with n = [α] + 1, where [α] means the integer part of α.
Lemma 2.4 Let α > 0,m ∈ N and D = d/dx. If the fractional derivatives (Dα

0+y)(t)
and (Dα+m

0+ y)(t) exist, then

(DmDα
0+y)(t) = (Dα+m

0+ y)(t). (2.4)

Lemma 2.5 Let

F (t) =
∫ t

0

(t− s)−αy(s)ds, α ∈ (0, 1), t > 0, (2.5)

then
F ′(t) = Γ(1− α)(Dα

0+y)(t).

3 Main Results

For convenience, we introduce the following notations

v(t) =
∫

Ω

u(x, t)dx, ω(t) = exp
∫ t

t0

r′(s) + p(s)
r(s)

ds, G(t) =
∫

Ω

g̃(x, t)dx.

Lemma 3.1 If u(x, t) is a positive solution of problems (1.1)–(1.2) in the domain D,
then v(t) satisfies the fractional differential inequality

d

dt
(Dα

0+v(t)ω(t)) ≤ ω(t)
r(t)

(G(t)− kQ(t)v(t)). (3.1)
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Proof Let u(x, t) is a positive solution of problem (1.1)–(1.2) in the domain D, then
there exists t0 > 0, such that u(x, t) > 0 in Ω× [t0,∞). Integrating (1.1) with respect to x

over Ω yields

d

dt
(r(t)

∫

Ω

Dα
0+,tu(x, t)dt) + p(t)

∫

Ω

Dα
0+,tu(x, t)dx +

∫

Ω

q(x, t)f(u(x, t))dx

=a(t)
∫

Ω

∆u(x, t)dx +
∫

Ω

g̃(x, t)dx.

From A2) and A3), it is easy to see that
∫

Ω

q(x, t)f(u(x, t))dx ≥ kQ(t)
∫

Ω

u(x, t)dx = kQ(t)v(t).

Green’s formula and the boundary condition (1.2) yield
∫

Ω

∆u(x, t)dx =
∫

∂Ω

∂u

∂N
dS = −

∫

∂Ω

β(x, t)u(x, t)ds ≤ 0,

where dS is the surface element on ∂Ω. It shows that v(t) satisfies the inequality

(r(t)Dα
0+v(t))′ + p(t)Dα

0+v(t) + kQ(t)v(t) ≤ G(t). (3.2)

Using Lemma 2.4 and inequality (3.2), we obtain

r(t)(Dα
0+v(t)ω(t))′ = r(t)D1+α

0+ v(t)ω(t) + Dα
0+v(t)ω(t)(r′(t) + p(t))

= ω(t){r(t)D1+α
0+ v(t) + r′(t)Dα

0+v(t) + p(t)Dα
0+v(t)}

= ω(t){(r(t)(Dα
0+v(t))′ + p(t)Dα

0+v(t)}
≤ ω(t){G(t)− kQ(t)v(t)},

which shows that v(t) is a positive solution of inequality (3.1). The proof is completed.
Lemma 3.2 If u(x, t) is a negative solution of problems (1.1)–(1.2) in the domain D,

then v(t) satisfies the fractional differential inequality

d

dt
(Dα

0+v(t)ω(t)) ≥ ω(t)
r(t)

(G(t)− kQ(t)v(t)). (3.3)

Proof Let u(x, t) is a negative solution of problems (1.1)–(1.2) in the domain D, then
there exists t0 > 0, such that u(x, t) < 0 in Ω× [t0,∞). Integrating (1.1) with respect to x

over Ω yields

d

dt
(r(t)

∫

Ω

Dα
0+,tu(x, t)dt) + p(t)

∫

Ω

Dα
0+,tu(x, t)dx +

∫

Ω

q(x, t)f(u(x, t))dx

=a(t)
∫

Ω

∆u(x, t)dx +
∫

Ω

g̃(x, t)dx.

From A2) and A3), it is easy to see that
∫

Ω

q(x, t)f(u(x, t))dx ≤ kQ(t)
∫

Ω

u(x, t)dx = kQ(t)v(t).
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Green’s formula and the boundary condition (1.2) yield

∫

Ω

∆u(x, t)dx =
∫

∂Ω

∂u

∂N
dS = −

∫

∂Ω

β(x, t)u(x, t)ds ≥ 0,

where dS is the surface element on ∂Ω. It shows that v(t) satisfies the inequality

(r(t)Dα
0+v(t))′ + p(t)Dα

0+v(t) + kQ(t)v(t) ≥ G(t). (3.4)

Using Lemma 2.4 and inequality (3.4), we obtain

r(t)(Dα
0+v(t)ω(t))′ = r(t)D1+α

0+ v(t)ω(t) + Dα
0+v(t)ω(t)(r′(t) + p(t))

= ω(t){r(t)D1+α
0+ v(t) + r′(t)Dα

0+v(t) + p(t)Dα
0+v(t)}

= ω(t){(r(t)(Dα
0+v(t))′ + p(t)Dα

0+v(t)}
≥ ω(t){G(t)− kQ(t)v(t)},

which shows that v(t) is negative solution of inequality (3.3). The proof is completed.
Theorem 3.3 If inequality (3.1) has no eventually positive solutions and the inequality

(3.3) has no eventually negative solutions, then every solution of problems (1.1)–(1.2) is
oscillatory in D.

Proof Suppose to the contrary that there is a nonoscillatory solution u(x, t) of problems
(1.1)–(1.2). It is obvious that there exists t̃0 such that u(x, t) > 0 or u(x, t) < 0 for t ≥ t̃0.

If u(x, t) > 0, t ≥ t̃0, by using Lemma 3.1, we obtain that v(t) > 0 is a solution of
inequality (3.1), which is a contradiction.

If u(x, t) < 0, t ≥ t̃0, by using Lemma 3.2, we obtain that v(t) < 0 is a solution of
inequality (3.3), which is a contradiction. The proof is completed.

Lemma 3.4 If

lim inf
t→+∞

∫ t

t1

M +
∫ ρ

t1

ω(s)
r(s)

G(s)ds

ω(ρ)
dρ = −∞, (3.5)

then inequality (3.1) has no eventually positive solutions.
Proof Suppose to the contrary that (3.1) has a positive solution v(t), then there exists

t1 ≥ t0 such that v(t) > 0, t ≥ t1. Integrating both sides of (3.1) from t1 to t, we obtain

(Dα
0+v(t))ω(t) ≤ (Dα

0+v(t1))ω(t1) +
∫ t

t1

ω(s)
r(s)

(G(s)− kQ(s)v(s))ds

< (Dα
0+v(t1))ω(t1) +

∫ t

t1

ω(s)
r(s)

G(s)ds

= M +
∫ t

t1

ω(s)
r(s)

G(s)ds,
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where M = (Dα
0+v(t1))ω(t1). Using Lemma 2.5, we have

F ′(t)
Γ(1− α)

= Dα
0+v(t) ≤

M +
∫ t

t1

ω(s)
r(s)

G(s)ds

ω(t)
, t ≥ t1. (3.6)

Integrating (3.6) from t1 to t, we obtain

F (t) ≤ F (t1) + Γ(1− α)
∫ t

t1

M +
∫ ρ

t1

ω(s)
r(s)

G(s)ds

ω(ρ)
dρ. (3.7)

Taking t →∞, from (3.7), we have

lim inf
t→+∞

F (t) = −∞,

which contradicts the conclusion that v(t) > 0. The proof is completed.
Lemma 3.5 If

lim sup
t→+∞

∫ t

t1

M +
∫ ρ

t1

ω(s)
r(s)

G(s)ds

ω(ρ)
dρ = +∞, (3.8)

then inequality (3.3) has no eventually negative solutions.
Using Theorem 3.3, Lemma 3.4 and Lemma 3.5, we immediately obtain the following

theorem.
Theorem 3.6 If (3.5) and (3.8) hold, then every solution of problems (1.1)–(1.2) is

oscillatory in D.

4 Example

Example 4.1 Consider the fractional partial differential equation

∂

∂t

(
sin tD

1
2
0+,tu(x, t)

)
+ cos tD

1
2
0+,tu(x, t) + t2ueu = t3∆u(x, t) +

et sinx

4
,

(x, t) ∈ (0, π)× (0,+∞) (4.1)

with the boundary condition

ux(0, t) = ux(π, t) = 0, t > 0, (4.2)

here

n = 1, α =
1
2
, r(t) = sin t, p(t) = cos t,Q(t) = q(x, t) = t2,

f(u) = ueu, a(t) = t3, g̃(x, t) =
et sinx

4
.
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Set t0 = t1 = π
4
, it is obvious that

ω(t) = 2 sin2 t, G(t) =
1
2
et, ω(t1) = 1,

∫ ρ

t1

ω(s)
r(s)

G(s)ds =
∫ ρ

t1

es sin sds =
1√
2
eρ sin(ρ− π

4
).

Hence

∫ t

t1

M +
∫ ρ

t1

ω(s)
r(s)

G(s)ds

ω(ρ)
dρ =

∫ t

t1

M + 1√
2
eρ sin(ρ− π

4
)

2 sin2 ρ
dρ

=
M

2

∫ t

t1

1
sin2 ρ

dρ +
1

2
√

2

∫ t

t1

eρ sin(ρ− π
4
)

sin2 ρ
dρ

=
M

2
(1− cot t) +

et

4 sin t
−
√

2
4

e
π
4 .

Select sequence {tk} = {2kπ + π
4
}, then

lim
k→∞

∫ tk

t1

M +
∫ ρ

t1

ω(s)
r(s)

G(s)ds

ω(ρ)
dρ = lim

k→∞

√
2

4

(
e(2k+ 1

4 )π − e
π
4

)
= +∞. (4.3)

Similarly, select sequence {tj} = {2jπ − π
4
},

lim
j→∞

∫ tj

t1

M +
∫ ρ

t1

ω(s)
r(s)

G(s)ds

ω(ρ)
dρ = lim

j→∞

(
M −

√
2

4

(
e(2j− 1

4 )π + e
π
4

))
= −∞. (4.4)

From (4.3), (4.4), we have

lim inf
t→+∞

∫ t

t1

M +
∫ ρ

t1

ω(s)
r(s)

G(s)ds

ω(ρ)
dρ = −∞,

lim sup
t→+∞

∫ t

t1

M +
∫ ρ

t1

ω(s)
r(s)

G(s)ds

ω(ρ)
dρ = +∞,

which shows that all the conditions of Theorem 3.6 are fulfilled. Then every solution of
problems (4.1)–(4.2) is oscillatory in (0, π)×R+.

Example 4.2 Consider the fractional partial differential equation

∂

∂t

(
D

1
2
0+,tu(x, t)

)
−D

1
2
0+,tu(x, t) + t2ueu = t3∆u(x, t) + e2t sin t sinx,

(x, t) ∈ (0, π)× (0,+∞) (4.5)
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with the boundary condition (4.2), where

n = 1, α =
1
2
, r(t) = 1, p(t) = −1, Q(t) = q(x, t) = t2,

f(u) = ueu, a(t) = t3, g̃(x, t) = e2t sin t sinx.

Set t0 = t1 = π
4
, it is obvious that

ω(t) = e
π
4−t, G(t) = 2e2t sin t, ω(t1) = 1,∫ ρ

t1

ω(s)
r(s)

G(s)ds = 2e
π
4

∫ ρ

t1

es sin sds =
√

2e
π
4 eρ sin(ρ− π

4
).

Hence

∫ t

t1

M +
∫ ρ

t1

ω(s)
r(s)

G(s)ds

ω(ρ)
dρ =

∫ t

t1

M +
√

2e
π
4 eρ sin(ρ− π

4
)

e
π
4−ρ

dρ

=Me−
π
4

∫ t

t1

eρdρ +
√

2
∫ t

t1

e2ρ sin(ρ− π

4
)dρ

=Me−
π
4 (et − e

π
4 ) +

√
2

5
[2 sin(t− π

4
)e2t − cos(t− π

4
)e2t + e

π
2 ].

Select sequence {tk} = {2kπ + 3π
4
}, then

lim
k→∞

∫ tk

t1

M +
∫ ρ

t1

ω(s)
r(s)

G(s)ds

ω(ρ)
dρ

= lim
k→∞

(
Me−

π
4 (e(2k+ 3

4 )π − e
π
4 ) +

√
2

5
(2e(4k+ 3

2 )π + e
π
2 )

)

= +∞. (4.6)

Similarly, select sequence {tj} = {2jπ + π
4
},

lim
j→∞

∫ tj

t1

M +
∫ ρ

t1

ω(s)
r(s)

G(s)ds

ω(ρ)
dρ

= lim
j→∞

(
Me−

π
4 (e(2j+ 1

4 )π − e
π
4 ) +

√
2

5
(−e(4j+ 1

2 )π + e
π
2 )

)

=−∞. (4.7)

From (4.6), (4.7), we have

lim inf
t→+∞

∫ t

t1

M +
∫ ρ

t1

ω(s)
r(s)

G(s)ds

ω(ρ)
dρ = −∞,

lim sup
t→+∞

∫ t

t1

M +
∫ ρ

t1

ω(s)
r(s)

G(s)ds

ω(ρ)
dρ = +∞,
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which shows that all the conditions of Theorem 3.6 are fulfilled. Then every solution of
problem (4.5) with (4.2) is oscillatory in (0, π)×R+.

Remark In this paper, we did not mention oscillation of fractional partial differential
equation with time delay. Actually, we have considered the following equation

∂

∂t

(
r(t)Dα

0+,tu(x, t)
)

+ p(t)Dα
0+,tu(x, t) + q(x, t)f(u(x, t− τ))

=a(t)∆u(x, t− δ) + g̃(x, t), (x, t) ∈ D (4.8)

with the boundary condition (1.2), where τ, δ are nonnegative constants and conditions
A1)–A3) are satisfied. The conclusion is that if (3.5) and (3.8) hold, then every solution of
problem (4.8) with (1.2) is oscillatory in D. That means time delays τ and δ have no effect
on oscillatory property.

However, we have not studied the fractional partial differential equations with time
delays which are on D1+α

0+,tu(x, t) or Dα
0+,tu(x, t), since it is more complicated than discussion

in this paper. In the future, we would like to discuss this case and hope to acquire desired
results.
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带阻尼项的分数阶偏微分方程的强迫振动性
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摘要: 本文研究了一类带阻尼项的分数阶偏微分方程在Robin边界条件下的强迫振动性. 利用积分平

均值方法和Riemann-Liouville微积分的一些特殊性质, 得到了强迫振动新的准则, 推广了偏微分方程强迫振

动的一些经典结论.
关键词: 分数阶微分方程; 强迫振动; Riemann-Liouville分数阶微积分
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