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Abstract: In this paper, we investigate the prediction in a finite population with the normal

inverse-Gamma prior under the squared error loss. First, we obtain Bayes prediction of linear

quantities and quadratic quantities based on Bayesian theory, respectively. Second, we compare

Bayes prediction with the best linear unbiased prediction of linear quantities according to statistical

decision theory, which shows that Bayes prediction is better than the best linear unbiased prediction.
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1 Introduction

Let P = {1, · · · , N} denote a finite population of N identifiable units, where N is
known. Associated with the ith unit of P , there are p + 1 quantities: yi, xi1, · · · , xip, where
all but yi are known, i = 1, · · · , N . Let y = (y1, · · · , yN )′ and X = (X1, · · · , XN )′, where
Xi = (xi1, · · · , xip)′, i = 1, · · · , N . Relating the two sets of variables, we consider the linear
model

y = Xβ + ε, ε ∼ NN (0, σ2V ), (1.1)

where β is a p × 1 unknown parameter vector, V is a known symmetric positive definite
matrix, but the parameter σ2 > 0 is unknown.

For the superpopulation model (1.1), it is interesting to study the optimal prediction of

the population quantity θ(y) such as the population Total T =
N∑

i=1

yi, the population variance

S2
y =

N∑
i=1

(yi − ȳN )2/N , where ȳN = T/N is the population mean and the finite population

regression coefficient βN = (X ′V −1X)−1X ′V −1y, and so on. In the literature, a lot of pre-
dictions for the population quantities were produced. For example, Bolfarine and Rodrigues
[1] gave the simple projection predictor, and obtained necessary and sufficient conditions for
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it to be optimal. Bolfarine et al. [2] studied the best unbiased prediction of finite population
regression coefficient under the generalized prediction mean squared error in different kinds
of models. Xu et al. [3] obtained a kind of optimal prediction of linear predictable func-
tion, and got the necessary and sufficient conditions for any linear prediction to be optimal
under matrix loss. Xu and Yu [4] further gave the admissible prediction in superpopulation
models with random regression coefficients under matrix loss function. Hu and Peng [5]
obtained some conditions for linear prediction to be admissible in superpopulation models
with and without the assumption that the underlying distribution is normal, respectively.
Furthermore, Hu et al. [6–7] discussed the linear minimax prediction in the multivariate
normal populations and Gauss-Markov populations, respectively. Their results showed that
linear minimax prediction for finite population regression coefficient is admissible in some
conditions. Bolfarine and Zacks [8] studied Bayes and minimax prediction under square er-
ror loss function in a finite population with single parametric prior. Meanwhile, Bansal and
Aggarwal [9–11] considered Bayes prediction of finite population regression coefficient using
a balanced loss function under the same prior information. There are two characteristics in
the above studies.

On the one hand, they obtained the optimal, linear admissible and minimax predictions
based on statistical decision theory. It is well known that statistical decision theory only
consider the sample information and loss function and do not consider the prior information.
However, people usually have these information.

On the other hand, they discussed the Bayes prediction by considering the prior infor-
mation of single parameter, and did not consider the situation of multi-parameters. In other
words, they only made use of the prior information of regression coefficient, but not use
the prior information of error variance in model (1.1). In fact, multi-parameter situations
are often encountered in the practical problems. Therefore, in this paper, we will study
Bayes prediction of linear and quadratic quantities in a finite population where regression
coefficient and error variance have the normal inverse-Gamma prior.

Assume that the prior distribution of β and σ2 is normal inverse-Gamma distribution,
that is,

β | σ2 ∼ Np(µ,
σ2

k
Ip), σ2 ∼ Γ−1(

α

2
,
λ

2
), (1.2)

where µ is a known p × 1 vector, α and λ are known constants, k−1 is a ratio between the
prior variance of β and sample variance of model (1.1). We can suppose that k−1 is known
by experience or professional knowledge. Therefore, the joint prior distribution of (β, σ2) is

π(β, σ2) = p1(β|σ2)p2(σ2)

= M1(σ2)−( p+α
2 +1) exp{− 1

2σ2
[k(β − µ)′(β − µ) + λ]}, (1.3)

where M1 = ( k
2π

)
p
2 (λ

2
)

α
2 [Γ(α

2
)]−1. The Bayes model defined by (1.1) and (1.2) is designated

by (1.4). In order to obtain Bayes prediction in the Bayes model (1.4), a sample S of size
n is selected from P according to some specified sampling plan. Let R = P −S be the
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unobserved part of P of size N −n. After the sample S has been selected, we may reorder
the elements of y such that we have the corresponding partitions of y, X and V , that is

y =

(
ys

yr

)
, X =

(
Xs

Xr

)
, V =

(
Vs Vsr

Vrs Vr

)
,

where X and Xs are known column full rank matrices.
The rest of this paper is organized as follows: in Section 2, we give Bayes predictor of

population quantities in the Bayes model (1.4). Section 3 is devoted to discuss Bayesian pre-
diction of linear quantities. In Section 4, we obtain Bayes prediction of quadratic quantities.
Some examples are given in Section 5. Concluding remarks are placed in Section 6.

2 Bayes Prediction of Population Quantities

In this section, we will discuss the Bayes prediction of population quantities. Let
L(θ̂(ys), θ(y)) be a loss function for predicting θ(y) by θ̂(ys). The corresponding Bayes
prediction risk of θ̂(ys) in model (1.4) is defined as ρ(θ̂(ys), θ(y)) = Ey[L(θ̂(ys), θ(y))], where
the expectation operator Ey is performed with respect to the joint distribution of y and
(β, σ2). The Bayes predictor is the one minimizing the Bayes prediction risk ρ(θ̂(ys), θ(y)).
In particular, when we consider the squared error loss, then the Bayes prediciton of θ(y) is

θ̂(ys) = Ey[θ(y)|ys], (2.1)

and the Bayes prediction risk is

%(θ̂(ys), θ(y)) = Eys
{Var[θ(y)|ys]}, (2.2)

where the expectation operator Eys
is performed with respect to the joint distribution of ys

and (β, σ2). It is noted that ys|β, σ2 ∼ Nn(Xsβ, σ2Vs) and

yr − VrsV
−1

s ys|β, σ2 ∼ NN−n((Xr − VrsV
−1

s Xs)β, σ2(Vr − VrsV
−1

s Vsr)).

This together with eq. (1.3) will yield the following results.
Theorem 2.1 Under the Bayes model (1.4), the following results hold.
(i) The joint posterior probability density of (β, σ2) is

π(β, σ2|ys) = M2|Σ|− 1
2 (σ2)−

n+p+α
2 +1 exp{− 1

2σ2
[c0 + (β − β̃s)′Σ−1(β − β̃s)]}. (2.3)

(ii) The marginal posterior distribution of β is p-dimensional t distribution MTp(β̃s,
c0Σ
n+α

, n + α) with probability density

π(β|ys) = M3| c0Σ
n + α

|− 1
2 [1 +

1
n + α

(β − β̃s)′(
c0Σ

n + α
)−1(β − β̃s)]−

n+α+p
2 .

(iii) The marginal posterior distribution of σ2 is Γ−1(n+α
2

, c0
2
) with probability density

π(σ2|ys) = M4(σ2)−
n+α

2 +1 exp(− c0

2σ2
).
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(iv) Bayes prediction distribution of yr given ys is N − n dimensional t distribution
MTN−n(ŷr,

c0U
n+α

, n + α) with probability density

π(yr|ys) = M5| c0U

n + α
|− 1

2 [1 +
1

n + α
(yr − ŷr)′(

c0U

n + α
)−1(yr − ŷr)]−

N+r
2 ,

where

β̂s = (X ′
sV

−1
s Xs)−1X ′

sV
−1

s ys, σ̂
2 =

(ys −Xsβ̂s)′V −1
s (ys −Xsβ̂s)

n− p
,

c0 = (β̂s − µ)′A(β̂s − µ) + (n− p)σ̂2 + λ, β̃s = Σ[kµ + (X ′
sV

−1
s Xs)β̂s],

A = [(X ′
sV

−1
s Xs)−1 + k−1Ip]−1,

Σ = (X ′
sV

−1
s Xs + kIp)−1,M2 = (2π)−

p
2 M4,M3 =

Γ(n+α+p
2

)
Γ(n+α

2
)

[π(n + α)]−
p
2 ,

M4 =
( c0

2
)n+α

Γ(n+α
2

)
,M5 =

Γ(N+α
2

)
Γ(n+α

2
)
[π(n + α)]−

N+α
2 ,

ỹr = Xrβ̃s + VrsV
−1

s (ys −Xsβ̃s),

U = Vr − VrsV
−1

s Vsr + (Xr − VrsV
−1

s Xs)Σ(Xr − VrsV
−1

s Xs)′.

Proof The proof of (i): since

(ys −Xsβ)′V −1
s (ys −Xsβ)

= (ys −Xsβ̂s)′V −1
s (ys −Xsβ̂s) + (Xsβ̂s −Xsβ)′V −1

s (Xsβ̂s −Xsβ)

= (n− p)σ̂2 + (β̂s − β)′X ′
sV

−1
s Xs(β̂s − β)

and ys|β, σ2 ∼ Nn(Xsβ, σ2Vs), the conditional probability density of ys given (β, σ2) is

p3(ys|β, σ2) = (2πσ2)−
n
2 exp{−(n− p)σ̂2 + (β̂s − β)′X ′

sV
−1

s Xs(β̂s − β)
2σ2

}.

This together with eq. (1.3) will yield that the joint posterior probability density of (β, σ2)
is

π(β, σ2|ys) =
p3(ys|β, σ2)π(β, σ2)

m(ys)
∝ p3(ys|β, σ2)π(β, σ2)

∝ (σ2)−( n+α+p
2 +1) exp{− 1

2σ2
[(n− p)σ̂2 + (β − β̂s)′X ′

sV
−1

s Xs(β − β̂s)]}

exp{− 1
2σ2

[k(β − µ)′(β − µ) + λ]}

∝ (σ2)−( n+α+p
2 +1) exp{− 1

2σ2
[c0 + (β − β̃s)′Σ−1(β − β̃s)]},

where m(ys) is the marginal probability density of ys, symbol ∝ denotes proportional to.
By adding the regularization constant M2|Σ|− 1

2 to eq. (2.3), we obtain result (i).



No. 5 Bayes prediction of population quantities in a finite population 797

The proof of (ii): by the integral of eq. (2.2) about σ2, we have

π(β|ys) =
∫ +∞

0

π(β, σ2|ys)dσ2

= M2|Σ|− 1
2

∫ +∞

0

(σ2)−( n+p+α
2 +1) exp{− 1

2σ2
[c0 + (β − β̃)′Σ−1(β − β̃)]}dσ2

= M3| c0Σ
n + α

|− 1
2 [1 +

1
n + α

(β − β̃s)′(
c0Σ

n + α
)−1(β − β̃s)]−

n+α+p
2 ,

which implies that the marginal posterior distribution of β is p-dimensional t distribution
with mean vector β̃, correlation matrix c0Σ

n+α
and degrees of freedom n + α.

The proof of (iii): by the integral of eq. (2.2) about β, we can obtain the result. Here
it is omitted.

The proof of (iv): by ys|β, σ2 ∼ Nn(Xsβ, σ2Vs), yr|β, σ2, ys ∼ NN−n(Xrβ+VrsV
−1

s (ys−
Xsβ), σ2(Vr − VrsV

−1
s Vsr)), and eq. (2.2), we know that

π(yr, β, σ2|ys) ∝ p3(ys|β, σ2)π(β, σ2)p4(yr|β, σ2, ys)

∝ (σ2)−( N+p+α
2 +1) exp{− 1

2σ2
[c0 + (β − β̃)′Σ−1(β − β̃)]}

× exp{− 1
2σ2

[yr −Xrβ − VrsV
−1

s (ys −Xsβ)]′(Vr − VrsV
−1

s Vsr)−1

[yr −Xrβ − VrsV
−1

s (ys −Xsβ)]}
∝ (σ2)−( N+p+α

2 +1) exp{− 1
2σ2

[(β −D−1β∗)′D(β −D−1β∗) + c0 + (yr − ỹr)′U(yr − ỹr)]},

where

β∗ = Σ−1β̃s + (Xr − VrsV
−1

s Xs)′(Vr − VrsV
−1

s Vsr)−1(yr − VrsV
−1

s ys),

D = Σ−1 + (Xr − VrsV
−1

s Xs)′(Vr − VrsV
−1

s Vsr)−1(Xr − VrsV
−1

s Xs).

Adding the regularization constant to eq. (2.3) and integrating it by β and σ2, respectively,
we can obtain the result.

3 Bayes Prediction of Linear Quantities

In order to obtain Bayes prediction of θ(y), we consider the squared error loss

L(θ̂(ys), θ(y)) = [θ̂(ys)− θ(y)]2, (3.1)

then Bayes prediciton of θ(y) is

θ̂(ys) = Ey[θ(y)|ys], (3.2)

and Bayes prediction risk is

%(θ̂(ys), θ(y)) = Ey[θ̂(ys)− θ(y)]2 = Eys
{Var[θ(y)|ys]}, (3.3)
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where the expectation operator Eys
is performed with respect to the joint distribution of ys

and (β, σ2). By result (iv) of Theorem 2.1, we know

Ey(yr|ys) = Xrβ̃s + VrsV
−1

s (ys −Xsβ̃s) (3.4)

and

Var(yr|ys) =
c0

n + α− 2
U. (3.5)

Now, let θ(y) = Qy be any linear quantity, where Q = (Q′
s, Q

′
r) is a known 1 × N vector.

According to Theorem 2.1, eqs. (3.4) and (3.5), we have the following conclusions.

Theorem 3.1 Under model (1.4) and squared error loss function, Bayes predictor of
linear quantity Qy is θ̃(ys) = Q′

sys + Q′
rỹr, and Bayes predictor risk is Eys (c0)

n+α−2
Q′

rUQr.

As we know, the best linear unbiased prediction of Qy under the squared error loss is
θ̂(ys), where θ̂(ys) = Q′

sys +Q′
rŷr, and ŷr = Xrβ̂s +VrsV

−1
s (ys−Xsβ̂s). In the following, we

will discuss the superiority between Bayes prediction and the best linear unbiased prediction
under the predicative mean squared error (PMSE), which is defined by PMSE(d(ys), Qy) =
E[(d(ys)−Qy)2].

Theorem 3.2 Under model (1.4), Bayes prediction θ̃(ys) of Qy is better than the best
linear unbiased prediction θ̂(ys) under the predicative mean squared error.

Proof By the definition of PMSE and β̃s = β̂s − kΣ(β̂s − µ), we have

PMSE(θ̃(ys), Qy)

= E[(θ̃(ys)−Qy)2]

= E[Q′
r(ỹr − yr)(ỹr − yr)′Qr]

= E[Q′
r(Xrβ̃s + VrsV

−1
s (ys −Xsβ̃s)− yr)(Xrβ̃s + VrsV

−1
s (ys −Xsβ̃s)− yr)′Qr]

= Q′
rEys

[(Xr − VrsV
−1

s Xs)(β̃s − β)(β̃s − β)′(Xr − VrsV
−1

s Xs)′ + σ2(Vr − VrsV
−1

s Vsr)]Qr

= Q′
r(Xr − VrsV

−1
s Xs)Eys

[(β̂s − β)− kΣ(β̂s − µ)][(β̂s − β)− kΣ(β̂s − µ)]′

(Xr − VrsV
−1

s Xs)′Qr +
λ

α− 2
Q′

r(Vr − VrsV
−1

s Vsr)Qr

= PMSE(θ̂(ys), Qy)

− k2λ

α− 2
Q′

r(Xr − VrsV
−1

s Xs)Σ(k−1Ip + (X ′
sV

−1
s Xs)−1)Σ′(Xr − VrsV

−1
s Xs)′Qr.

That is, PMSE(θ̂(ys), Qy) − PMSE(θ̃(ys), Qy) > 0. Therefore, θ̃(ys) is better than θ̂(ys)
under the predicative mean squared error.

Corollary 3.1 Bayes predictor of the population total T under model (1.4) and the
loss function (3.1) is T̃ (ys) = 1′nys + 1′N−n[Xrβ̃s + VrsV

−1
s (ys − Xsβ̃s)], and Bayes risk of

this predictor is Eys (c0)

n+α−2
1′N−nU1N−n. Moreover, T̂ (ys) is dominated by T̃ (ys) under the

predicative mean squared error, where T̂ (ys) = 1′nys + 1′N−nŷr .

For the finite population regression coefficient βN = (X ′V −1X)−1X ′V −1y, following
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Bolfarine et al. [2], we can write it as

βN = (X ′V −1X)−1X ′V −1y

=
[
(X ′

s X ′
r)

(
Vs Vsr

Vrs Vr

)−1 (
Xs

Xr

)]−1

(X ′
s X ′

r)

(
Vs Vsr

Vrs Vr

)−1 (
ys

yr

)

= Ksys + Kryr,

where

Ks = G−1JC−1, Kr = G−1FE−1, J = X ′
s −X ′

rV
−1

r Vrs,

C = Vs − VsrV
−1

r Vrs, F = X ′
r −X ′

sV
−1

s Vsr, E = Vr − VrsV
−1

s Vsr,

and
G = JC−1Xs + FE−1Xr.

Then by Theorem 3.1, we have the following corollary.
Corollary 3.2 Bayes predictor of the population total βN under model (1.4) and

the loss function (3.1) is β̃N (ys) = Ksys + KrE(yr|ys), and Bayes risk of this predictor is
Eys (c0)

n+α−2
KrUK ′

r. Moreover, it is better than β̂N (ys) under the predicative mean squared error,
where β̂N (ys) = Ksys + Krŷr.

In order to illustrate our results, we give the following example.
Example 3.1 Let X = (x1, x2, · · · , xN )′, V = diag(x1, x2, · · · , xN ) in the Bayesian

model (1.4), where xi 6= 0, i = 1, 2, · · · , N . If Xs = (x1, x2, · · · , xn)′, ys = (y1, y2, · · · , yn)′,
we have β̃s = 1

n∑
i=1

xi+k
(kµ + 1′nys), β̂s = 1

n∑
i=1

xi

1′nys. According to Theorem 3.1, we have the

following conclusions.

(i) T̃ (ys) = 1′nys +

N∑
i=n+1

xi

n∑
i=1

xi+k
(kµ + 1′nys). Its Bayes prediction risk is

λ(
N∑

i=1
xi+k)

N∑
i=n+1

xi

(α−2)(
n∑

i=1
xi+k)

.

Moreover, T̃ (ys) is better than T̂ (ys).

(ii) β̃N (ys) = 1
N∑

i=1
xi

T̂ (ys), and its Bayes prediction risk is
λ(

N∑
i=1

xi+k)
N∑

i=n+1
xi

(α−2)(
n∑

i=1
xi+k)(

N∑
i=1

xi)2
. Moreover,

β̃N (ys) is better than β̂N (ys).
In the following, we continue to give the simulation study to explain our results according

to the following steps, which are executed on a personal computer using Version 7.9 (R2009b)
Matlab software.

(i) Generating randomly a N ×p full column rank matrix X and a p-dimensional vector
µ;

(ii) The number σ2 and random error ε are generated from distribution Γ−1(α
2
, λ

2
) and

N(0, σ2V ), respectively;
(iii) Generating a p-dimensional vector β by the distribution N(µ, σ2

k
Ip);

(iv) Obtaining the dependent variable y by the model y = Xβ + ε.
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(v) Generating randomly N -dimensional vector Q, then Bayes prediction and the best
linear unbiased prediction of Qy are derived by Theorem 3.1, respectively.

(vi) Finally, we compare the PMSE between Bayes prediction and best linear unbiased
prediction.

Now, we assume that N = 10, n = 6, p = 3, α = 8, λ = 12, k = 10, and obtain the
above data. The simulation study shows that Bayes prediction is better than the best linear
unbiased prediction, which is consistent to our theoretical conclusions. Here, we give the
above data in one experiment as following.

X =




0.7079 −0.6014 −2.3252
1.9574 0.5512 −1.2316
0.5045 −1.0998 1.0556
1.8645 0.0860 −0.1132
−0.3398 −2.0046 0.3792
−1.1398 −0.4931 0.9442
−0.2111 0.4620 −2.1204
1.1902 −0.3210 −0.6447
−1.1162 1.2366 −0.7043
0.6353 −0.6313 −1.0181




, β =



−1.3868
0.3785
1.7166


 ,

ε =




0.6693
0.3681
0.6319
0.2148
0.3615
0.1250
0.6272
0.3941
0.4814
0.6497




, y =




−4.5316
−4.2521
1.3281
−2.5328
0.7251
3.1399
−2.5452
−2.4847
1.2884
−2.2180




.

At this time, we get randomly

Q = (0.3139, 0.6382, 0.9866, 0.5029, 0.9477, 0.8280, 0.9176, 0.1131, 0.8121, 0.9083)′.

By direct computation, we have Qy = −4.3971. By Theorem 2.1, we know θ̃(ys) =
−4.8497, θ̂(ys) = −5.7928, and PMSE(θ̂(ys)) − PMSE(θ̃(ys)) = 0.0844 > 0. Therefore,
Bayes prediction of Qy is better than the best linear unbiased predictor.

4 Bayes Prediction of Quadratic Quantities

In this section, we will discuss Bayes prediction of quadratic quantities f(H) = y′Hy,

where H is a known symmetric matrix. Assume that H =

(
H11 H12

H21 H22

)
with H12 = H ′

21,
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then

f(H) = (y′s, y
′
r)

(
H11 H12

H21 H22

)(
ys

yr

)
= y′sH11ys + y′sH12yr + y′rH21ys + y′rH22yr.

By Theorem 2.1 and eq. (3.2), we have the following results.
Theorem 4.1 Under model (1.4) and the loss function (1.3), the Bayes prediction of

f(H) is

f̂(H) = y′sH11ys + y′sH12E(yr|ys) + [E(yr|ys)]′H21ys

+[E(yr|ys)]′H22[E(yr|ys)] + tr[H22Var(yr|ys)].

For the population variance S2
y , we know that

S2
y = y′

1
N

(IN − 1
N

1N1′N )y =
1
N

(y′s, y
′
r)

(
In − 1

N
1n1′n − 1

N
1n1′N−n

− 1
N

1N−n1′n IN−n − 1
N

1N−n1′N−n

)(
ys

yr

)
,

where 1n denotes n dimensional vector with elements 1. Then by Theorem 4.1, we can obtain
the following corollary.

Corollary 4.1 The Bayes prediction of the population variance S2
y under model (1.4)

and the loss function (3.1) is

Ŝ2
y =

1
N

(y′s, E(yr|ys)′)

(
In − 1

N
1n1′n − 1

N
1n1′N−n

− 1
N

1N−n1′n IN−n − 1
N

1N−n1′N−n

)(
ys

E(yr|ys)

)

+
1
N

tr[(IN−n − 1
N

1N−n1′N−n)Var(yr|ys)].

It is noted that S2
y = n

N
S2

ys
+ (1 − n

N
)[S2

yr
+ n

N
(ȳs − ȳr)2], where ȳs and S2

ys
are the

mean and variance of ys, ȳr and S2
yr

are the mean and variance of yr. Therefore, the Bayes
prediction of the population variance can also be expressed as follows.

Remark 4.1 The Bayes prediction of the population variance S2
y under model (1.4)

and the loss function (3.1) is

Ŝ2
y =

n

N
S2

ys
+ (1− n

N
)
{

tr[
1

N − n
(IN−n − 1

N − n
1N−n1′N−n)Var(yr|ys)]

+E(yr|ys)′
1

N − n
(IN−n − 1

N − n
1N−n1′N−n)E(yr|ys)

+
n

N
[(ȳs − 1

N − n
1′N−nE(yr|ys))2 +

1
(N − n)2

1′N−nVar(yr|ys)1N−n]
}

Proof Since S2
y = n

N
S2

ys
+(1− n

N
)[S2

yr
+ n

N
(ȳs−ȳr)2], we only derive the Bayes prediction

of S2
yr

+ n
N

(ȳs − ȳr)2. Moreover, we know that S2
yr

= 1
N−n

y′r(IN−n − 1
N−n

1N−n1′N−n)yr, and
ȳr = 1

N−n
1′N−nyr. Therefore, the Bayes prediction of S2

yr
is

E(S2
yr
|ys) =

1
N − n

tr[(IN−n − 1
N − n

1N−n1′N−n)Var(yr|ys)]

+E(yr|ys)′
1

N − n
(IN−n − 1

N − n
1N−n1′N−n)E(yr|ys). (4.1)
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And, the Bayes prediction of (ȳs − ȳr)2 is

E[(ȳs − ȳr)2|ys] = (ȳs − 1
N − n

1′N−nE(yr|ys))2 +
1

(N − n)2
1′N−nVar(yr|ys)1N−n. (4.2)

According to eqs.(4.1)–(4.2) and the expression of S2
y , we can derive the result of this remark.

It is easy to verify that the result of this remark is consistent to Corollary 4.1.
Example 4.1 Let X = 1N , V = (1− ρ)IN + ρ1N1′N in the Bayesian model (1.4), where

ρ ∈ (0, 1) is known. It can be checked that X ′
sV

−1
s Xs = n

1+(n−1)ρ
, and

β̃s = (
n

1 + (n− 1)ρ
+ k)−1[kµ +

n

1 + (n− 1)ρ
ȳs],

c0 =
nk

k + kρ(n− 1) + n
(
1
n

1′nys − µ)2 + λ +
1

1− ρ
y′s(In − 1

n
1n1′n)ys.

Then,

E(yr|ys) = a1N−n and Var(yr|ys) =
c0

n + α− 2
[(1− ρ)IN−n + b1N−n1′N−n],

where a = 1−ρ
1+(n−1)ρ

β̃s + nρ
1+(n−1)ρ

ȳs, b = 1−ρ
1+(n−1)ρ

[ρ+ 1−ρ
n+k+(n−1)kρ

]. According to Remark 4.1,
we know that

Ŝ2
y =

n

N
S2

ys
+

(1− ρ)(N − n− 1)c0

N(n + α− 2)
+

(N − n)n
N2

[(ȳs − a)2 +
c0

n + α− 2
(b +

1− ρ

N − n
)].

5 Concluding Remarks

In this paper, we obtain Bayes prediction of linear and quadratic quantities in the finite
population with normal inverse-Gamma prior information. In our studies, on the one hand,
the distribution of the superpopulation model is need to be normal. However, in many
occasions, the distribution of the model is usually unknown in addition to the mean vector
and covariance matrix. At this time, how to deal with the Bayes prediction? On the other
hand, if the prior distribution is hierarchical and improper, how to obtain the generalized
Bayes prediction and discuss its optimal properties? Such as these problems are deserved to
discuss in the future.
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有限总体中总体数量的贝叶斯预测

胡桂开, 熊鹏飞, 王同心

(东华理工大学理学院,江西南昌 330013)

摘要: 本文在误差平方损失下研究了具有正态逆伽马先验信息有限总体中的预测问题. 首先, 基于贝

叶斯思想分别获得了线性数量和二次型数量的贝叶斯预测; 其次, 利用统计决策理论对线性数量的贝叶斯预

测和最佳线性无偏预测进行了比较. 结果表明在预测均方误差下线性数量的贝叶斯预测一致优于最佳线性

无偏预测.
关键词: 贝叶斯预测; 线性数量; 二次型数量; 有限总体
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