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Abstract: In this paper, we mainly investigate the limit directions of Julia sets of solutions

of linear differential equations. By using Nevanlinna theory, we obtain the lower bound on the limit

directions of Julia sets of non-trivial solutions to such equations in some additional conditions on

coefficients, which improves some results of concerned literature.
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1 Introduction and Main Results

In this paper, we shall use the standard notations of Nevanlinna theory, its usual nota-
tions and basic results come mainly from [1–4]. Now let f be a meromorphic function in the
whole complex plane. We use λ(f) and µ(f) to denote the order and the lower order of f ,
respectively, which are defined as [5, Definition 1.6]

σ(f) = lim sup
r→∞

log+ T (r, f)
log r

, µ(f) = lim inf
r→∞

log+ T (r, f)
log r

.

Define fn, n ∈ N as the nth iterate of f , that is, f1 = f, · · · , fn = f ◦ (fn−1). The
Fatou set F (f) of f is the subset of C where {fn(z)}∞n=1 forms a normal family, and its
complement J(f) = C \ F (f) is called the Julia set of f . It is well known that F (f) is open
and completely invariant under f , and J(f) is closed and non-empty. For an introduction
to the dynamics of meromorphic functions, we refer the reader to see Bergweiler’s paper [6]
and Zheng’s book [7].

Assuming 0 < α < β < 2π, we denote

Ω(α, β) = {z ∈ C| arg z ∈ (α, β)}.
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Given θ ∈ [0, 2π), if Ω(θ − ε, θ + ε) ∩ J(f) is unbounded for every ε > 0, we say the radial
arg z = θ is a limit direction of J(f). Define

∆(f) = {θ ∈ [0, 2π) : the radial arg z = θ is a limit direction of J(f)}.

Clearly, ∆(f) is closed and measurable, and we use mes∆(f) to denote its linear measure.
The research on the limit directions was initially studied by Baker (see [8]), where Baker
proved that, for a transcendental entire function f , J(f) cannot lie in finitely many rays
emanating from the origin. In [9], Qiao considered the limit directions of Julia sets of
transcendental entire functions with finite lower order and obtained the following.

Theorem A Let f(z) be a transcendental entire function with µ(f) < ∞. Then
mes∆(f) = 2π if µ(f) < 1/2 and mes∆(f) ≥ π/µ(f) if µ(f) ≥ 1/2.

Naturally, a question arise here.
Question 1 What can we say about the limit directions of Julia set of entire functions

with infinite lower order?
Baker (see [8]) constructed an entire function, for every M > 0, of infinite lower order

satisfying
J(f) ⊂ {z ∈ C : | Im z| < M, Re z > 0}.

Thus ∆(f) = {0}. Recently, Huang and Wang (see [10]) investigated the limit directions of
Julia sets of products of the solution base of the following equation (1.1).

Theorem B Let {f1, f2, · · · , fn} be a solution base of

f (n) + A(z)f = 0, (1.1)

where A(z) is a transcendental entire function with finite order, and denote E = f1f2 · · · fn.
Then

mes∆(E) ≥ min{2π, π/σ(A)}.

Actually, E(z) can be of infinite lower order in some cases. For example, for the equation
f ′′ − (e2z + ez)f = 0, we have µ(E(z)) = ∞ (see [11, pp.394]). Later, Huang and Wang
considered the limit directions of Julia sets of solutions of linear differential equations directly.

Theorem C (see [12]) Let Ai(z) (i = 0, 1, · · · , n− 1) be entire functions of finite lower
order such that A0 is transcendental and m(r,Ai) = o(m(r,A0)) (i = 1, 2, · · · , n − 1) as
r →∞. Then every non-trivial solution f of the equation

f (n) + An−1f
(n−1) + · · ·+ A0f = 0 (1.2)

satisfies mes∆(f) ≥ min{2π, π/µ(A0)}.
Clearly, by the lemma of logarithmic derivatives, each non-trivial solution f(z) in The-

orem C must have infinite lower order. Theorems B and C, therefore, obtain some results
about the limit directions of Julia sets for some classes of entire functions of infinite lower
order.



No. 3 Common limit directions of Julia sets of entire solutions of linear differential equations ... 419

In this paper, we continue to discuss Question 1. Moreover, we will investigate the
common limit directions of transcendental entire functions with infinite lower order and
their derivatives.

Theorem 1.1 Let A0(z), · · · , An−1(z), A0(z) 6≡ 0 be entire functions such that for
real constants a, b, c, θ1, θ2, where 0 ≤ a < b, c > 0 and θ1 < θ2, we have

|A0(z)| ≥ eb|z|c (1.3)

and
|Ak(z)| ≤ ea|z|c , k = 1, · · · , n− 1 (1.4)

as z → ∞ with θ1 ≤ arg z ≤ θ2. If f is a non-trivial solution of equation (1.2), then
mes(∆(f) ∩∆(f (k))) ≥ θ2 − θ1.

Before we prove Theorem 1.1, we need to prove the next result.
Theorem 1.2 Under the hypothesis of Theorem 1.1, every solution f(6≡ 0) of equation

(1.2) satisfies mes∆(f) ≥ θ2 − θ1.
Remark 1 Clearly from Lemma 2.4 in Section 2, each non-trivial solution of (1.2) has

infinite order. Next, we will give an example to show that the entire solutions of (1.2) can
be of infinite lower order in some cases. In addition, we note that both Theorems B and C
require that there is a dominant coefficient whose growth of order is greater than the other
coefficients, while all the coefficients in our theorems may have the same order .

Example Consider the differential equation

f ′′′ − (3 + 6ez)f ′′ + (2 + 6ez + 11e2z)f ′ − 6e3zf = 0. (1.5)

As we see, all the coefficients of this equation have the same order 1. In addition, for z = reiθ,
r → +∞, π

6
≤ θ ≤ π

4
, we have

|A0(z)| = | − 6 e3z| = 6e3r cos θ > e3
√

2
2 r,

|A1(z)| = |2 + 6ez + 11e2z| ≤ 19e2r cos θ ≤ 19e
√

3 r < e2r,

|A2(z)| = | − (3 + 6ez)| ≤ 9er cos θ ≤ 9e
√

3
2 r < e2r.

Clearly, the three linearly independent functions

f1(z) = eez

, f2(z) = e2ez

, f3(z) = e3ez

are solutions of (1.5) with µ(f1) = µ(f2) = µ(f3) = ∞ and σ(A0) = σ(A1) = σ(A2).
Remark 2 Some results about common limit directions of transcendental entire func-

tions and their derivatives were obtained by Qiao (see [13]). He proved that for transcen-
dental entire functions of finite lower order and their derivatives, there exist a large amount
of common limit directions. Wang [14] obtained some similar results for the case of tran-
scendental meromorphic functions with finite lower order. By using the method of [12, 14],
Sun (see [15]) and Zhang (see [16, 17]) obtained some results for solutions to some special
classes of linear differential equations.
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2 Preliminary Lemmas

In order to prove our Theorem, we first recall the Nevanlinna Characteristic in an angle,
see [1]. We denote by Ω(α, β) the closure of Ω(α, β), and set

Ω(α, β, r) = {z | z ∈ Ω(α, β), |z| < r},
Ω∗(r, α, β) = {z | z ∈ Ω(α, β), |z| > r}.

Let g(z) be meromorphic on the angle Ω(α, β) where β−α ∈ (0, 2π]. Following [1], we define

Aα,β(r, g) =
ω

π

∫ r

1

(
1
tω
− tω

r2ω
){log+ |g(teiα)|+ log+ |g(teiβ)|}dt

t
,

Bα,β(r, g) =
2ω

πrω

∫ β

α

log+ |g(reiθ)| sinω(θ − α)dθ,

Cα,β(r, g) = 2
∑

1<|bn|<r

(
1

|bn|ω −
|bn|ω
r2ω

) sin ω(βn − α),

(2.1)

where ω = π/(β − α), and bn = |bn|eiβn are the poles of g(z) in Ω(α, β) appeared according
to their multiplicities. The Nevanlinna angular characteristic is defined as follows:

Sα,β(r, g) = Aα,β(r, g) + Bα,β(r, g) + Cα,β(r, g). (2.2)

Especially, we use

σα,β(g) = lim sup
r→∞

log Sα,β(r, g)
log r

to denote the order of Sα,β(r, g).
We say an open set hyperbolic if it has at least three boundary points in C = C∪ {∞}.

Let W be a hyperbolic open set in C. For an a ∈ C \W , define

CW (a) = inf{λW (z)|z − a| : ∀z ∈ W},

where λW (z) is the hyperbolic density on W . It is well known that if every component of
W is simply connected, then CW (a) ≥ 1/2.

Lemma 2.1 (see [7, 10]) Let f(z) be analytic in Ω∗(r0, θ1, θ2), U be a hyperbolic domain
and f : Ω∗(r0, θ1, θ2) → U. If there exists a point a ∈ ∂U \ {∞}, such that CU (a) > 0, then
there exists a constant d > 0 such that for sufficiently small ε > 0, we have

|f(z)| = O(|z|d), z →∞, z ∈ Ω∗(r0, θ1 + ε, θ2 − ε).

Before we show Lemma 2.2, which gives some estimates for the logarithmic derivative
of functions being analytic in an angle, we will introduce the definition of R-set (see [3]).

Set B(zn, rn) = {z : |z − zn| < rn}, if
∞∑

n=1

rn < ∞ and zn → ∞, then
∞⋃

n=1

B(zn, rn) is called

an R-set. Clearly, the set { |z| : z ∈
∞⋃

n=1

B(zn, rn)} is of finite linear measure.



No. 3 Common limit directions of Julia sets of entire solutions of linear differential equations ... 421

Lemma 2.2 (see [10]) Let z = r exp(iψ), r0 + 1 < r and α ≤ ψ ≤ β where 0 < β −α ≤
2π. Suppose that n(≥ 2) is an integer, and g(z) is analytic in Ω(r0, α, β) with σα,β(g) < ∞.
Choose α < α1 < β1 < β. Then for every εj ∈ (0, βj−αj

2
) (j = 1, 2, · · · , n − 1) outside a set

of linear measure zero with

αj = α +
j−1∑
s=1

εs and βj = β −
j−1∑
s=1

εs, j = 2, 3, · · · , n− 1,

there exist K > 0,M > 0 only depending on g, ε1, · · · , εn−1 and Ω(αn−1, βn−1), and not
depending on z such that

|g
′(z)

g(z)
| ≤ KrM (sin k(ψ − α))−2

and
∣∣g(n)(z)

g(z)

∣∣ ≤ KrM
(
sin k(ψ − α)

n−1∏
j=1

sin kεj
(ψ − αj)

)−2
(2.3)

for all z ∈ Ω(αn−1, βn−1) outside an R-set D, where k = π/(β−α) and kεj
= π/(βj−αj) (j =

1, 2, · · · , n− 1).
Lemma 2.3 (see [18]) If f is transcendental and entire, then F (f) has no unbounded

multi-connected component.
Lemma 2.4 (see [19]) Let A0(z), · · · , An−1(z), A0(z) 6≡ 0 be entire functions such that

for real constants α, β, µ, θ1, θ2, where 0 ≤ β < α, µ > 0 and θ1 < θ2, we have

|A0(z)| ≥ eα|z|µ (2.4)

and
|Ak(z)| ≤ eβ|z|µ , k = 1, · · · , n− 1 (2.5)

as z →∞ with θ1 ≤ arg z ≤ θ2. Then every solution f 6≡ 0 equation (1.2) has infinite order.

3 Proof of Theorem 1.2

Firstly, we assume that mes∆(f) < θ2 − θ1, and set ζ = θ2 − θ1 − mes∆(f). Since
∆(f) is closed, clearly S = (0, 2π) \∆(f) is open, so it consists of at most countably many
open intervals. We can choose finitely many open intervals Ii = (αi, βi) (i = 1, 2, · · · ,m)

satisfying [αi, βi] ⊂ S and mes(S \
m⋃

i=1

Ii) < ζ/4. For the angular domain Ω(αi, βi), it is easy

to see
(αi, βi) ∩∆(f) = ∅, Ω∗(r, αi, βi) ∩ J(f) = ∅

for sufficiently large r. This implies that for each i = 1, 2, · · · ,m, there exist the correspond-
ing ri and unbounded Fatou component Ui of F (f) such that Ω∗(ri, αi, βi) ⊂ Ui. By Lemma
2.3, F (f) has no unbounded multi-connected component, so we can take a unbounded and
connected section Γi of ∂Ui, then the mapping f : Ω∗(ri, αi, βi) → C \ Γi is analytic. Since
we have chosen Γi such that C \ Γi is simply connected, so for any a ∈ Γi \ {∞}, we have
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CC\Γi
(a) ≥ 1/2. Applying Lemma 2.1 to f in every Ω∗(ri, αi, βi), there exists a positive

constant d such that for z ∈
m⋃

i=1

Ω∗(ri, αi + ε, βi − ε),

|f(z)| = O(|z|d) as |z| → ∞, (3.1)

where 0 < ε < min{ζ/(16m), (βi − αi)/8, i = 1, 2, · · · ,m}. Thus, recall the definition of
Sα, β(r, f), we immediately see

Sαi+ε, βi−ε(r, f) = O(1) (i = 1, 2, · · · ,m). (3.2)

Therefore by Lemma 2.2, there exists two constants M > 0 and K > 0 such that

∣∣∣f
(s)(z)
f(z)

∣∣∣ ≤ KrM (s = 1, 2, · · · , n− 1) (3.3)

for all z ∈
m⋃

i=1

Ω(αi + 2ε, βi − 2ε), outside a R-set H.

Set D = (θ1, θ2). Clearly,

mes(D ∩ S) = mes(D \ (∆(f) ∩D) ≥ mesD −mes∆(f) >
3ζ

4
> 0. (3.4)

Therefore

mes
(
(

m⋃
i=1

Ii) ∩D
)

= mes(S ∩D)−mes
(
(S \

m⋃
i=1

Ii) ∩D
)

>
3ζ

4
− ζ

4
=

ζ

2
. (3.5)

Thus there exists an open interval Ii0 = (α, β) ⊂
m⋃

i=1

Ii ⊂ S such that for infinitely many j,

mes(D ∩ (α, β)) >
ζ

2m
> 0. (3.6)

Then, for sufficiently large r,
∫

F

|A0(reiθ)|dθ ≥ (
mes(D ∩ (α, β))− 4ε

)
ebrc ≥ ζ

4m
ebrc

, (3.7)

where F = D ∩ (α + 2ε, β − 2ε) and ε is sufficiently small such that ε < β−α
10

.
On the other hand, coupling (1.2) and (3.3) leads

∫

F

|A0(rje
iθ)|dθ ≤

∫

F

( n−1∑
s=1

∣∣∣f
(s)(reiθ)
f(reiθ)

∣∣∣|Ai(reiθ)|+ |f
(n)(reiθ)
f(reiθ)

∣∣∣
)
dθ + O(1) (3.8)

≤ M1r
Mearc

+ O(1),

where M1 is a positive constant. Combining (3.7) and (3.8) gives out e(b−a)rc ≤ 4M1mrM

ζ
.

Clearly, it is a contradiction.
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4 Proof of Theorem 1.1

Conversely, assume that mes(∆(f)∩∆(f (k))) < θ2−θ1, and set ζ = θ2−θ1−mes(∆(f)∩
∆(f (k))). Next, we will find an interval I such that I 6⊂ (∆(f) ∩ ∆(f (k)) satisfying I ⊂
∆(f (k))C and I ⊂ ∆(f), where ∆(f (k))C = [0, 2π) \ ∆(f (k)), and obtain the assertion by
reduction to a contradiction in this interval. Set D = (θ1, θ2).

Step 1 In this step, we shall prove that mes(D \ ∆(f)) = 0. Otherwise, since D is
open and ∆(f) is closed, we can find a ray arg z = θ0 such that θ0 6∈ ∆(f) and there exists
some positive constant η such that (θ0 − η, θ0 + η) ⊂ D and Ω∗(r, θ0 − η, θ0 + η) ∩ J(f) = ∅
for sufficiently large r. Then following similar discussion as in Theorem 1.1, we have (3.1)
holds for Ω∗(r, θ0 − η, θ0 + η). Therefore it follows that

∫

F1

|A0(reiθ)|dθ ≤
∫

F1

( n−1∑
s=1

∣∣∣f
(s)(reiθ)
f(reiθ)

∣∣∣|Ai(reiθ)|+ |f
(n)(reiθ)
f(reiθ)

∣∣∣
)
dθ + O(1) (4.1)

≤ M2mesF1r
Mearc

+ O(1),

where F1 = D ∩ (α, β) and M2 is a constant.
On the other hand,

∫

F1

|A0(reiθ)|dθ ≥ (
mes(D ∩ (α, β))− 4ε

)
ebrc ≥ mesF1e

brc

. (4.2)

(4.1) and (4.2) lead to a contradiction.
Step 2 From Theorem 1.2, we already know

mes∆(f) ≥ θ2 − θ1. (4.3)

And from Step 1, we have

mes(∆(f) ∩D) ≥ θ2 − θ1 − ζ

4
. (4.4)

Since ∆(f (k)) is closed, clearly S = (0, 2π) \ ∆(f (k)) is open, so it consists of at most
countably many open intervals. We can choose finitely many open intervals Ii = (αi, βi) (i =
1, 2, · · · ,m) satisfying

Ii ⊂ ∆(f (k))C ,mes(∆(f (k))C \
m⋃

i=1

Ii) <
ζ

4
. (4.5)

Thus for sufficiently large r,

mes(∆(f) ∩D ∩ (
m⋃

i=1

Ii)) + mes(∆(f) ∩D ∩∆(f (k)))

= mes((∆(f) ∩D) ∩ (∆(f (k)) ∪
m⋃

i=1

Ii)) ≥ θ2 − θ1 − ζ

2
,
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and hence

mes(∆(f) ∩D ∩ (
m⋃

i=1

Ii)) = θ2 − θ1 − ζ

2
−mes(∆(f) ∩D ∩∆(f (k))) (4.6)

≥ θ2 − θ1 − ζ

2
−mes(∆(f) ∩∆(f (k)))

=
ζ

2
.

Therefore there exist some Ii such that

mes(∆(f) ∩D ∩ Ii) >
ζ

2m
. (4.7)

Thus we can choose a ray arg z = θ and sufficiently small η > 0 such that (θ− η, θ + η) ⊂ Ii

and
mes(∆(f) ∩D ∩ (θ − η, θ + η)) >

ζ

4m
. (4.8)

For the angular domain Ω(θ − η, θ + η), it is easy to see

(θ − η, θ + η) ∩∆(f (k)) = ∅, Ω∗(r, θ − η, θ + η) ∩ J(f (k)) = ∅

for sufficiently large r. This implies that there exist the corresponding ri and unbounded
Fatou component U of F (f (k)) such that Ω∗(r, θ − η, θ + η) ⊂ U , see [18]. We take an
unbounded and connected section Γ of ∂U , then the mapping f (k) : Ω∗(r, θ−η, θ+η) → C\Γ
is analytic. Since we have chosen Γ such that C\Γ is simply connected, so for any a ∈ Γ\{∞},
we have CC\Γ(a) ≥ 1/2. Applying Lemma 2.1 to f (k) in every Ω∗(r, θ− η, θ + η), there exists
a positive constant d and R such that for z ∈ Ω∗(R, θ − η, θ + η),

|f (k)(z)| = O(|z|d), as |z| → ∞. (4.9)

For z = reiθ ∈ Ω∗(R, θ − η, θ + η), take a curve γ which connecting Reiθ to reiθ along
arg z = θj . So we deduce from (4.9) that

|f (k−1)(z)| ≤
∫

γ

|f (k)(z)||dz|+ ck ≤ O(|z|dL(γ)) + ck ≤ O(rd+1),

where L(γ) denotes the length of γ. Similarly, we have

|f (k−2)(z)| ≤
∫

γ

|f (k−1)(z)||dz|+ ck−1

≤ O(|z|d+1L(γ)) + ck−1

≤ O(rd+2),
...

|f(z)| ≤
∫

γ

|f ′(z)||dz|+ c1 (4.10)

≤ O(|z|d+k−1L(γ)) + c1

≤ O(rd+k),
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where c1, c2, · · · , ck are constants. Therefore, by the definition of Sα, β(r, f), we immediately
see

Sθ−η,θ+η(r, f) = O(1). (4.11)

Then by Lemma 2.2, there exists two constants M > 0 and K > 0 such that

∣∣∣f
(s)(z)
f(z)

∣∣∣ ≤ KrM (s = 1, 2, · · · , n− 1) (4.12)

for all z ∈ Ω(θ − η, θ + η), outside a R-set H1.
It follows from (1.3) that

∫ θ+η

θ−η

|A0(rje
iθ)|dθ ≥ 2ηebrc

. (4.13)

On the other hand, coupling (1.2) and (4.12) leads
∫ θ+η

θ−η

|A0(rje
iθ)|dθ

≤
∫ θ+η

θ−η

( n−1∑
s=1

∣∣∣f
(n)(reiθ)
f(reiθ)

∣∣∣|Ai(reiθ)|+ |f
(s)(reiθ)
f(reiθ)

∣∣∣
)
dθ + O(1) (4.14)

≤ 2ηM3r
Mearc

+ O(r),

where M3 is a constant. By (4.13) and (4.14), we can obtain a contradiction since b > a ≥ 0.
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线性微分方程的整函数解及其导数的Julia集的公共极限方向

孙桂荣,杨琰琰

(苏州科技大学数理学院,江苏苏州 215009)

摘要: 本文主要研究了线性微分方程解的Julia集的极限方向问题. 利用值分布论的方法, 在一定条件

下, 获得了这类方程非平凡解的Julia集的极限方向分布的下界, 推广了相关结果.
关键词: 极限方向; 整函数; Julia集; 复微分方程
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