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1 Introduction

Let ψ be a function on Rn such that there exist positive constants C and γ satisfying

(a) ψ ∈ L1(Rn) and
∫

Rn

ψ(x)dx = 0;

(b) |ψ(x)| ≤ C(1 + |x|)−n−1;
(c) |ψ(x + y)− ψ(x)| ≤ C|y|γ/(1 + |x|)n+γ+1 for 2|y| ≤ |x|.

For this ψ and µ > 1, the Littlewood-Paley’s g∗µ function is defined by

g∗µ(f)(x) =
(∫ ∫

Rn+1
+

(
t

t + |x− y|

)nµ

|(ψt ∗ f)(y)|2 dydt

tn+1

)1/2

, (1.1)

where Rn+1
+ = {(y, t) : y ∈ Rn, t > 0} and ψt(x) = t−nψ(x/t).

Given a positive integer m and a vector ~b = (b1, b2, · · · , bm) of locally integrable func-
tions, motivated by the work of Pérez and Trujillo-González [1] on multilinear operators, we
define multilinear commutators of the Littlewood-Paley’s g∗µ function as follows:

g∗
µ,~b

(f)(x) =
(∫ ∫

Rn+1
+

(
t

t + |x− y|

)nµ∣∣∣∣
∫

Rn

ψt(y − z)
m∏

i=1

(bi(x)− bi(z))f(z)dz

∣∣∣∣
2
dydt

tn+1

)1/2

.

(1.2)
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In the case of m = 1, we usually denote g∗
µ,~b

by [b, g∗µ].
A locally integrable function b is said to be a BMO function, if it satisfies

‖b‖∗ := sup
x∈Rn,r>0

1
|B|

∫

B

|b(y)− bB| dy < ∞,

where and in the sequel B is ball centered at x and radius of r,

bB =
1
|B|

∫

B

b(t)dt

and ‖b‖∗ is the norm in BMO(Rn). For bi ∈ BMO(Rn), i = 1, 2, · · · ,m, Xue and Ding [2]
established the weighted Lp and weighted weak L(logL)-type estimates for the multilinear
commutators g∗

µ,~b
. Zhang et al. [3] obtained some boundedness results for g∗

µ,~b
on certain

classical Hardy and Herz-Hardy spaces. We refer to [4–6] for an extensive study of multilinear
operators.

In recent years, following the fundamental work of Kováčik and Rákosńık [7], function
spaces with variable exponent, such as variable exponent Lebesgue and Herz-type Hardy
spaces etc., have attracted a great attention in connection with problems of the boundedness
of classical operators on those spaces, which in turn were motivated by the treatment of recent
problems in fluid dynamics, image restoration and differential equations with p(x)-growth,
see [8–16] and the references therein.

Karlovich and Lerner in [17] showed that [b, T ], the commutator of a standard Calderón-
Zygmund singular integral operator T and a BMO function b, is bounded on Lp(·)(Rn), which
improved a celebrated result by Coifman et al. in [18]. Recently, Xu [19] made a futher
step and proved that the multilinear commutators T~b, a generalization of the commutator
[b, T ], enjoy the same Lp(·)(Rn) estimates when bi ∈ BMO(Rn), i = 1, 2, · · · ,m. These
results inspire us to ask whether the multilinear commutators g∗

µ,~b
have the similar mapping

properties in variable exponent spaces Lp(·)(Rn)? Our first result (see Theorem 3.1 below)
will give an affirmative answer to this question.

The variable exponent Herz spaces K̇α,q
p(·)(R

n) and Kα,q
p(·)(R

n) were first studied by Izuki
[20, 21]. Simultaneously, he gave some basic lemmas on generalization of the BMO norms to
get the boundedness of classical operators on such spaces. On the other hand, the variable
exponent Herz-type Hardy spaces, as well as their atomic decomposition characterizations,
were intensively studied by a significant number of authors [22, 23]. Using these decompo-
sitions, they also established the boundedness results for some singular integral operators.
Motivated by the results mentioned above, another purpose of this article is to study the
boundedness of g∗

µ,~b
in variable exponent Herz-type Hardy spaces, which improves the cor-

responding main result in classical case (see [3, Theorem 2]).
In general, we denote cubes in Rn by Q. If E is a subset of Rn, |E| denotes its Lebesgue

measure and χE denotes its characteristic function. For l ∈ Z, we define Bl = {x ∈ Rn :
|x| 6 2l}. p′(·) denotes the conjugate exponent defined by 1/p(·) + 1/p′(·) = 1. By S ′(Rn),
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we denote the space of tempered distributions. We use x ≈ y if there exist constants c1, c2

such that c1x ≤ y ≤ c2x, C stands for a positive constant, which may vary from line to line.

2 Preliminaries and Lemmas

We begin with a brief and necessarily incomplete review of the variable exponent
Lebesgue spaces Lp(·)(Rn), see [24, 25] for more information.

Let p(·) : Rn → [1,∞) be a measurable function. We assume that

1 ≤ p− ≤ p(x) ≤ p+ < ∞,

where and in the sequel

p− := ess inf
x∈Rn

p(x) and p+ := ess sup
x∈Rn

p(x).

By Lp(·)(Rn) we denote the set of all measurable functions f on Rn such that

%p(·)(f) :=
∫

Rn

|f(x)|p(x)dx < ∞.

This is a Banach space with the norm (the Luxemburg-Nakano norm)

‖f‖Lp(·)(Rn) = inf{µ > 0 : %p(·)(f/µ) ≤ 1}.

Given an open set Ω ⊂ Rn, the space L
p(·)
loc (Ω) is defined by

L
p(·)
loc (Ω) = {f : f ∈ Lp(·)(K) for all compact subsets K ⊂ Ω}.

For the sake of simplicity, we use the notation

P(Rn) := {p(·) : p− > 1 and p+ < ∞},
B(Rn) := {p(·) ∈ P(Rn) : M is bounded on Lp(·)(Rn)},

where M is the Hardy-Littlewood maximal operator defined by

Mf(x) = sup
Q3x

1
|Q|

∫

Q

|f(y)|dy.

When p(·) ∈ P(Rn), the generalized Hölder inequality holds in the form
∫

Rn

|f(x)g(x)|dx ≤ rp‖f‖Lp(·)(Rn)‖g‖Lp′(·)(Rn) (2.1)

with rp = 1 + 1/p− − 1/p+, see [7, Theorem 2.1].
We say a measurable function φ : Rn → [1,∞) is globally log-Hölder continuous if it

satisfies

|φ(x)− φ(y)| ≤ −C

log(|x− y|) , |x− y| ≤ 1/2, (2.2)

|φ(x)− φ(y)| ≤ C

log(e + |x|) , |y| ≥ |x| (2.3)
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for any x, y ∈ Rn. The set of p(·) satisfying (2.2) and (2.3) is denoted by LH(Rn). It is
well-known that if p(·) ∈ P(Rn)

⋂
LH(Rn), then the Hardy-Littlewood maximal operator

M is bounded on Lp(·)(Rn), thus we have p(·) ∈ B(Rn), see [24].
Lemma 2.1 (see [21]) Suppose p(·) ∈ B(Rn), then we have

1
|B|‖χB‖Lp(·)(Rn)‖χB‖Lp′(·)(Rn) ≤ C.

Lemma 2.2 (see [21]) Suppose p(·) ∈ B(Rn), then we have for all measurable subsets
E ⊂ B,

‖χE‖Lp(·)(Rn)

‖χB‖Lp(·)(Rn)

≤ C

( |E|
|B|

)δ1

,
‖χE‖Lp′(·)(Rn)

‖χB‖Lp′(·)(Rn)

≤ C

( |E|
|B|

)δ2

,

where δ1, δ2 are constants with 0 < δ1, δ2 < 1.
Remark 2.1 We would like to stress that everywhere below the constants δ1 and δ2

are always the same as in Lemma 2.2.
Lemma 2.3 (see [24]) Suppose pi(·), p(·) ∈ P(Rn), i = 1, 2, · · · ,m, so that

1
p(x)

=
m∑

i=1

1
pi(x)

,

where m ∈ N. Then for all fi ∈ Lpi(·)(Rn), we have

∥∥∥∥
m∏

i=1

fi

∥∥∥∥
Lp(·)(Rn)

≤ C

m∏
i=1

‖fi‖Lpi(·)(Rn).

Lemma 2.4 (see [25]) Suppose p(·) ∈ LH(Rn) and 0 < p− ≤ p(x) ≤ p+ < ∞.
(i) For all balls (or cubes) |B| ≤ 2n and any x ∈ B, we have

‖χB‖Lp(·)(Rn) ≈ |B|1/p(x).

(ii) For all balls (or cubes) |B| ≥ 1, we have

‖χB‖Lp(·)(Rn) ≈ |B|1/p∞ ,

where p∞ := lim
x→∞

p(x).

Combining Lemma 2.3, Lemma 2.4 and Lemma 3 in [21, page 464], a simple computation
shows that

Lemma 2.5 Suppose p(·) ∈ P(Rn)
⋂

LH(Rn), bi ∈ BMO(Rn), i = 1, 2, · · · ,m, k >

j (k, j ∈ N), then we have

sup
B⊂Rn

1
‖χB‖Lp(·)(Rn)

∥∥∥∥
m∏

i=1

(bi − (bi)B)χB

∥∥∥∥
Lp(·)(Rn)

≈
m∏

i=1

‖bi‖∗
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and
∥∥∥∥

m∏
i=1

(bi − (bi)Bj
)χBk

∥∥∥∥
Lp(·)(Rn)

≤ C(k − j)m

m∏
i=1

‖bi‖∗‖χBk
‖Lp(·)(Rn).

Remark 2.2 We note that Lemma 2.5 generalizes the well known properties for
BMO(Rn) spaces (see [26]), and is also a generalization of Lemma 3 in [21].

3 Boundedness on Variable Exponent Lebesgue Spaces

We first recall some pointwise estimates for sharp maximal functions, the duality and
density in variable exponent Lebesgue spaces Lp(·)(Rn).

For p(·) ∈ P(Rn), the spaces Lp(·)(Rn) can be endowed with the Orlicz type norm

‖f‖0
Lp(·)(Rn) := sup

{∫

Rn

|f(x)g(x)|dx : g ∈ Lp′(·)(Rn), ‖g‖Lp′(·)(Rn) ≤ 1
}

.

This norm, as pointed out in [7], is equivalent to the Luxemburg-Nakano norm, that is

‖f‖Lp(·)(Rn) ≤ ‖f‖0
Lp(·)(Rn) ≤ rp‖f‖Lp(·)(Rn), (3.1)

where rp = 1 + 1/p− − 1/p+.
By L∞c we denote the set of all bounded functions f with compact support. From [7,

Theorem 2.11] (see also [17, Lemma 2.2]), we get the following result.
Proposition 3.1 Suppose p(·) ∈ P(Rn), then L∞c is dense in Lp(·)(Rn) and in Lp′(·)(Rn).

For δ > 0 and f ∈ L1
loc(Rn), we define

Mδ(f)(x) = M(|f |δ)1/δ(x) =
(

sup
Q3x

1
|Q|

∫

Q

|f(y)|δdy

)1/δ

.

Given a function f ∈ Lδ
loc(Rn), set also

f ]
δ (x) = sup

Q3x
inf
c∈R

(
1
|Q|

∫

Q

|f(y)− c|δdy

)1/δ

,

where the supremums are taken over all cubes Q ⊂ Rn containing x.
The non-increasing rearrangement of a measurable function f on Rn is defined as

f∗(t) := inf
{

a > 0 : |{s ∈ Rn : |f(s)| > a}| ≤ t

}
, t > 0,

and for a fixed λ ∈ (0, 1), the local sharp maximal function M ]
λf is given by

M ]
λ(f)(x) = sup

Q3x
inf
c∈R

((f − c)χQ)∗(λ|Q|).

The next lemma is due to Karlovich and Lerner [17, Proposition 2.3].
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Lemma 3.1 Suppose λ ∈ (0, 1), δ > 0 and f ∈ Lδ
loc(Rn), then we have

M ]
λ(f)(x) ≤ (1/λ)1/δf ]

δ (x), x ∈ Rn.

A function Φ defined on [0,∞) is said to be a Young function, if Φ is a continuous,
nonnegative, strictly increasing and convex function with lim

t→0+
Φ(t)/t = lim

t→0+
t/Φ(t) = 0. We

define the Φ-average of a function f over a cube Q by

‖f‖Φ,Q = inf
{

η > 0 :
1
|Q|

∫

Q

Φ
( |f(y)|

η

)
dy ≤ 1

}
.

Associated to this Φ-average, we define the maximal operator MΦ by

MΦ(f)(x) := sup
Q3x

‖f‖Φ,Q.

When Φ(t) = tlogr(e + t) (r ≥ 1), we denote MΦ by ML(logL)r . It is well-known that if
m ∈ N, then ML(logL)m ≈ Mm+1, the m + 1 iterations of the Hardy-Littlewood maximal
operator M , see [1].

Lemma 3.2 (see [2]) Let 0 < δ < 1. Then there exsits a positive constant C, independet
of f and x, such that (g∗µ(f))]

δ(x) ≤ CMf(x), x ∈ Rn holds for all bounded function f

with compact support.
In fact, there holds a similar piontwise estimate for the multilinear commutators g∗

µ,~b
.

To state it, we first introduce some notations.
As in [1], given any positive integer m, for all 1 ≤ j ≤ m, we denote by Cm

j the family
of all finite subset σ = {σ(1), σ(2), · · · , σ(j)} of {1, 2, · · · ,m} of j different elements. For
any σ ∈ Cm

j , we associate the complementary sequence σ′ given by σ′ = {1, 2, · · · ,m}\σ.
Suppose ~b = (b1, b2, · · · , bm) and σ = {σ(1), σ(2), · · · , σ(j)} ∈ Cm

j . Denote

~bσ = {bσ(1), bσ(2), · · · , bσ(j)}, bσ = bσ(1)bσ(2) · · · bσ(j)

and ‖bσ‖ =
∏
j∈σ

‖b‖∗. If σ = {1, 2, · · · ,m}, then we denote ‖bσ‖ by ‖~b‖.
For any σ = {σ(1), σ(2), · · · , σ(j)} ∈ Cm

j , we define

g∗
µ,~bσ

(f)(x)

=
(∫ ∫

Rn+1
+

(
t

t + |x− y|

)nµ∣∣∣∣
∫

Rn

ψt(y − z)
j∏

i=1

(bσ(i)(x)− bσ(i)(z))f(z)dz

∣∣∣∣
2
dydt

tn+1

)1/2

.

In the case σ = {1, 2, · · · ,m}, we understand g∗
µ,~bσ

= g∗
µ,~b

and g∗
µ,~bσ′

= g∗µ.
We now mention an immediate consequence of Proposition 2.4 in [2].
Lemma 3.3 Suppose µ > 2 and 0 < δ < ε < 1. Then for any f ∈ L∞c , there exists a

constant C > 0, depending only on δ and ε, such that

(g∗
µ,~b

(f))]
δ(x) ≤ C

{
‖~b‖ML(logL)mf(x) +

m∑
j=1

∑
σ∈Cm

j

‖bσ‖Mε(g∗µ,~bσ′
f)(x)

}
.
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We also need the following result from Lerner [27, Theorem 1].
Lemma 3.4 Suppose g ∈ L1

loc(Rn) and let f be a measurable function with f∗(+∞) =
0, then

∫

Rn

|f(x)g(x)|dx ≤ cn

∫

Rn

M ]
λn

f(x)Mg(x)dx,

where constants 0 < λn < 1 and cn depend only on dimension n.
To prove Theorem 3.1, we first prove the following result which has its independent role.
Lemma 3.5 Suppose µ > 2 and 0 < γ < min{(µ− 2)n/2, 1}. If p(·) ∈ B(Rn), then g∗µ

is bounded from Lp(·)(Rn) to itself.
Proof Let f ∈ L∞c and g ∈ Lp′(·)(Rn) ⊂ L1

loc(Rn). Since g∗µ is of weak type (1, 1)
provided that µ > 2 and 0 < γ < min{(µ − 2)n/2, 1} (see [2, Theorem 1.1]), from Lemmas
3.4, 3.1, 3.2 and the generalized Hölder inequality (2.1), we get that

∫

Rn

|g∗µ(f)(x)g(x)|dx ≤ Cn

∫

Rn

M ]
λn

(g∗µ(f))(x)Mg(x)dx

≤Cn

∫

Rn

(1/λn)1/δ(g∗µ(f))]
δ(x)Mg(x)dx ≤ Cn

∫

Rn

Mf(x)Mg(x)dx

≤Cnrp‖Mf‖Lp(·)(Rn)‖Mg‖Lp′(·)(Rn) ≤ Cp‖f‖Lp(·)(Rn)‖g‖Lp′(·)(Rn).

(3.2)

Here for the last inequality we have used the fact that if p(·) ∈ B(Rn), then p′(·) ∈ B(Rn),
see [21, Proposition 2]. Thus we have

‖g∗µ(f)‖Lp(·)(Rn) ≤ ‖g∗µ(f)‖0
Lp(·)(Rn) ≤ C‖f‖Lp(·)(Rn).

By Proposition 3.1, this concludes the proof of Lemma 3.5.
We now state the main result of this section.
Theorem 3.1 Suppose µ > 2, 0 < γ < min{(µ − 2)n/2, 1} and bi ∈ BMO(Rn),

i = 1, 2, · · · ,m. If p(·) ∈ B(Rn), then g∗
µ,~b

are bounded from Lp(·)(Rn) to itself.

Proof Let f ∈ L∞c and g ∈ Lp′(·)(Rn) ⊂ L1
loc(Rn). We show Theorem 3.1 by induction

on m. For m = 1, by Theorem 1.2 in [2, page 1850], [b, g∗µ]f satisfies the assumptions of
Lemma 3.4. Thus, as argued in (3.2), we deduce that

∫

Rn

|[b, g∗µ](f)(x)g(x)|dx ≤ Cn

∫

Rn

M ]
λn

([b, g∗µ]f)(x)Mg(x)dx

≤ Cn

∫

Rn

(1/λn)1/δ([b, g∗µ]f)]
δ(x)Mg(x)dx

≤ Cn‖b‖∗
∫

Rn

(
ML(logL)f(x) + Mε(g∗µ(f))(x)

)
Mg(x)dx

≤ Cnrp(‖M2f‖Lp(·) + ‖Mε(g∗µ(f))‖Lp(·))‖Mg‖Lp′(·)(Rn)

≤ Cp‖f‖Lp(·)(Rn)‖g‖Lp′(·)(Rn).

(3.3)

This together with (3.1) yields

‖[b, g∗µ](f)‖Lp(·)(Rn) ≤ ‖[b, g∗µ](f)‖0
Lp(·)(Rn) ≤ C‖f‖Lp(·)(Rn).
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Suppose now that the Theorem 3.1 is true for m − 1. We will show that it is true for m.
Once again by Theorem 1.2 in [2], according to Lemmas 3.4, 3.1, 3.2 and the generalized
Hölder inequality (2.1), we have

∫

Rn

|(g∗
µ,~b

f)(x)g(x)|dx

≤C

∫

Rn

M ]
λn

(g∗
µ,~b

f)(x)Mg(x)dx

≤C

∫

Rn

(1/λn)1/δ(g∗
µ,~b

f)]
δ(x)Mg(x)dx

≤C

∫

Rn

{
‖~b‖ML(logL)mf(x) +

m∑
j=1

∑
σ∈Cm

j

‖bσ‖Mε(g∗µ,~bσ′
f)(x)

}
Mg(x)dx

≤C

∫

Rn

{
‖~b‖ML(logL)mf(x) +

m∑
j=1

∑
σ∈Cm

j

‖bσ‖ML(logL)m−j f(x)
}

Mg(x)dx

≤C

m∏
j=1

‖b‖∗
∫

Rn

m∑
j=1

ML(logL)m−j f(x)Mg(x)dx

≤C‖f‖Lp(·)(Rn)‖g‖Lp′(·)(Rn).

(3.4)

Now we obtain from (3.4) and (3.1) that

‖g∗
µ,~b

f‖Lp(·)(Rn) ≤ ‖g∗
µ,~b

f‖0
Lp(·)(Rn) ≤ C‖f‖Lp(·)(Rn).

By Proposition 3.1, this concludes the proof of Theorem 3.1.

4 Boundedness on Variable Exponent Herz-Type Hardy Spaces

The main purpose of this section is to further study the mapping properties of the
multilinear commutators g∗

µ,~b
in variable exponent Herz-type Hardy spaces. Before stating

the main result, we give some definitions.
Let

Bk = {x ∈ Rn : |x| 6 2k}, Rk = Bk\Bk−1

and χk = χRk
be the characteristic function of the set Rk for k ∈ Z.

Definition 4.1 Let p(·) ∈ P(Rn), 0 < q ≤ ∞ and α ∈ R. The homogeneous variable
exponent Herz space K̇α,q

p(·)(R
n) consists of all f ∈ L

p(·)
loc (Rn\{0}) satisfying

‖f‖K̇α,q
p(·)(Rn) :=

(∑
k∈Z

2αkq‖fχk‖q

Lp(·)(Rn)

)1/q

< ∞

with the usual modification when q = ∞.
For x ∈ R, we denote by [x] the largest integer less than or equal to x.
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Definition 4.2 Suppose α ≥ nδ2, p(·) ∈ P(Rn) and non-negative integer s ≥ [α−nδ2].
Let bi (i = 1, 2, · · · ,m) be alocally integrable function and ~b = (b1, b2, · · · , bm). A function
a(x) on Rn is said to be a central (α, p(·), s;~b)-atom, if it satisfies

(i) suppa ⊂ B̃ := {x ∈ Rn : |x| < r}.
(ii) ‖a‖Lp(·)(Rn) ≤ |B̃|−α

n .

(iii)
∫

B̃

xβa(x)
∏
i∈σ

bi(x)dx = 0 for |β| ≤ s, σ ∈ Cm
j , j = 0, 1, · · · ,m.

Remark 4.1 It is easy to see that if p(x) ≡ p is constant, then taking δ2 = 1 − 1/p,
we can get the classical case, see [28].

A temperate distribution f is said to belong to HK̇α,q,s

p(·),~b(R
n), if it can be written as

f =
∞∑

j=−∞
λjaj , in the sense of S ′(Rn),

where aj is a central (α, p(·), s;~b)-atom with support contained in Bj , λj ∈ R and
∑

|λj |q < ∞.

Moreover,

‖f‖HK̇α,q,s

p(·),~b
(Rn) ≈ inf

( ∞∑
j=−∞

|λj |q
)1/q

,

where the infimum is taken over all above decompositions of f .
Our main result in this section can be stated as follows.
Theorem 4.1 Suppose 0 < γ < 1 and µ > 3+2/n+2γ/n. If p(·) ∈ P(Rn)

⋂
LH(Rn),

0 < q < ∞ and nδ2 ≤ α < nδ2 + γ, where δ2 is the constant appearing in Lemma 2.2. Then
the multilinear commutators g∗

µ,~b
map HK̇α,q,0

p(·),~b(R
n) into K̇α,q

p(·)(R
n).

Proof Let aj be a central (α, p(·), 0;~b)-atom with support contained in Bj . We first
restrict 0 < q ≤ 1. In this case, it suffices to show that

‖g∗
µ,~b

aj‖K̇α,q
p(·)(Rn) ≤ C.

We write

‖g∗
µ,~b

aj‖q

K̇α,q
p(·)(Rn)

=
j+2∑

k=−∞
2kαq‖χkg

∗
µ,~b

aj‖q

Lp(·)(Rn)
+

∞∑
k=j+3

2kαq‖χkg
∗
µ,~b

aj‖q

Lp(·)(Rn)

:= I + J.

For I, by the boundedness of g∗
µ,~b

in Lp(·)(Rn), we obtain

I ≤ C

j+2∑
k=−∞

2kαq‖aj‖q

Lp(·)(Rn)
≤ C

j+2∑
k=−∞

2(k−j)αq ≤ C.
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We proceed now to estimate J . If x ∈ Rk, y ∈ Bj and k ≥ j + 3, then 2|y| < |x|. By the
vanishing condition of aj , we get that

g∗
µ,~b

(aj)(x) =
(∫ ∫

Rn+1
+

(
t

t + |x− y|

)nµ∣∣∣∣
∫

Bj

ψt(y − z)
m∏

i=1

(bi(x)− bi(z))aj(z)dz

∣∣∣∣
2
dydt

tn+1

)1/2

≤
(∫ ∫

Rn+1
+

(
t

t + |x− y|

)nµ(∫

Bj

|ψt(y − z)− ψt(y)|
m∏

i=1

|bi(x)− bi(z)||aj(z)|dz

)2
dydt

tn+1

)1/2

≤
(∫ ∫

Rn+1
+

(
t

t + |x− y|

)nµ
t1−ndydt

(t + |y|)2(n+γ+1)

)1/2 ∫

Bj

|z|γ |aj(z)|
m∏

i=1

|bi(x)− bi(z)|dz.

(4.1)

If µ > 3 + 2/n + 2γ/n, using the same estimates in [3, page 5], then we have

∫

Rn

(
t

t + |x− y|

)nµ
t1−ndy

(t + |y|)2(n+γ+1)

≤C

∞∑
k=1

2k(3n+2+2γ−nµ) t

(t + |x|)2(n+γ+1)

≤C
t

(t + |x|)2(n+γ+1)
.

(4.2)

Combining (4.1) and (4.2), we arrive at the estimate

g∗
µ,~b

(aj)(x) ≤ C

(∫ ∞

0

tdt

(t + |x|)2(n+γ+1)

)1/2 ∫

Bj

|z|γ |aj(z)|
m∏

i=1

|bi(x)− bi(z)|dz

≤ C|x|−n−γ

∫

Bj

|z|γ |aj(z)|
m∏

i=1

|bi(x)− bi(z)|dz

≤ C2(j−k)γ−kn

∫

Bj

|aj(z)|
m∏

i=1

|bi(x)− bi(z)|dz.

(4.3)

Let λi = (bi)Bj
. An application of (4.3), (2.1), Lemmas 2.5, 2.1 and 2.2 give

‖χkg
∗
µ,~b

aj‖Lp(·)(Rn)

≤C2(j−k)γ−kn‖aj‖Lp(·)(Rn)

m∑
i=0

∑
σ∈Cm

i

‖(b(·)− ~λ)σχk‖Lp(·)(Rn)‖(b(·)− ~λ)σ′χj‖Lp′(·)(Rn)

≤C(k − j)m

m∏
i=1

‖bi‖∗2(j−k)γ−jα2−kn‖χBk
‖Lp(·)(Rn)‖χBj

‖Lp′(·)(Rn)

≤C(k − j)m2(j−k)γ−jα
‖χBj

‖Lp′(·)(Rn)

‖χBk
‖Lp′(·)(Rn)

≤C(k − j)m2(j−k)(γ+nδ2)−jα.

(4.4)
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Consequently, by the condition γ + nδ2 − α > 0, we have

J ≤ C

∞∑
k=j+3

(k − j)mq2(j−k)(γ+nδ2−α)q ≤ C.

Now let 1 < q < ∞ and f =
∞∑

j=−∞
λjaj . For convenience below we put σ = γ +

nδ2 − α, then we have σ > 0. From (4.4) and the Lp(·)(Rn)-boundedness of the multilinear
commutators g∗

µ,~b
, it follows that

‖g∗
µ,~b

f‖K̇α,q
p(·)(Rn) ≤

{ ∞∑
k=−∞

2αkq

( k−3∑
j=−∞

|λj |‖χkg
∗
µ,~b

aj‖Lp(·)(Rn)

)q}1/q

+
{ ∞∑

k=−∞
2αkq

( ∞∑
j=k−2

|λj |‖χkg
∗
µ,~b

aj‖Lp(·)(Rn)

)q}1/q

≤ C

{ ∞∑
k=−∞

( k−3∑
j=−∞

|λj |(k − j)m2(j−k)σ

)q}1/q

+ C

{ ∞∑
k=−∞

( ∞∑
j=k−2

|λj |2(k−j)α

)q}1/q

≤ C

{ ∞∑
k=−∞

( k−3∑
j=−∞

|λj |q2(j−k)σq/2

)( k−3∑
j=−∞

(k − j)mq′2(j−k)σq′/2

)q/q′}1/q

+ C

{ ∞∑
k=−∞

( ∞∑
j=k−2

|λj |q2(k−j)αq/2

)( ∞∑
j=k−2

2(j−k)αq′/2

)q/q′}1/q

≤ C

{ ∞∑
j=−∞

|λj |q
( ∞∑

k=j+3

2(j−k)σq/2

)}1/q

+ C

{ ∞∑
j=−∞

|λj |q
( j+2∑

k=−∞
2(k−j)αq/2

)}1/q

≤ C

( ∞∑
j=−∞

|λj |q
)1/q

.

This completes the proof of Theorem 4.1.
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变指数Lebesgue空间上Littlewood-Paley算子的多线性交换子

王立伟1,束立生2

(1.安徽工程大学数理学院, 安徽芜湖 241000)

(2.安徽师范大学数学计算机科学学院, 安徽芜湖 241003)

摘要: 本文研究了Littlewood-Paley算子的多线性交换子在变指数Lebesgue空间上的有界性. 基于原

子分解和广义BMO范数, 证明了这类多线性交换子在变指数Herz型Hardy空间上的有界性, 推广了一些已知

结果.
关键词: Littlewood-Paley算子; 变指数; Herz型Hardy空间; 交换子

MR(2010)主题分类号: 42B20; 46E30 中图分类号: O174.2


