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Abstract: In this paper, we investigate the prediction in a finite population with the normal
inverse-Gamma prior under the squared error loss. First, we obtain Bayes prediction of linear
quantities and quadratic quantities based on Bayesian theory, respectively. Second, we compare
Bayes prediction with the best linear unbiased prediction of linear quantities according to statistical
decision theory, which shows that Bayes prediction is better than the best linear unbiased prediction.
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1 Introduction

Let & = {1,---,N} denote a finite population of N identifiable units, where N is

known. Associated with the ith unit of &2, there are p+ 1 quantities: y;, z;1,- - - , x;, where
all but y; are known, ¢ = 1,--- ,N. Let y = (y1,--- ,yn) and X = (Xy,---, Xy)’, where
Xi = (zi1, -+ ,2ip), i =1,--- ,N. Relating the two sets of variables, we consider the linear
model

y=Xp+e,e~ Ny(0,0*V), (1.1)

where ( is a p x 1 unknown parameter vector, V is a known symmetric positive definite
matrix, but the parameter o2 > 0 is unknown.

For the superpopulation model (1.1), it is interesting to study the optimal prediction of

N
the population quantity 6(y) such as the population Total T'= ) y;, the population variance
i=1
N
Sg = ;(y, — yn)?/N, where yy = T/N is the population mean and the finite population
regression coefficient Sy = (X’'V~!X)"' X’V =1y, and so on. In the literature, a lot of pre-
dictions for the population quantities were produced. For example, Bolfarine and Rodrigues

[1] gave the simple projection predictor, and obtained necessary and sufficient conditions for
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it to be optimal. Bolfarine et al. [2] studied the best unbiased prediction of finite population
regression coefficient under the generalized prediction mean squared error in different kinds
of models. Xu et al. [3] obtained a kind of optimal prediction of linear predictable func-
tion, and got the necessary and sufficient conditions for any linear prediction to be optimal
under matrix loss. Xu and Yu [4] further gave the admissible prediction in superpopulation
models with random regression coefficients under matrix loss function. Hu and Peng [5]
obtained some conditions for linear prediction to be admissible in superpopulation models
with and without the assumption that the underlying distribution is normal, respectively.
Furthermore, Hu et al. [6-7] discussed the linear minimax prediction in the multivariate
normal populations and Gauss-Markov populations, respectively. Their results showed that
linear minimax prediction for finite population regression coefficient is admissible in some
conditions. Bolfarine and Zacks [8] studied Bayes and minimax prediction under square er-
ror loss function in a finite population with single parametric prior. Meanwhile, Bansal and
Aggarwal [9-11] considered Bayes prediction of finite population regression coefficient using
a balanced loss function under the same prior information. There are two characteristics in
the above studies.

On the one hand, they obtained the optimal, linear admissible and minimax predictions
based on statistical decision theory. It is well known that statistical decision theory only
consider the sample information and loss function and do not consider the prior information.
However, people usually have these information.

On the other hand, they discussed the Bayes prediction by considering the prior infor-
mation of single parameter, and did not consider the situation of multi-parameters. In other
words, they only made use of the prior information of regression coefficient, but not use
the prior information of error variance in model (1.1). In fact, multi-parameter situations
are often encountered in the practical problems. Therefore, in this paper, we will study
Bayes prediction of linear and quadratic quantities in a finite population where regression
coefficient and error variance have the normal inverse-Gamma prior.

Assume that the prior distribution of 8 and o2 is normal inverse-Gamma distribution,

that is,

o2 a A
I 2o =22
1) 0t~ (5, 2),

where p is a known p x 1 vector, o and A\ are known constants, k~! is a ratio between the

Bla® ~Ny(n, (1.2)

prior variance of 3 and sample variance of model (1.1). We can suppose that k~! is known

by experience or professional knowledge. Therefore, the joint prior distribution of (3, 0?) is

©(B,0%) = pi(Blo*)pa(0?)
= M) CE D epl— G- p (- w N}, (13)

where M; = (£)%(3)2[[(%)]~!. The Bayes model defined by (1.1) and (1.2) is designated

by (1.4). In order to obtain Bayes prediction in the Bayes model (1.4), a sample .7 of size
n is selected from &2 according to some specified sampling plan. Let Z = & — . be the
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unobserved part of & of size N —n. After the sample .¥ has been selected, we may reorder

the elements of y such that we have the corresponding partitions of y, X and V, that is

X
y — yS , X — S , V — VS VST ,
Yr X Vis Vi

where X and X, are known column full rank matrices.

The rest of this paper is organized as follows: in Section 2, we give Bayes predictor of
population quantities in the Bayes model (1.4). Section 3 is devoted to discuss Bayesian pre-
diction of linear quantities. In Section 4, we obtain Bayes prediction of quadratic quantities.

Some examples are given in Section 5. Concluding remarks are placed in Section 6.

2 Bayes Prediction of Population Quantities

In this section, we will discuss the Bayes prediction of population quantities. Let
L(6(ys),0(y)) be a loss function for predicting (y) by 0(y,). The corresponding Bayes
prediction risk of §(y,) in model (1.4) is defined as p(0(ys),0(y)) = E,[L(A(ys), 0(y))], where
the expectation operator F, is performed with respect to the joint distribution of y and
(3,02). The Bayes predictor is the one minimizing the Bayes prediction risk p(6(ys),0(y)).
In particular, when we consider the squared error loss, then the Bayes prediciton of (y) is

é(ys) = Ey[e(y)‘ys]v (2'1)

and the Bayes prediction risk is

0(8(y,), 6(y)) = B, {Var[6(y) y.]}. (2.2)

where the expectation operator £, is performed with respect to the joint distribution of ¥,
and (83,0%). It is noted that y,|3, 0% ~ N, (X,3,0%V,) and

yr - ‘/;"ng_lys‘ﬂ7J2 ~ Nan((Xr - ‘/;"ng_le)Bao-g(m - ‘/’;”SVQ_l‘/:S"I”))'

This together with eq. (1.3) will yield the following results.
Theorem 2.1 Under the Bayes model (1.4), the following results hold.
(i) The joint posterior probability density of (3, c?) is

ntpta

7(8,0°[ys) = Mo|S[ 72 (0%)" eXp{—i[Co + (80,5716 = B} (2.3)

(ii) The marginal posterior distribution of 3 is p-dimensional ¢ distribution MT,(fs,

rfof(wn + o) with probability density
COE 1 2 n+a+p
s) = M — s s *
(@) = Mol 31 (- By () (5 Bl
iii) The marginal posterior distribution of o2 is ['"1(2t2 %) with probability density
2 02
_nta c
m(0%ys) = Ma(0®) 5 exp(—575).

202
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(iv) Bayes prediction distribution of y,. given y, is N — n dimensional ¢ distribution

MTy (Y, COT%, n + «) with probability density

coU 1 1 vy, U | _
2] - — ..
iyl Bl Uyl CUt 0 e

N4

) 1(%--2/})]7 2,

W(yr‘ys) = M5|
where

R _ X 2\ —1 - X 2

B = (XX XYy, 67 = W P (e = X0
n—p

co= (Bs — 1)/ A(Bs — 1) + (n = p)62 + A, Bs = Slkp + (XLV,1X,) 54,

A=[(XV' X))+ kL)

)

. F(n+a+p) i
Y= (XV X 4+ kL)Y My = (27) "2 My, M3 = P(niia)[ﬂ(n +a)]" 2,
2
() r(X%e) _ g
M4: n+oa ’M5: n+oa [’/T(’I’L—FCM)] 2 )
L) L(%52)

U = X, + ViV (s — XBy),
U= ‘/r - ‘/7"5‘/5_1‘/87" + (Xr - WS‘/;_le)E(XT - ‘/7’8‘/5_1X5)/'

Proof The proof of (i): since

(ys — Xsﬂ)lvs_l(ys - X.f8)
= (y.s - XSBS)/‘/Sil(ys - XSBS) + (XSBS - XS/B)/‘/Sil(XsBs - Xbﬁ)
= (n—p)&Q—f— (Bs _ﬂ)/X;‘/;_le(Bs _ﬂ)

and y,|3, 02 ~ N,,(X,3,02V,), the conditional probability density of y, given (3,0?) is

(’I’L B p)&2 + (Bs - ﬂ)/X;‘/sile(ﬂAs - ﬂ)}
202 '

ps(ysl B, 0%) = (2m0®) ™% exp{—

This together with eq. (1.3) will yield that the joint posterior probability density of (3, 0?)
is

2 o p3(ys|ﬁ502)ﬂ'(ﬁ702)
m(B,0%ys) = m(ys)

X p3(ys|ﬁa UQ)W(ﬁy 02)

() explof(n - p)6? + (6 - A XLV X8 - B
exp{— 55 k(3 — 1)(8 — ) + A}

x (0_2)*(%4*1) exp —2%‘_2[60 + (/8 _ Bs)lzfl(ﬁ _ Bsﬂ}’

where m(ys) is the marginal probability density of ys, symbol  denotes proportional to.
By adding the regularization constant M,||~2 to eq. (2.3), we obtain result (i).
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The proof of (ii): by the integral of eq. (2.2) about o2, we have

+oo
*(Blys) = / (8,0 |ys)do?

o0 i 5 5
= st [ @) el g e+ (8- B2 (5 - B)do?
0
E 1 1 ~ E ~ nt+a+p
= M| S (B A ()T (B - BT

which implies that the marginal posterior distribution of 3 is p-dimensional ¢ distribution

C()E
n—+aoa

The proof of (iii): by the integral of eq. (2.2) about (3, we can obtain the result. Here

with mean vector (3, correlation matrix

and degrees of freedom n + a.

it is omitted.
The proof of (iv): by ys|3,02 ~ N, (X3, 02Vs), 48,02, ys ~ Ny _n (X, B+ VsV ys —
X.0),0%(V, =V, V.7 1V,,)), and eq. (2.2), we know that

W(yra ﬁa 02|ys) X p3(ys|ﬁ> 0'2)77(57 02)p4(yr|ﬁa 027 ys)

N+

x (0t D expl ey + (6 - SN (B - )}
X €xXp _ﬁ[yr - Xrﬂ - VrsV;l(ys - Xsﬁ)]/(v;" - ‘/7“3‘/;71%7*)71

[yr - Xrﬂ - ers‘/sil(ys - XS/@)}}
x (0?) D expl =L [(5 — DY DS — DTV + ot (5 — 5 Ul — 9]},

where

B =SB 4+ (X = Vo VLX) (Vi = Vil VW) (e — ViV M),
D = E_l + (Xr - ‘/;"s‘/s_lxs)/(‘/r - ‘/rs‘/s_l‘/sr)_l<Xr - V;"s‘/s_le)~

Adding the regularization constant to eq. (2.3) and integrating it by 3 and o2, respectively,
we can obtain the result.

3 Bayes Prediction of Linear Quantities

In order to obtain Bayes prediction of 0(y), we consider the squared error loss

L(8(ys),6(y)) = [(ys) — 6], 3.1)

then Bayes prediciton of 6(y) is

0(y,) = E,[0(y)ly.], (3-2)

and Bayes prediction risk is

0(0(ys),0(y)) = E,[0(ys) — 0(y))* = B, {Var[0(y)|ys]}, (3.3)
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where the expectation operator £, is performed with respect to the joint distribution of ¥,

and (8,0%). By result (iv) of Theorem 2.1, we know

Ey(yrlys) = X, B + Vs Vo (s — X5 (3.4)
and
Var(y,|ys) = ————U (3.5)
aryTyg_n+a_2 . .

Now, let §(y) = Qy be any linear quantity, where Q = (Q%, Q") is a known 1 x N vector.

According to Theorem 2.1, eqgs. (3.4) and (3.5), we have the following conclusions.
Theorem 3.1 Under model (1.4) and squared error loss function, Bayes predictor of

linear quantity Qy is é(ys) = QLys + Q..9,, and Bayes predictor risk is MQ;UQT.

n4+oa—2
As we know, the best linear unbiased prediction of QQy under the squared error loss is

0(ys), where 0(y,) = QLys + Q.9r, and §, = X, B, + Vys Vo (ys — X,35). In the following, we
will discuss the superiority between Bayes prediction and the best linear unbiased prediction
under the predicative mean squared error (PMSE), which is defined by PMSE(d(ys), Qy) =
E[(d(ys) — Qy)*]-

Theorem 3.2 Under model (1.4), Bayes prediction é(ys) of Qy is better than the best
linear unbiased prediction é(ys) under the predicative mean squared error.

Proof By the definition of PMSE and 3, = 3, — kE(BS — ), we have

PMSE(0(ys), Qy)
= E[0(ys) — Qy)*]
= ElQ(r — y) (G — ur) Q]
= EBQM(X: By + Vs Vi Hys — XoBs) — y)(XiBs + Vis Vo M (ys — XoBs) — ) Q)
= QLE, [(X, — ViV X)) (B, — B)(Bs — B) (X, = Vo V' X)) + 02 (V, = Vi VT Ve)]Q,
= QUX, = ViV X E, (B — B) — k(B — w)[(Bs — B) — kS(Bs — )/
(X, = ViV X)Qe 20 QLY — ViV Va)Q

A~

= PMSE(0(ys), Qy)

2
_Oék )\2 Q;(XT - VT'sVsilXS)E(killp + (X;V571X8>71)E/(X7' - V,.SV:IXS)/QT.

That is, PMSE(6(y,), Qy) — PMSE(8(y,), Qy) > 0. Therefore, 0(y,) is better than 6(y,)
under the predicative mean squared error.

Corollary 3.1 Bayes predictor of the population total 7" under model (1.4) and the
loss function (3.1) is T(ys) = 1,ys + Uy_, [X0Bs + Vis VM (ys — X,3,)], and Bayes risk of
this predictor is ﬁST(C_OQ)l&_nUlN,n. Moreover, T'(y,) is dominated by T(y,) under the
predicative mean squared error, where T(ys) =1ys+1y_,0 -

For the finite population regression coefficient Sy = (X'V~!X)"1 X'V -1y, following
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Bolfarine et al. [2], we can write it as

/BN _ (lele)lelvfly
—1 1 —1
X
Vis Vi X Vis Vi Yr
= Ksys + Kryra
where

K,=G'JC™', K.,=G'FE™, J=X-X.V.'V,,,
C=V,- Vo,V WV, F=X,-X V7'V, E=V, -V, V7'V,

and
G=JC'X,+ FE'X,.

Then by Theorem 3.1, we have the following corollary.
Corollary 3.2 Bayes predictor of the population total Sy under model (1.4) and
the loss function (3.1) is Oy (ys) = K.ys + K, E(y.|ys), and Bayes risk of this predictor is

Eys (CO)
n+a—2

where BN(ys) = Ksys + Kr:’)r-
In order to illustrate our results, we give the following example.

K, UK. Moreover, it is better than B ~ (ys) under the predicative mean squared error,

Example 3.1 Let X = (1,29, -+ ,2y)", V = diag(z1, 22, ,2x) in the Bayesian
mOdel (14)a Where Z; 7é O,Z = 1729' o )N' If XS = (1'1,2132," : >xn)/ays = (y17y27' o )yn)/>
we have B, = ———(kp + 1%y,), Bs = =+—1"y,. According to Theorem 3.1, we have the

> xitk Z;

i=1 i=1

following conclusions.

N N N
. 2 17 i:En:Jrlxi / s e . . A(;::l zitk) i:ZrL:+1Ii
(i) T(ys) = 1ys + T (ku + 1,,ys). Its Bayes prediction risk is - .
> xi+k (a=2)(Y zi+k)

i=1 i=1

Moreover, T'(y,) is better than T'(ys).

N N
ML with) 3w

i= i=n+1

(ii) B (ys) = +—T(ys), and its Bayes prediction risk is - =
2 T (@=2)( X it+k)(X z;)?

i=1
Bn(ys) is better than By (ys).
In the following, we continue to give the simulation study to explain our results according

. Moreover,

to the following steps, which are executed on a personal computer using Version 7.9 (R2009b)
Matlab software.

(i) Generating randomly a N x p full column rank matrix X and a p-dimensional vector
14

(ii) The number o2 and random error € are generated from distribution I'"!(%, 4) and
N(0,02V), respectively;

(iii) Generating a p-dimensional vector by the distribution N (g, ‘%Ip);

(iv) Obtaining the dependent variable y by the model y = X3 + «.
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(v) Generating randomly N-dimensional vector @, then Bayes prediction and the best
linear unbiased prediction of Qy are derived by Theorem 3.1, respectively.

(vi) Finally, we compare the PMSE between Bayes prediction and best linear unbiased
prediction.

Now, we assume that N = 10,n = 6,p = 3,a = 8§ A = 12,k = 10, and obtain the
above data. The simulation study shows that Bayes prediction is better than the best linear
unbiased prediction, which is consistent to our theoretical conclusions. Here, we give the

above data in one experiment as following.

0.7079 —0.6014 —2.3252
1.9574 0.5512 —1.2316
0.5045 —1.0998 1.0556
1.8645 0.0860 —0.1132
—1.3868
—0.3398 —2.0046 0.3792
X = , B= 0.3785 )
—1.1398 —0.4931 0.9442
1.7166
—0.2111  0.4620 —2.1204
1.1902 —0.3210 —0.6447
—1.1162 1.2366 —0.7043

0.6353 —0.6313 —1.0181

0.6693 45316
0.3681 42521
0.6319 1.3281
0.2148 25328
| 03615 | o721
T o120 |7 YT | 3130
0.6272 25452
0.3941 24847
0.4814 1.2884
0.6497 22180

At this time, we get randomly
Q = (0.3139,0.6382,0.9866, 0.5029, 0.9477,0.8280,0.9176,0.1131,0.8121, 0.9083)".

By direct computation, we have Qy = —4.3971. By Theorem 2.1, we know 6(y,) =
—4.8497,0(y,) = —5.7928, and PMSE(d(y,)) — PMSE(d(y,)) = 0.0844 > 0. Therefore,
Bayes prediction of Qy is better than the best linear unbiased predictor.

4 Bayes Prediction of Quadratic Quantities

In this section, we will discuss Bayes prediction of quadratic quantities f(H) = y' Hy,
Hyy Hy

where H is a known symmetric matrix. Assume that H =
Hy  Ho

) with ng = Hél7
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then

H H s
f(H) = (y5, ) oo V) = YoHu1ys + Yo Hizyr + v, Horys + v, Haoyy.
Hyy Hyo Yr

By Theorem 2.1 and eq. (3.2), we have the following results.
Theorem 4.1 Under model (1.4) and the loss function (1.3), the Bayes prediction of

f(H) is
f(H) = Z/;Huys + ngmE(il/Hys) + [E(yr|ys)]/H21ys
+[E(yr|ys)]/H22[E(yr|ys)] + tr[H22var(yr‘ys)]'

For the population variance S;, we know that

1 1 1 I, —+1,1 —11,1 y
52: /= Inv — —1 1/ — l7 / n N Nn+n N Nn+-N-—n 5 ’
v =Y v = vty = (e vr) ( R T TAN NI T T > ( "

where 1,, denotes n dimensional vector with elements 1. Then by Theorem 4.1, we can obtain
the following corollary.

Corollary 4.1 The Bayes prediction of the population variance S; under model (1.4)
and the loss function (3.1) is

A 1 I,— +1,1 —+1,1 Y
S = FULBwl)) | TN N s
v N —yin-all, Inon— yln-aly_, E(yrlys)
1 1
+Ntr[(IN—n - NlN—nlkffn>Var(yr|yS)}'

It is noted that S7 = %S + (1 — #)[S2 + #(Js — Ur)?], where g, and S;_ are the
mean and variance of y,, 7, and Szi are the mean and variance of y,.. Therefore, the Bayes
prediction of the population variance can also be expressed as follows.

Remark 4.1 The Bayes prediction of the population variance S; under model (1.4)
and the loss function (3.1) is

- n n 1 1
S; = N‘gi + (1 - N){tr[]v_n<IN—n - mlN—n:l?an)Var(yAys)]
1

+E(yr|ys)/m<IN—n - In—nlN_) E(Yrlys)

—nNn

1

— —— 1N Eyelys))? + 1y, Var(ye|ys) Iv—n

i B0+ s i V(o) L] |
Proof Since S} = %5, +(1—%)[S; + % (Us—¥)?], we only derive the Bayes prediction

of 52 + %(Js — §r)?. Moreover, we know that S? = 7=y, (In—n — 55 1n-nly_,)¥r, and

1

Ur = 5 1y_,¥r- Therefore, the Bayes prediction of S;r is
Bl = e trl(n o~ eIl Var(y,lys)]
yr N —n N —n N—n
1 1
E,|ys) ——— (I — v VEW,|ys). 4.1
+E(yelys) 5 — Un N, Iv-n o) E(Yelys) (4.1)
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And, the Bayes prediction of (7, — ¥,)? is

1 /
2]‘N7nvar(yT|ys)]-N—n~ (42)

Uy E(yelys))® + N_np

E 73_77“2 s] = (Ys —
(@ = 90) lys] = (@ — 57—
According to eqs.(4.1)—(4.2) and the expression of S, we can derive the result of this remark.
It is easy to verify that the result of this remark is consistent to Corollary 4.1.

Example 4.1 Let X =15,V = (1—p)Iy + ply1l)y in the Bayesian model (1.4), where

p € (0,1) is known. It can be checked that X'V, 1 X, = T, 2nd
~ n n
b= Gqmo, 70 et oY
nk 1 1 1
= Ny — )+ AN+ —y (I, — =1,1")ys.
Co k,+kp(n_1)+n(n nYs — )+ +1_pys( SAaln)y

Then,

Co

— (1= p) N + byl T,

E(y,|ys) = aly—, and Var(y,|ys) =

where a = H(ln_fl)pﬁs + 1+(Z’il)pys, b= H(ln_fl)p[p—l— n+k4»1(:7.’il)kp]' According to Remark 4.1,
we know that

513:&52 +<1_P)<N_”_1)CO+<N_”)71

I—p
v N ¥ N(n+oa—-2) N2 (b+ ))

N —n

5 Concluding Remarks

In this paper, we obtain Bayes prediction of linear and quadratic quantities in the finite
population with normal inverse-Gamma prior information. In our studies, on the one hand,
the distribution of the superpopulation model is need to be normal. However, in many
occasions, the distribution of the model is usually unknown in addition to the mean vector
and covariance matrix. At this time, how to deal with the Bayes prediction? On the other
hand, if the prior distribution is hierarchical and improper, how to obtain the generalized
Bayes prediction and discuss its optimal properties? Such as these problems are deserved to

discuss in the future.
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