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Abstract: In this paper, we investigate skew cyclic and LCD codes over the ring R =

Fq +uFq +vFq (u2 = u, v2 = v, uv = vu = 0), where q is a prime power. Using some decompositions

of linear codes and their duals over ring R, we obtain the generator polynomials of skew cyclic and

their dual codes over R. Finally, we address the relationship of LCD codes between R and Fq. By

means of the Gray map from R to F3
q, we obtain that Gray images of LCD codes over R are LCD

codes over Fq.

Keywords: skew cyclic codes; LCD codes; dual codes

2010 MR Subject Classification: 94B15; 11A15

Document code: A Article ID: 0255-7797(2018)03-0459-08

1 Introduction

Cyclic codes over finite rings are important class from a theoretical and practical view-
point. It was shown that certain good nonlinear binary codes could be found as images
of linear codes over Z4 under the Gray map (see [1]). In [2], Zhu et al. studied consta-
cyclic codes over ring F2 + vF2, where v2 = v. We in [3] generated ring F2 + vF2 to ring
F2 + uF2 + vF2, where v2 = v, u2 = 0, uv = vu = 0, and studied the structure of cyclic of an
arbitrary length n over this ring.

Boucher et al. in [4] initiated the study of skew cyclic codes over a noncommutative ring
Fq[x,Θ], called skew polynomial ring, where Fq is a finite field and Θ is a field automorphism
of Fq. Later, in [5], Abualrub and Seneviratne investigated skew cyclic codes over ring
F2 + vF2 with v2 = v. Moreover, Gao [6] and Gursoy et al. [7] presented skew cyclic codes
over Fp + vFp and Fq + vFq with different automorphisms, respectively. Recently, Yan, Shi
and Solè in [8] investigated skew cyclic codes over Fq + uFa + vFq + vFq.

In this work, let R denote the ring Fq +uFq +vFq where u2 = u, v2 = v and uv = vu = 0.
In Section 2, we give some properties of ring R and define the Gray map ϕ from R to F3

q.
Moreover, we investigate some results about linear codes over R. In Section 3, we first give
a sufficient and necessary condition which a code C is a skew cyclic code over R. We then
characterize the generator polynomials of skew cyclic codes and their dual over R. Finally,
in Section 4, we address the relationship of LCD codes between R and Fq. By means of the
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Gray map from R to F3
q, we obtain that Gray images of LCD codes over R are LCD codes

over Fq.

2 Linear Codes Over R

The ring R is a finite commutative ring with characteristic p and it contains three
maximal ideals which are

I1 = 〈u, v〉, I2 = 〈u− 1, v〉, I3 = 〈u, v − 1〉.
It is easy to verify that R

I1
, R

I2
, and R

I3
are isomorphic to Fq. Therefore R ∼= F3

q. This means
that R is a princpal ideal ring, i.e., R is a Frobenius ring.

Let Rn = {x = (x1, · · · , xn) |xj ∈ R} be R-module. A R-submodule C of Rn is called
a linear code of length n over R. We assume throughout that all codes are linear.

Let x,y ∈ Rn, the Euclidean inner product of x,y is defined as follows

x · y = x1y1 + · · ·+ xnyn.

We call C⊥ = {x ∈ Rn |x · c = 0, ∀ c ∈ C} as the dual code of C. Notice that C⊥ is linear
if C is linear or not.

In [8], it was proved that for any linear code C over a finite Frobenius ring,

|C| · |C⊥| = Rn. (2.1)

The Gray map ϕ : Rn → F3n
q is defined by ϕ(x) = (β(x1), · · · , β(xn)) for x =

(x1, · · · , xn), where β(a + ub + vc) = (a, a + b, a + c) for a + ub + vc ∈ R with a, b, c ∈ Fq.
By using this map, we can define the Lee weight WL and Lee distance dL as follows.

Definition 2.1 For any element x = (x1, · · · , xn) ∈ Rn, we define WL(x) = WH(ϕ(x)),
where WH denotes the ordinary Hamming weight for codes over Fq. The Lee distance
dL(x,y) between two codewords x and y is the Lee weight of x− y.

Lemma 2.2 The Gray map ϕ is a distance-preserving map from (Rn, Lee distance)
to (F3n, Hamming distance) and also Fq-linear.

Proof From the definition, it is clear that ϕ(x− y) = ϕ(x)− ϕ(y) for x and y ∈ Rn.
Thus dL(x,y) = dH(ϕ(x), ϕ(y)).

For any x,y ∈ Rn, a, b ∈ Fq, from the definition of the Gray map, we have ϕ(ax+by) =
aϕ(x) + bϕ(y), which implies that ϕ is an Fq-linear map.

The following theorem is obvious.
Theorem 2.3 If C is a linear code of length n over R, size qk and Lee distance dL,

then ϕ(C) is a linear code over Fq with parameters [3n, k, dL].
Theorem 2.4 If C is a linear code of length n over R, then ϕ(C⊥) = ϕ(C)⊥. Moreover,

if C is a self-dual code, so is ϕ(C).
Proof Let x1 = a1 + ub1 + vc1,x2 = a2 + ub2 + vc2 ∈ C be two codewords, where

a1,b1, c1,a2,b2, c2 ∈ Fn
q , and · be the Euclidean inner product on Rn or Fn

q . Then

x1 · x2 = a1 · a2 + (a1b2 + a2b1 + b1b2)u + (a1c2 + a2c1 + c1c2)v
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and
ϕ(x1) · ϕ(x2) = 3a1 · a2 + (a1b2 + a2b1 + b1b2) + (a1c2 + a2c1 + c1c2).

It is easy to check that x1 · x2 = 0 implies ϕ(x1) · ϕ(x2) = 0. Therefore

ϕ(C⊥) ⊂ ϕ(C)⊥. (2.2)

But by Theorem 2.3, ϕ(C) is a linear code of length 3n of size | C | over Fq. So by
usual properties of the dual of linear codes over finite fields, we know that | ϕ(C)⊥ |= q3n

|C| .
So (2.1), this implies

| ϕ(C⊥) |=| ϕ(C)⊥ | . (2.3)

Combining (2.2) with (2.3), we get the desired equality.

Let e1 = 1 − u − v, e2 = u, e3 = v. It is easy to check that eiej = δijei and
3∑

k=1

ek = 1,

where δij stands for Dirichlet function, i.e., δij =

{
1, if i = j,

0, if i 6= j.
According to [9], we have

R = e1R⊕ e2R⊕ e3R.
Now, we mainly consider some familiar structural properties of a linear code C over R.

The proof of following results can be found in [10], so we omit them here.
Let Ai (i = 1, 2, 3) be codes over R. We denote

A1 ⊕A2 ⊕A3 = {a1 + a2 + a3|a1 ∈ A1, a2 ∈ A2, a3 ∈ A3}.

If C is a linear code of length n over R, we define that

C1 = {a ∈ Fn
q |there are b, c ∈ Fn

q such that e1a + e2b + e3c ∈ C},
C2 = {b ∈ Fn

q |there are a, c ∈ Fn
q such that e1a + e2b + e3c ∈ C},

C3 = {c ∈ Fn
q |there are a,b ∈ Fn

q such that e1a + e2b + e3c ∈ C}.

It is easy to verity that Ci (i = 1, 2, 3) are linear codes of length n over Fq. Furthermore,
C = e1C1 ⊕ e2C2 ⊕ e3C3 and | C |=| C1 || C2 || C3 |. Throughout this paper, Ci (i = 1, 2, 3)
will be reserved symbols referring to these special subcodes.

According to above definition and [10], we have the following theorem.
Theorem 2.5 If C = e1C1 ⊕ e2C2 ⊕ e3C3 is a linear code of length n over R, then

C⊥ = e1C
⊥
1 ⊕ e2C

⊥
2 ⊕ e3C

⊥
3 .

The next theorem gives a computation for minimum Lee distance dL of a linear code of
length n over R.

Theorem 2.6 If C = e1C1 ⊕ e2C2 ⊕ e3C3 is a linear code of length n over R, then
dL(C) = min{dH(C1), dH(C2), dH(C3)}.

Proof By Theorem 2.3, we have dL(C) = dH(ϕ(C)).
For any codeword x, it can be written as x = e1a+e2b+e3c, where a ∈ C1,b ∈ C2, c ∈

C3. Thus
ϕ(x) = (a,b, c) = (a,0,0) + (0,b,0) + (0,0, c).
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This means that dL(C) = min{dH(C1), dH(C2), dH(C3)}.

3 Skew Cyclic Codes Over R

Let R = Fq +uFq +vFq, where q = pm, p is a prime. For integer 0 ≤ s ≤ m, we consider
the automorphisms

Θs : Fq + uFq + vFq → Fq + uFq + vFq,

a + ub + vc → aps

+ ubps

+ vcps

.

In this section, we first define skew polynomial rings R[x,Θs] and skew cyclic codes over R.
Next, we investigate skew cyclic codes over R through a decomposition theorem.

Definition 3.1 We define the skew polynomial ring as R[x,Θs] = {a0 + a1x + · · · +
anxn|ai ∈ R, i = 0, 1, · · · , n}, where the coefficients are written on the left of the variable x.
The addition is the usual polynomial addition and the multiplication is defined by the rule
xa = Θs(a)x (a ∈ R).

It is easy to prove that the ring R[x,Θs] is not commutative unless Θs is the identity
automorphism on R.

Definition 3.2 A linear code C of length n over R is called skew cyclic code if for any
codeword c = (c0, c1, · · · , cn−1) ∈ C, the vector Θs(c) = (Θs(cn−1),Θs(c0), · · · ,Θs(cn−2)) is
also a codeword in C.

The following theorem characterizes skew cyclic codes of length n over R.
Theorem 3.3 Let C = e1C1 ⊕ e2C2 ⊕ e3C3 be a linear code of length n over R. Then

C is a skew cyclic code of length n over R if and only if C1, C2 and C3 are skew cyclic codes
of length n over Fq, respectively.

Proof Suppose that xi = e1ai + e2bi + e3ci, where ai, bi, ci ∈ Fq, i = 0, 1, · · · , n − 1,
and x = (x0, x1, · · · , xn−1). Then

x = e1(a0, a1, · · · , an−1) + e2(b0, b1, · · · , bn−1) + e3(c0, c1, · · · , cn−1) ∈ C.

Set a = (a0, a1, · · · , an−1), b = (b0, b1, · · · , bn−1), c = (c0, c1, · · · , cn−1), thus x = e1a+e2b+
e3c and a ∈ C1, b ∈ C2, c ∈ C3. If C is a skew cyclic code of length n over R, then

Θs(x) = e1Θs(a) + e2Θs(b) + e3Θs(c) ∈ C.

Therefore Θs(a) ∈ C1,Θs(b) ∈ C2,Θs(c) ∈ C3. This means that C1, C2 and C3 are skew
cyclic codes.

Conversely, if Ci are skew cyclic codes over Fq, then

Θs(x) = e1Θs(a) + e2Θs(b) + e3Θs(c) ∈ C.

This implies that C is a skew cyclic code over R.
Theorem 3.4 Let C = e1C1 ⊕ e2C2 ⊕ e3C3 be a skew cyclic code of length n over R.

Then
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(1) C = 〈e1g1(x), e2g2(x), e3g3(x)〉 and | C |= q
3n−

3∑
i=1

deggi(x)
, where gi(x) is a generator

polynomial of skew cyclic codes Ci of length n over Fq for i=1, 2, 3.
(2) There is a unique polynomial g(x) such that C = 〈g(x)〉 and g(x)|xn − 1, where

g(x) = e1g1(x) + e2g2(x) + e3g3(x). Moreover, every left submodule of R[x,Θs]/〈xn − 1〉 is
principally generated.

Proof (1) Since Ci = 〈gi(x)〉 ⊂ Fq[x,Θs]/〈xn−1〉 for i = 1, 2, 3 and C = e1C1⊕e2C2⊕
e3C3, C = 〈c(x)|c(x) = e1f1(x) + e2f2(x) + e3f3(x), fi(x) ∈ Ci, i = 1, 2, 3〉. Thus

C ⊂ 〈e1g1(x), e2g2(x), e3g3(x)〉.

On the other hand, for any e1r1(x)g1(x)+e2r2(x)g2(x)+e3r3(x)g3(x) ∈ 〈e1g1(x), e2g2(x),
e3g3(x)〉 ⊂ R[x,Θs]/〈xn − 1〉, where r1(x), r2(x) and r3(x) ∈ R[x,Θs]/〈xn − 1〉, there exist
s1(x), s2(x) and s3(x) ∈ Fq[x,Θs]/〈xn − 1〉 such that e1r1(x) = e1s1(x), e2r2(x) = e2s2(x)
and e3r3(x) = e3s3(x). Hence

e1r1(x)g1(x) + e2r2(x)g2(x) + e3r3(x)g3(x) = e1s1(x)g1(x) + e2s2(x)g2(x) + e3s3(x)g3(x),

which implies that 〈e1g1(x), e2g2(x), e3g3(x)〉 ⊂ C. Therefore C = 〈e1g1(x), e2g2(x), e3g3(x)〉.

In light of | C |=| C1 || C2 || C3 |, we have | C |= q
3n−

3∑
i=1

deggi(x)
.

(2) Obviously, 〈e1g1(x) + e2g2(x) + e3g3(x)〉 ⊂ 〈e1g1(x), e2g2(x), e3g3(x)〉.
Note that e1g(x) = e1g1(x), e2g(x) = e2g2(x) and e3g(x) = e3g3(x), we have C ⊂ 〈g(x)〉.

Therefore, C = 〈g(x)〉.
Since g1(x), g2(x) and g3(x) are monic right divisors of xn − 1, there exist h1(x), h2(x)

and h3(x) ∈ Fq[x,Θs]/〈xn − 1〉 such that xn − 1 = h1(x)g1(x) = h2(x)g2(x) = h3(x)g3(x).
Therefore xn − 1 = [e1h1(x) + e2h2(x) + e3h3(x)]g(x). It follows that g(x)|xn − 1. The
uniqueness of g(x) can be followed from that of g1(x), g2(x) and g3(x).

Let g(x) = g0 + g1x + · · ·+ gkx
k and h(x) = h0 + h1x + · · ·+ hn−kx

n−k be polynomials
in Fq[x,Θs] such that xn − 1 = h(x)g(x) and C be the skew cyclic code generated by g(x)
in Fq[x,Θs]. Then the dual code of C is a skew cyclic code generated by the polynomial
h(x) = hn−k + Θs(hn−k−1)x + · · ·+ Θn−k

s (h0)xn−k (see [11]).
Corollary 3.5 Let C1, C2, C3 be skew cyclic codes of length n over Fq and g1(x), g2(x),

g3(x) be their generator polynomials such that

xn − 1 = h1(x)g1(x) = h2(x)g2(x) = h3(x)g3(x)

in Fq[x,Θs]. If C = e1C1 ⊕ e2C2 ⊕ e3C3, then
(1) C⊥ = 〈h(x)〉 is also a skew cyclic code of length n over R, where h(x) = e1h1(x) +

e2h2(x) + e3h3(x), and | C⊥ |= q

3∑
i=1

deggi(x)
;

(2) C is a self-dual skew cyclic code over R if and only if C1, C2 and C3 are self-dual
skew cyclic codes of length n over Fq.

Proof (1) In light of Theorem 2.5, we obtain C⊥ = e1C
⊥
1 ⊕ e2C

⊥
2 ⊕ e3C

⊥
3 .
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Since C⊥
1 = 〈h1(x)〉, C⊥

2 = 〈h2(x)〉 and C⊥
3 = 〈h3(x)〉, we have C⊥ = 〈h(x)〉 and

| C⊥ |= q

3∑
i=1

deggi(x)
by Theorem 3.2.

(2) C is a self-dual skew cyclic code over R if and only if g(x) = h(x), i.e., g1(x) = h1(x),
g2(x) = h2(x) and g3(x) = h3(x). Thus C is a self-dual skew cyclic code over R if and only
if C1, C2 and C3 are self-dual skew cyclic codes of length n over Fq.

Example 1 Let ω a primitive element of F9 (where ω = 2ω+1) and Θ be the Frobenius
automorphism over F9, i.e., Θ(a) = a3 for any a ∈ F9. Then

x6 − 1 = (2 + (2 + ω)x + (1 + 2ω)x3 + x4)(1 + (2 + ω)x + x2)

= (2 + x + (2 + 2ω)x2 + x3)(1 + x + 2ωx2 + x3) ∈ F9[x; Θ].

Let g1(x) = 2 + (2 + ω)x + (1 + 2ω)x3 + x4 and g2(x) = g3(x) = 2 + x + (2 + 2ω)x2 + x3.
Then C1 = 〈g1(x)〉 and C2 = C3 = 〈g2(x)〉 are skew cyclic codes of length 6 over F9 with
dimensions k1 = 2, k2 = k3 = 3, respectively. Take g(x) = e1g1(x) + e2g2(x) + e3g3(x), then
C is a skew cyclic code of length 6 over R. Thus the Gray image of C is a [18, 8, 4] code over
F9.

4 LCD Codes over R

Linear complementary dual codes (which is abbreviated to LCD codes) are linear codes
that meet their dual trivially. These codes were introduced by Massey in [12] and showed
that asymptotically good LCD codes exist, and provide an optimum linear coding solution
for the two-user binary adder channel. In [13], Sendrier indicated that linear codes with
complementary-duals meet the asymptotic Gilbert-Varshamov bound. They are also used
in counter measure to passive and active side channel analyses on embedded cryto-systems
(see [14]). In recent, we in [15] investigated LCD codes finite chain ring. Motivated by these
works, we will consider the LCD codes over R.

Suppose that f(x) is a monic (i.e., leading coefficient 1) polynomial of degree k with
f(0) = c 6= 0. Then by monic reciprocal polynomial of f(x) we mean the polynomial f̃(x) =
c−1f∗(x).

We recall a result about LCD codes which can be found in [16].

Proposition 4.1 If g1(x) is the generator polynomial of a cyclic code C of length n

over Fq, then C is an LCD code if and only if g1(x) is self-reciprocal (i.e., g̃1(x) = g1(x)) and
all the monic irreducible factors of g1(x) have the same multiplicity in g1(x) and in xn − 1.

Theorem 4.2 If C = e1C1 ⊕ e2C2 ⊕ e3C3 is a linear code over R, then C is a LCD
code over R if and only if C1, C2 and C3 are LCD codes over Fq.

Proof C is a LCD code over R if and only if C ∩ C⊥ = {0}. By Theorem 2.5, we
know that C ∩C⊥ = {0} if and only if C1 ∩C⊥

1 = {0}, C2 ∩C⊥
2 = {0}, and C3 ∩C⊥

3 = {0},
i.e., C1, C2 and C3 are LCD codes over Fq.

By means of Proposition 4.1 and above theorem, we have the following corollary.
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Corollary 4.3 Let C = e1C1⊕ e2C2⊕ e3C3 is a cyclic code of length n over R, and let
C1 = 〈g1(x)〉, C2 = 〈g2(x)〉 and C3 = 〈g3(x)〉 be cyclic codes of length n over Fq. Then C is
a LCD code over R if and only if gi(x) is self-reciprocal (i.e., g̃i(x) = gi(x)) and all the monic
irreducible factors of gi(x) have the same multiplicity in gi(x) and in xn − 1 for i = 1, 2, 3.

Theorem 4.4 A linear code C ⊂ Rn is LCD if and only if the linear code ϕ(C) ⊂ F3n
q

is LCD.
Proof If x ∈ C ∩ C⊥, then x ∈ C and x ∈ C⊥. It follows that ϕ(x) ∈ ϕ(C) and

ϕ(x) ∈ ϕ(C⊥). Hence ϕ(C ∩ C⊥) ⊂ ϕ(C) ∩ ϕ(C⊥).
On the other hand, if ϕ(x) ∈ ϕ(C) ∩ ϕ(C⊥), then there are y ∈ C and z ∈ C⊥ such

that ϕ(x) = ϕ(y) = ϕ(z). Since ϕ is an injection, x = y = z ∈ C ∩ C⊥, which implies that

ϕ(x) ∈ ϕ(C ∩ C⊥), i.e., ϕ(C) ∩ ϕ(C⊥) ⊂ ϕ(C ∩ C⊥).

Thus ϕ(C) ∩ ϕ(C⊥) = ϕ(C ∩ C⊥).
By Theorem 2.3, we ϕ(C ∩C⊥) = ϕ(C)∩ϕ(C)⊥. It follows that C ⊂ Rn is LCD if and

only if the linear code ϕ(C) ⊂ F3n
q is LCD.

Example 2 x4−1 = (x+1)(x+2)(x+w2)(x+w6) in F9. Let g1(x) = g2(x) = g2(x) =
x + 1. Then C1 = C2 = C3 = 〈g1(x)〉 are LCD cyclic codes over F9 with parameters [4, 3, 2],
respectively. Suppose that C = e1C1 ⊕ e2C2 ⊕ e3C3 is a cyclic code of length n over R. By
Theorem 2.6 and Theorem 4.5, ϕ(C) is a LCD code with parameters [12, 9, 2], which is an
optimal code.
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环Fq + uFq + vFq上的斜循环码和LCD码

李 慧,胡 鹏, 刘修生

(湖北理工学院数理学院,湖北黄石 453003)

摘要: 本文研究了环R = Fq + uFq + vFq (u2 = u, v2 = v, uv = vu = 0)上的斜循环码和LCD码,

其中q为素数幂. 利用线性码与其对偶码在环R上的分解, 得到了环R上斜循环码及其对偶码的生成多项式.

最后, 讨论了环R与有限域Fq上LCD码的关系, 通过环R到域F3
q的Gray映射, 得到了环R上LCD码的Gray像

是Fq上的LCD码.
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