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FORCED OSCILLATION OF FRACTIONAL PARTIAL
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Abstract: In this paper, we study the forced oscillation of a fractional partial differential
equation with damping term subject to Robin boundary condition. Using an integration average
technique and the properties of the Riemann-Liouville calculus, we obtain some new oscillation
criteria for the fractional partial differential equations, which are the generalization of some classical
results involving partial differential equations. Two examples are given to show the applications of
our main results.
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1 Introduction

Fractional differential equations (FDE) played an important role in the modeling of
many phenomena in various fields such as viscoelasticity, electroanalytical chemistry, control
theory, many physics problems, etc. In the past few years, many articles investigated some
aspects of fractional differential equations, such as the existence, the uniqueness and stability
of solutions, the methods for explicit and numerical solutions, see for example, the books
[1-5]. Recently, the research on oscillation of various fractional differential equations was
a hot topic, see [6-9]. However, to author’s knowledge, very little is known regarding the
oscillatory behavior of fractional partial differential equations up to now, see [10-14]. In [13],
by using the generalized Riccati transformation and the properties of fractional calculus, the
author considered the forced oscillation of a fractional partial differential equation of the
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form

0
o (D)) (005, st

:a(t)Au(:c,t) - q(:c,t)u(x,t) + g(x?t)7 (.’E,t) € x R+ =G
with two boundary conditions

ou(x,t
YD) pat), (1) € 02 x R

u(z,t) =0, (z,t) €902 x R,

where Ry = [0,00), € (0,1) is a constant, Dg, ,u(z,t) is the Riemann-Liouville fractional
derivative of order o with respect to t of a function u(x,t).

In this paper, we use only the properties of fractional calculus without the generalized
Riccati transformation to consider the forced oscillation of the fractional partial differential

equation with damping term of this form

681t<r(t)D3+,tU(x, t)> +p(t>D8‘+)tu($,t) +q(x,t) f(u(x, 1))

=a(t)Au(z,t) + g(x,t), (x,t) € D (1.1)
with the boundary condition

Ou(x,t) -
o+ A u(z,t) =0, (x,t) € D, (1.2)

where () is a bounded domain in R™ with a piecewise smooth boundary 92, A is the Laplacian
in R™, N is a unit exterior normal vector to 92, 8(x,t) is a continuous nonnegative function
on D; a € (0,1) is a constant, §(z,t) is the forced term of the equation.

Set Rt = (0,00),D =Q x Rt,D =00 x R, D = Q x R*.

We assume throughout this paper that

Al) r(t) e CY(RT,R"), a(t) € C(RT,R"), p(t) € C(RT, R);

A2) g(z,t) € C(D,R), q(x,t) € C(D,R") and migq(x,t) = Q(t);

re

A3) f(u) € C(R,R) for all u # 0, @ >k, k is a positive constant.

Definition 1.1 By a solution of problem (1.1)—(1.2), we mean a function u(z,t) which
satisfies (1.1) and the boundary condition (1.2).

Definition 1.2 A solution of problem (1.1)—(1.2) is said to be oscillatory in D if it is

neither eventually positive nor eventually negative. Otherwise it is called nonoscillatory.

2 Preliminaries

In this section, we introduce the definitions and properties of fractional integrals and
derivatives, which are useful throughout this paper. There are several kinds of definitions of

fractional integrals and derivatives [2]. In this paper, we use Riemann-Liouville definition.
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Definition 2.1 The Riemann-Liouville fractional partial derivative of order a € (0,1)

with respect to t of a function u(x,t) is defined by

0 1

(Dgy u)(w,t) = 81511(1—60/0 (t —s) “u(x,s)ds, t >0, (2.1)

provided the right hand side is pointwise defined on R*, where I'(2) is the Gamma function
defined by

I'(z) = / t* e tdt
0

for z > 0.
Definition 2.2 The Riemann-Liouville fractional integral of order &« € R of a function
y(t) is defined by

5)0) = gy [ (=9 s, 1> 0 (2.2)

provided the right hand side is pointwise defined on R™T.
Definition 2.3 The Riemann-Liouville fractional derivative of order & € RT of a

function y(t) is defined by

(D230 = Gol DO = gy | Gt >0 (@23

with n = [a] + 1, where [a] means the integer part of a.
Lemma 2.4 Let o > 0,m € N and D = d/dx. If the fractional derivatives (D, y)(t)
and (D§™y)(t) exist, then
(D™ Dgyy)(t) = (D5 ™y) () (2.4)

Lemma 2.5 Let
t
F(t) = / (t—s)"“y(s)ds, a €(0,1), t>0, (2.5)
0

then
F'(t) =T(1 — a)(Dgyy) (D).

3 Main Results
For convenience, we introduce the following notations

U(t):/ﬂu(m,t)d;v, w(t)zexp/f st, G(t):/ﬂg(;v,t)d;v.

Lemma 3.1 If u(z,t) is a positive solution of problems (1.1)—(1.2) in the domain D,

then v(t) satisfies the fractional differential inequality

d, . w(t)
a (DOJrU(t)w(t)) < r(t)

(G(t) = kQ(t)v(t)). (3.1)
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Proof Let u(x,t) is a positive solution of problem (1.1)—(1.2) in the domain D, then
there exists tg > 0, such that u(z,t) > 0 in X [tg,00). Integrating (1.1) with respect to z
over () yields

Wt/waxtm+MﬂLD&ﬂ@ﬁ®+[ﬁ@ﬁﬂM%mm
—a(t) /Q Aulw, t)dz + /Q (1) da.

From A2) and A3), it is easy to see that
[ atw ) stata s = Q) [ ule s = Qo).
Q Q

Green’s formula and the boundary condition (1.2) yield

/ Au(z,t)dx = %ds =— Bz, t)yu(z,t)ds <0,
Q a0 89

where dS is the surface element on 0. It shows that v(t) satisfies the inequality

(r(t) D5 v(8) + p(t) Dgyo(t) + kQ(H)v(t) < G(F). (3:2)

Using Lemma 2.4 and inequality (3.2), we obtain

r)(Dfv(tw(t)) = rt) Dol v(t)w(t) + Dfv(t)w(t)(r'(t) + p(t))
= wt){r(t)Dy*v(t) +'(t) D5, v(t) + p(t) D5, v(t)}
= w®{r(O)(DGyo(t) + p(t) Dy, v(t)}
< wO{G() = kQ()v(D)},

which shows that v(t) is a positive solution of inequality (3.1). The proof is completed.
Lemma 3.2 If u(x,t) is a negative solution of problems (1.1)—(1.2) in the domain D,

then v(t) satisfies the fractional differential inequality

w(t)
r(t)

Proof Let u(x,t) is a negative solution of problems (1.1)—(1.2) in the domain D, then

4 (Dg.ve(n) = 2560 ~ kQU (). (33)

there exists o > 0, such that u(z,t) < 0 in Q X [tg, 00). Integrating (1.1) with respect to x
over 2 yields

(r(t /DOHU z,t)dt) + p(t /Do+ u(z, ) dx+/9q(x,t)f(u(x,t))dx
—a(t )/QAu(x t)dx+/ (@, t)dz.

Q

From A2) and A3), it is easy to see that

/Qq(x,t)f(u(x,t))dx < kQ(t) / u(z, t)dr = kQ(t)v(t).

Q



No. 1 Forced oscillation of fractional partial differential equations with damping term 115

Green’s formula and the boundary condition (1.2) yield

ou

/ Au(z,t)dex = / ﬁdS =— Bz, t)yu(z,t)ds > 0,
Q o0 09

where dS is the surface element on 0. It shows that v(t) satisfies the inequality

(r() D5 v(8) + p(t) Dgyo(t) + kQ(H)v(t) > G(F). (3-4)

Using Lemma 2.4 and inequality (3.4), we obtain

r(t) (D5 o(tw(t)) = r(t)Dof*v(t)w(t) + Dgv(t)w(t)(r' (1) + p(t)
= w®{rt) Do (t) + (1) D, v(t) + p(t) D5, v(t)}
w(®O{(r@O(Dgy ()" + pt) D, v(t)}
> w{G(t) - kQ()v(1)},

which shows that v(t) is negative solution of inequality (3.3). The proof is completed.

Theorem 3.3 If inequality (3.1) has no eventually positive solutions and the inequality
(3.3) has no eventually negative solutions, then every solution of problems (1.1)-(1.2) is
oscillatory in D.

Proof Suppose to the contrary that there is a nonoscillatory solution u(x, t) of problems
(1.1)—(1.2). Tt is obvious that there exists #, such that u(z,t) > 0 or u(x,t) < 0 for t > ;.

If w(x,t) > 0,t > ty, by using Lemma 3.1, we obtain that v(¢) > 0 is a solution of
inequality (3.1), which is a contradiction.

If u(x,t) < 0,t > o, by using Lemma 3.2, we obtain that v(#) < 0 is a solution of
inequality (3.3), which is a contradiction. The proof is completed.

Lemma 3.4 If

" w(s) s)ds
1iminf/t M+/“ (o) 7

d = —OO, 3.5
t—too f, w(p) P ( )

then inequality (3.1) has no eventually positive solutions.
Proof Suppose to the contrary that (3.1) has a positive solution v(t), then there exists
t1 > to such that v(t) > 0, ¢t > t;. Integrating both sides of (3.1) from #; to ¢, we obtain

(Dgyo(t)w(t) < (Dgyo(ta))w(ts) +/t (G(s) — kQ(s)v(s))ds

< (DG, o(t))w(t) + /

= tW(S) s)as
_M+/tl (5 Go)ds
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where M = (Dg,v(t1))w(t1). Using Lemma 2.5, we have

Y w(s)
/ M + :G(s)ds

Integrating (3.6) from t; to t, we obtain

tM+/: () s

F(t) < F(t,) + T(1 - a)/t WZS)

Taking ¢t — oo, from (3.7), we have

liminf F'(t) = —oo0,
t——+o0

which contradicts the conclusion that v(¢) > 0. The proof is completed.
Lemma 3.5 If

P w(s)
tM—l—/t1 (5) G(s)ds

limsup/
t—4oco t1 w(p)

then inequality (3.3) has no eventually negative solutions.

dp = +o0, (3.8)

Using Theorem 3.3, Lemma 3.4 and Lemma 3.5, we immediately obtain the following
theorem.
Theorem 3.6 If (3.5) and (3.8) hold, then every solution of problems (1.1)—(1.2) is

oscillatory in D.

4 Example

Example 4.1 Consider the fractional partial differential equation

% (sin tDO%Jﬁtu(x, t)) + cos tD[i’tu(z,t) + t2ue” = 3 Au(z, t) + a sinx’
(x,t) € (0,7) x (0, +00) (4.1)
with the boundary condition
uz(0,t) = uy(m,t) =0, t >0, (4.2)

here

,7(t) = sint, p(t) = cost,Q(t) = q(z,t) = 1,
elsinx

4

1 1
n = = —
7a 2

f(u) = ue*,a(t) = t*, j(x,t) =




No. 1 Forced oscillation of fractional partial differential equations with damping term 117

Set tg =ty = 7, it is obvious that

1
w(t) =2sin’t, G(t) = iet,w(tl) =1,

lftﬁgCXst— ZTe5$n&k-—;%epﬁn@——Z)

Hence

P w(s)
tM—i—/t1 ( )G(s)ds

r(s t M+ %epsin(p—g)
dp = —3 dp
2 w(p) t 2sin” p
M/‘t Lot Persin(p—T)
2 ;, sin®p P 2v/2 Ji, sin? p
M el \/i L

4 .

dp

— 21— cott -
g (Lmoott) + o = e

Select sequence {ty} = {2km + 7}, then

P
w M —|—/ c:((ss)) G(s)ds /3
lim b dp = lim == <e(2’“+i)” — e1’> = +o0. (4.3)

k—oo t W(p) k—oo

Similarly, select sequence {t;} = {2jm — T},

P w(s)
by M+ G(s)ds

t W(p) J—oo

lim
j—o0

From (4.3), (4.4), we have

tM+/: 05) s

. r(s)

lim 1nf/ dp = —o0,
t—+oo t1 w(p)

P
M +/ w(S)G(s)ds

. t 7(s) .

lim sup dp = +o0,
t—too Jiy w(p)

which shows that all the conditions of Theorem 3.6 are fulfilled. Then every solution of
problems (4.1)—(4.2) is oscillatory in (0,7) x R*.

Example 4.2 Consider the fractional partial differential equation

9 ( 1 1
g (D(;a’tu(a:, t)) - D(;a’tu(a:, t) + t*ue" = t3Au(x,t) + e*' sint sin x,

(z,t) € (0,7) x (0,400) (4.5)
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with the boundary condition (4.2), where
1
n=1a= i,r(t) =1,p(t) = —1,Q(t) = q(z,t) = 12,
f(u) = ue*,a(t) = t*, j(x,t) = e* sintsin x.
Set to =t = 7, it is obvious that
w(t) =eT™ G(t) = 2e* sint, w(ty) = 1,
pw(s)G()d " pg.d VZe e sin( 7r)
s)ds = 2e* e’sinsds = V2e*e’sin(p — —).
o () . T
Hence
" w(s)
M + G(s)ds .
¢ /tl r(s) () 0 "' M ++/2e%ePsin(p — %)d
. (o) A ’
t t -
=Me™ 7 / e’dp + \@/ e? sin(p — Z)dp
t1 t1
x x 2 -
=Me 5(e' —e%) + ?[2 sin(t — %)e% — cos(t — %)e% +ez].
Select sequence {t,} = {2km + 3T}, then
P
w M +/ w((s))G(s)ds
r(s
lim b dp
k—o0 t1 w<p)
s 3 s 2 3 s
:klirgo (M64(€(2k+4)7r —ef) + \5[(2@(4“2)” + 62)>
=+ 0. (4.6)
Similarly, select sequence {t;} = {2j7 + T},
p
. M+ uj(S)G(S)dS
. ! yn 7(8)
lim L dp
=0 Jy, w(p)
™ s 1 ™ 2 . 1 ™
:JILITDIO <M€4(€(2‘7+4)7r _ eZ) _|_ {(_e(4j+2)‘n’ + 62>>
= —o0. (4.7)

From (4.6), (4.7), we have

v [ f(j)cxs)ds
i inf /t /tlw(;)) dp = =00,
M+ /: 05) (s

. r(s)
lim sup dp = +o0,
t——+o0 t1 (.U(p)
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which shows that all the conditions of Theorem 3.6 are fulfilled. Then every solution of
problem (4.5) with (4.2) is oscillatory in (0,7) x R*.
Remark In this paper, we did not mention oscillation of fractional partial differential

equation with time delay. Actually, we have considered the following equation

% (T(t)D8+,tu($, t)) +p(t) Dy yu(z, t) + q(o,t) f(u(x, t — 7))
=a(t)Au(z,t —9) + g(x,t), (z,t) € D (4.8)

with the boundary condition (1.2), where 7,d are nonnegative constants and conditions
A1)-A3) are satisfied. The conclusion is that if (3.5) and (3.8) hold, then every solution of
problem (4.8) with (1.2) is oscillatory in D. That means time delays 7 and § have no effect
on oscillatory property.

However, we have not studied the fractional partial differential equations with time
delays which are on Déiiu(m, t) or D§, ,u(w,t), since it is more complicated than discussion
in this paper. In the future, we would like to discuss this case and hope to acquire desired

results.
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