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Abstract: In this paper, the stability problem of the new coupled model constructed by

two fractional-order differential equations for every vertex is studied. By using the method of

constructing Lyapunov functions based on graph-theoretical approach for coupled systems, sufficient

conditions that the coexistence equilibrium of the coupling model is globally Mittag-Leffler stable

in R2n are derived. An example is given to illustrate the applications of main results.
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1 Introduction

The global-stability problem of equilibria was investigated for coupled systems of differ-
ential equations on networks for many years [1–6]. For example, Li and Shuai developed a
systematic approach that allowed one to construct global Lyapunov functions for large-scale
coupled systems from building blocks of individual vertex systems by using results from
graph theory. The approach was applied to several classes of coupled systems in engineer-
ing, ecology and epidemiology. Although there exist many results about stability of coupled
systems on networks (CSNs), most efforts have been devoted to CSNs whose nodes are con-
structed by integer-order differential equations. In fact, it is more valuable and practical to
investigate coupled system of fractional-order differential equations on network. Recently,
Li [7] investigated the global Mittag–Leffler stability of the following coupled system of
fractional-order differential equations on network (CSFDEN)





t0D
α
t xi = −αixi(t) + fi(xi(t)) +

n∑
j=1

βx
ij(xj(t)− xi(t)),

xi(t0) = xit0 , i = 1, · · · , n,

(1.1)

where D denoted Caputo fractional derivative, α ∈ (0, 1). t0 was the inial time, n (n ≥ 2)
denoted the number of vertices in the network. (x(t))T = (x1(t), x2(t), · · · , xn(t))T denoted
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the state variable of the system where xi(t) ∈ R. αi was positive constant. Constant βx
ij

represented the influence of vertex j on vertex i with βx
ii = 0, βx

ij = −βx
ji, if i 6= j. Function fi

was Lipschitz continuous. Several sufficient conditions were obtained to ensure the Mittag-
Leffler stability of CSFDEN by using graph theory and the Lyapunov method.

Furthermore, Li [8] investigated a coupled system of fractional-order differential equa-
tions on network with feedback controls (CSFDENFCs). By using the contraction mapping
principle, Lyapunov method, graph theoretic approach and inequality techniques, some suf-
ficient conditions were derived to ensure the existence, uniqueness and global Mittag–Leffler
stability of the equilibrium point of CSFDENFCs.

As far as we know, most of researchers are interested in CSNs constructed by only one
fractional-order differential equation for every vertex. To the best of authors’ knowledge,
there are less results about CSNs constructed by two or many fractional-order differential
equations for every vertex. In this paper, the coupled model (1.1) is generalized to the more
complicated model. The vertex’s dynamical character is presented by the two-dimensional
system. The coupled relationship is constructed by two components of the vertex. The
coupled system of fractional differential equations on network is studied. Sufficient conditions
that the coexistence equilibrium of the coupling model is globally Mittag-Leffler stable in
R2n are derived by using the method of constructing Lyapunov functions based on graph-
theoretical approach for coupled systems.

Remark 1.1 The generalization of model (1.1) is important and meanful. Because
a lot of ecological model can be seen as high-dimensional coupled system. Every node is
constructed by two or many differential equations in integer-order systems. For example,
predator-prey models with patches and dispersal are studied by a lot of researchers [1–6].

This paper is organized as follows. Preliminary results are introduced in Section 2. In
Section 3, main results are obtained. In the sequel, an example is presented in Section 4.
Finally, the conclusions and outlooks are drawn in Section 5.

2 Preliminaries

In this section, we will list some definitions and theorems which will be used in the later
sections.

A directed graph or digraph G = (V, E) contains a set V = {1, 2, · · · , n} of vertices and
a set E of arcs (i, j) leading from initial vertex i to terminal vertex j. A subgraph H of G is
said to be spanning if H and G have the same vertex set. A digraph G is weighted if each
arc (j, i) is assigned a positive weight. aij > 0 if and only if there exists an arc from vertex
j to i in G.

The weight w(H) of a subgraph H is the product of the weights on all its arcs. A
directed path P in G is a subgraph with distinct vertices i1, i2, · · · , im such that its set of
arcs is {(ik, ik+1) : k = 1, 2, · · · ,m}. If im = i1, we call P a directed cycle.

A connected subgraph T is a tree if it contains no cycles, directed or undirected.
A tree T is rooted at vertex i, called the root, if i is not a terminal vertex of any arcs,
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and each of the remaining vertices is a terminal vertex of exactly one arc. A subgraph Q is
unicyclic if it is a disjoint union of rooted trees whose roots form a directed cycle.

Given a weighted digraph G with n vertices, the weight matrix A = (aij)n×n can be
defined by their entry aij equals the weight of arc (j, i) if it exists, and 0 otherwise. For our
purpose, we denote a weighted digraph as (G,A). A digraph G is strongly connected if, for
any pair of distinct vertices, there exists a directed path from one to the other. A weighted
digraph (G,A) is strongly connected if and only if the weight matrix A is irreducible.

The Laplacian matrix of (G,A) is denoted by L. Let ci denote the cofactor of the i-th
diagonal element of L. The following results are listed.

Lemma 2.1 [6] Assume n ≥ 2. Then

ci =
∑
T∈Ti

w(T),

where Ti is the set of all spanning trees T of (G,A) that are rooted at vertex i, and w(T ) is
the weight of T . In particular, if (G,A) is strongly connected, then ci > 0 for 1 ≤ i ≤ n.

Lemma 2.2 [6] Assume n ≥ 2. Let ci be given in Lemma 2.1. Then the following
identity holds

n∑
i,j=1

ciaijFij(xi, xj) =
∑
Q∈Q

w(Q)
∑

(s,r)∈E(CQ)

Frs(xr, xs),

here Fij(xi, xj), 1 ≤ i, j ≤ n, are arbitrary functions, Q is the set of all spanning unicyclic
graphs of (G,A), w(Q) is the weight of Q, and CQ denotes the directed cycle of Q.

If (G,A) is balanced, then
n∑

i,j=1

ciaijFij(xi, xj) =
1
2

∑
Q∈Q

w(Q)
∑

(j,i)∈E(CQ)

[Fij(xi, xj) + Fji(xj , xi)].

Definition 2.3 [9] The Caputo fractional derivative of order α ∈ (n − 1, n) for a
continuous function f : R+ → R is given by

t0D
α
t f(t) =

1
Γ(n− α)

∫ t

t0

f (n)(s)
(t− s)α+1−n

ds.

3 Main Results

A coupled system of fractional differential equations on network is constructed as follows




t0D
α
t xi = −αixi(t) + θiyi(t) + fi(xi(t)) +

n∑
j=1

βx
ij(xj(t)− xi(t)),

t0D
α
t yi = −βiyi(t)− εixi(t) + gi(yi(t)) +

n∑
j=1

βy
ij(yj(t)− yi(t)),

xi(t0) = xit0 , yi(t0) = yit0 , i = 1, · · · , n,

(3.1)

here D denotes Caputo fractional derivative, α ∈ (0, 1), t0 is the inial time, n (n ≥ 2)
denotes the number of vertices in the network. z(t) = (x(t), y(t))T = (x1(t), x2(t), · · · , xn(t),
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y1(t), y2(t), · · · , yn(t))T denotes the state variable of the system where xi(t) ∈ R and yi(t) ∈
R. αi, βi, θi = εi = l are all positive constants. Constant βx

ij represents the influence of xj

on xi with βx
ii = 0, βx

ij = −βx
ji, if i 6= j. Constant βy

ij represents the influence of yj on yi

with βy
ii = 0, βy

ij = −βy
ji, if i 6= j. The following assumptions are given for system (3.1).

(H1) Function fi, gi are Lipschtiz-continuous on R with Lipschitz constant Lx
i > 0, Ly

i >

0, respectively, i.e.,

|fi(u)− fi(v)| ≤ Lx
i |u− v|, |gi(u)− gi(v)| ≤ Ly

i |u− v|

for all u, v ∈ R.

(H2) There exists a constant λ such that

λ = min{2(αi +
n∑

j=1

βx
ij − Lx

i ), 2(βi +
n∑

j=1

βy
ij − Ly

i )| i = 1, 2, · · · , n} > 0.

A mathematical description of a network is a directed graph consisting of vertices and
directed arcs connecting them. At each vertex, the local dynamics are given by a system of
differential equations called the vertex system. The directed arcs indicate inter-connections
and interactions among vertex systems.

Let βij represent the influence of vertex j on vertex i with

βij =

{
βx

ij , if |βx
ij | ≥ |βy

ij |,
βy

ij , if |βx
ij | < |βy

ij |.

Let A = (|βij |)n×n, Ax = (|βx
ij |)n×n, Ay = (|βy

ij |)n×n.
A digraph (G,A) with n vertices for system (3.1) can be constructed as follows. Each

vertex represents a patch and (j, i) ∈ E(G) if and only if βx
ij 6= 0 or βy

ij 6= 0. Here E(G)
denotes the set of arcs (i, j) leading from inial vertex i to terminal vertex j. At each vertex
of G, the vertex dynamics are described by the following system (3.2),

{
t0D

α
t xi = −αixi(t) + θiyi(t) + fi(xi(t)),

t0D
α
t yi = −βiyi(t)− εixi(t) + gi(yi(t)).

(3.2)

The coupling among system (3.1) is provided by the network. The G is strongly connected
if and only if the matrix A = (|βij |)n×n is irreducible.

In this section, the coupled system of fractional differential equations on network is
studied. By using the method of constructing Lyapunov functions based on graph-theoretical
approach for coupled systems, sufficient conditions that the coexistence equilibrium of the
coupling model (3.1) is globally Mittag-Leffler stable in R2n are derived.

We obtain main theorem as follows.
Theorem 3.1 Assume the following conditions hold
1. diagraph (G,A) is balanced;
2. Ax = (|βx

ij |)n×n, Ay = (|βy
ij |)n×n are irreducible;
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3. condition (H1) and (H2) hold;

4. there exists constant p ≥ 0 such that βy
ij = pβx

ij for i, j = 1, 2, · · · , n.
Then system (3.1) is globally Mittag-Leffler stable.

Proof Let E∗ = (x∗, y∗)T = (x∗1, x
∗
2, · · · , x∗n, y∗1 , y

∗
2 , · · · , y∗n)T be an equilibrium of (3.1).

Assume that ex
i (t) = xi(t) − x∗i , e

y
i (t) = yi(t) − y∗i (i = 1, 2, · · · , n). After calculating, we

obtain that

t0D
α
t ex

i (t) = −αie
x
i (t) + θie

y
i (t) + fi(x∗i + ex

i (t))− fi(x∗i )

+
n∑

j=1

βx
ij(x

∗
j + ex

j (t)− x∗i − ex
i (t))−

n∑
j=1

βx
ij(x

∗
j − x∗i ).

t0D
α
t ey

i (t) = −βie
y
i (t)− εie

x
i (t) + gi(y∗i + ey

i (t))− gi(y∗i )

+
n∑

j=1

βy
ij(y

∗
j + ey

j (t)− y∗i − ey
i (t))−

n∑
j=1

βy
ij(y

∗
j − y∗i ).

Let e(t) = (ex
1(t), e

y
1(t), e

x
2(t), e

y
2(t), · · · , ex

n(t), ey
n(t)) and

Vi(ex
i (t), ey

i (t)) =
1
2
[εi(ex

i (t))2 + θi(ex
i (t))2].

Two case will be discussed about p.

Case I 0 ≤ p ≤ 1.

Case II p > 1.

For Case I, It is easy to obtain that |βy
ij | ≤ |βx

ij |. Therefore, A = Ax. From the condition
of theorem, we obtain Ax is irreducible. Furthermore, (G,A) is strongly connected. Let ci

denote the cofactor of the ith diagonal element of Laplacian matrix of (G,A). Then we have
ci > 0. Let

V (t, e(t)) =
n∑

i=1

ciVi(ex
i (t), ey

i (t)).

Calculating the fractional-order derivative of V (t, e(t)) along the solution of system (3.1),
we have

t0D
α
t V (t, e(t)) =

1
2

n∑
i=1

ci t0D
α
t [εi(ex

i (t))2 + θi(e
y
i (t))

2]

≤
n∑

i=1

[ciεie
x
i (t)t0D

α
t ex

i (t) + ciθie
y
i (t)t0D

α
t ey

i (t)]

≤
n∑

i=1

cie
x
i (t)2(−αi −

n∑
j=1

βx
ij + Lx

i )εie
x
i (t) +

n∑
i=1

cie
y
i (t)2(−βi −

n∑
j=1

βy
ij + Ly

i )θie
y
i (t)

+ciεiθie
y
i (t)e

x
i (t)− ciθiεie

x
i (t)ey

i (t) +
n∑

i=1

ciεiaijFij(t, ex
i , ex

j ) +
n∑

i=1

pciθiaijFij(t, e
y
i , e

y
j ),

here aij = |βij | = |βx
ij | and Fij(t, x, y) = sgn(βij)xy. Using the (G,A)’s balanced and
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strongly connected character, we obtain that

n∑
i=1

ciεiaijFij(t, ex
i , ex

j ) =
1
2
εi

∑
Q∈Q

w(Q)
∑

(j,i)∈E(CQ)

[Fij(t, ex
i , ex

j ) + Fji(t, ex
i , ex

j )]

=
1
2
εi

∑
Q∈Q

w(Q)
∑

(j,i)∈E(CQ)

[sgn(βij)ex
i ex

j + sgn(βji)ex
j ex

i ]

=
1
2
εi

∑
Q∈Q

w(Q)
∑

(j,i)∈E(CQ)

[sgn(βij)ex
i ex

j − sgn(βij)ex
i ex

j ]

= 0.

Furthermore, we obtain that

n∑
i=1

pciθiaijFij(t, e
y
i , e

y
j ) =

1
2
pθi

∑
Q∈Q

w(Q)
∑

(j,i)∈E(CQ)

[Fij(t, e
y
i , e

y
j ) + Fji(t, e

y
i , e

y
j )]

=
1
2
pθi

∑
Q∈Q

w(Q)
∑

(j,i)∈E(CQ)

[sgn(βij)e
y
i e

y
j + sgn(βji)e

y
j e

y
i ]

=
1
2
pθi

∑
Q∈Q

w(Q)
∑

(j,i)∈E(CQ)

[sgn(βij)e
y
i e

y
j − sgn(βij)e

y
i e

y
j ]

= 0.

In the sequel, we have

t0D
α
t V (t, e(t)) ≤ −λV (t, e(t)).

Let t0D
α
t V (t, e(t)) + M(t) = −λV (t, e(t)). Using Laplace transform for the equation above

[10, 11], we have
sαw(s)− w(0)sα−1 + M(s) = −βw(s),

where w(s) , M(s) are the Laplace transform of V (t, e(t)) and M(t), respectively. Using the
inverse Laplace transform for the formula above, we have

V (t, e(t)) ≤ V (0, e(0))Eα(−βtα).

By the definition of V (t, e(t)), we obtain that system (3.1) is globally Mittag-Leffler stable.
With the similar arguments to Case I, we can prove system (3.1) is globally Mittag-

Leffler stable for Case II. Then the proof is completed.
By Theorem 3.1, we obtain that the following corollary naturally.
Corollary 3.2 Consider the model





t0D
α
t xi = −αixi(t) + θiyi(t) + fi(xi(t)) +

n∑
j=1

βx
ij(xj(t)− xi(t)),

t0D
α
t yi = −βiyi(t)− εixi(t) + gi(yi(t)),

xi(t0) = xit0 , yi(t0) = yit0 , i = 1, · · · , n.

(3.3)

Assume that (G,A) is balanced and A = Ax = (|βx
ij |)n×n is irreducible, condition (H1) and

(H2)* hold. Then system (3.3) is globally Mittag-Leffler stable. Here, condition (H2)* is
denoted as follows.
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(H2)* There is a constant λ such that

λ = min{2(αi +
n∑

j=1

βx
ij − Lx

i )| i = 1, 2, · · · , n} > 0.

4 An Example

In this section, a numerical example is presented to illustrate the Theorem 3.1.
Consider the following system of fractional equations on network





t0D
α
t x1(t) = −α1x1(t) + θ1y1(t) + f1(x1(t)) +

n∑
j=1

βx
1j(xj(t)− x1(t)),

t0D
α
t y1(t) = −β1y1(t)− ε1x1(t) + g1(y1(t)) +

n∑
j=1

βy
1j(yj(t)− y1(t)),

t0D
α
t x2(t) = −α2x2(t) + θ2y2(t) + f2(x2(t)) +

n∑
j=1

βx
2j(xj(t)− x2(t)),

t0D
α
t y2(t) = −β2y2(t)− ε2x2(t) + g2(y2(t)) +

n∑
j=1

βy
2j(yj(t)− y2(t)),

(4.1)

where

α = 0.5, α1 = α2 = 5, β1 = β2 = 9, θ1 = θ2 = ε1 = ε2 = 0.5,

f1(x1(t)) = sin(x1(t)), f2(x2(t)) = sin(x2(t)),

g1(y1(t)) = sin 2(y1(t)), g2(y2(t)) = sin 2(y2(t)),

βx
11 = βx

22 = βy
11 = βy

22 = 0, βx
12 = −βx

21 = 3, βy
12 = −βy

21 = 6.

Therefore, we have

p = 2, A =

(
0 6
6 0

)
, L =

(
6 −6
−6 6

)
.

Then we obtain that c1 = c2 = 6. Obviously, (G,A) is strongly connected and balanced. It
is easy to obtain that condition (H1), (H2) hold. According to Theorem 3.1, system (4.1)
has an equilibrium point (0, 0, 0, 0) which is globally Mittag-Leffler stable.

5 Conclusions and Outlooks

In this paper, the new coupled model constructed by two fractional-order differential
equations for every vertex is studied. The coupled relationship is constructed by two com-
ponents of the vertex. By using the method of constructing Lyapunov functions based on
graph-theoretical approach for coupled systems, sufficient conditions that the coexistence
equilibrium of the coupling model is globally Mittag-Leffler stable in R2n are derived. Fi-
nally, an example is given to illustrate the applications of main results.

Further studies on this subject are being carried out by the presenting authors in the
two aspects: one is to study the model with time delay; the other is to discuss the method
to design control terms.
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基于网络的一类分数阶微分方程耦合系统的稳定分析

高 扬, 赵 微

(大庆师范学院教师教育学院, 黑龙江大庆 163712)

摘要: 本文研究顶点由两个分数阶微分方程构建的新耦合模型的稳定问题. 通过使用构

建Lyapunov函数思想和耦合系统的图论, 得到新模型的平衡点Mittag-Leffler稳定的充分条件, 并且举

例阐述了主要结论的应用性.
关键词: Mittag-Leffler稳定; 耦合系统; 全局稳定; Caputo导数
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