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Abstract: In this paper, we study some properties of s-spaces. By means of the addition
theorem and the theory of remainders, the following properties are established: (1) if an s-space X
is the union of a countable family of metrizable subspaces, then X is sequential; (2) if G is a non-
locally compact topological group with a compactification bG such that Y = bG \ G is hereditarily
an s-space, then either G is separable and metrizable, or G is o-compact, which generalize and
improve some results about s-spaces by Arhangel’skii.
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1 Introduction

Clearly, every subset of a topological space X can be obtained from open (or closed)
subsets of X by the operations of intersection and union, and many classes of topological
spaces have been defined in such a way. Among them are s-spaces (see [1-3]) and Lindelof
Y-spaces (see [10]). Fix a space Z and an arbitrary family S of open (or closed) subsets of
Z, and let S5 be the family of all sets that can be represented as the intersection of some
subfamily of S. We will say that the family S is an open (or closed) source of a subspace
X in Z if X is the union of some subfamily of S;. A space X is called an s-space if there
exists a countable open source for X in some (every) compactification bX of X. A space X
is called a Lindelof X-space if there exists a countable closed source for X in some (every)
compactification bX of X.

The following statement establishes the relationship between s-spaces and Lindelof Y-
spaces.

Theorem 1.1 [2] Suppose that X is a nowhere locally compact space with a remainder
Y. Then X is a Lindelof ¥-space if and only if Y is an s-space.

The next result about remainders is due to Henriksen and Isbell [9].
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Theorem 1.2 A Tychonoff space X is of countable type if and only if the remainder
in any (or some) Hausdorff compactification of X is Lindelof.

Recall that a space X is of countable type if every compact subset P of X is contained
in a compact subset F' C X that has a countable base in X. Every p-space, as well as each
metrizable space, is of countable type. From Theorem 1.1 and Theorem 1.2 above, we can
see that every s-space is of countable type.

Recall that a paratopological group G is a group G with a topology such that the
multiplication is jointly continuous. A semitopological group G is a group G with a topology
such that the multiplication is separately continuous. A paratopological group with the
inversion being continuous is called a topological group. Clearly, every topological group is
a paratopological group, and a paratopological group is a semitopological group. It is well
known that each semitopological group is homogeneous.

In this paper, we investigate addition theorems for s-spaces, and obtain several sufficient
conditions that the union of some family of s-spaces is also an s-space. A sufficient condition
for an s-space to be sequential is established. We also study the remainders about s-spaces,
and some results about topological groups with a remainder being an s-space are obtained.

Throughout this paper, a space always means a Tychonoff topological space. By a
remainder of a Tychonoff space X, we mean the subspace bX \ X of a Hausdorff compacti-
fication bX of X. A" stands for the closure of 4 in X.

In general, we follow [6] in terminology and notation.

2 Main Results

In [2], Arhangel’skii studied the addition theorem for s-spaces, and established the
following statement.

Theorem 2.1 [2] If a space X is the union of a countable family 7 of dense subspaces
of X such that each Z € 7 is an s-space, then X is also an s-space.

We complement Arhangel’skii’s result above as follows.

Lemma 2.2 The sum space of a countable family of s-spaces is an s-space.

Proof Assume that X = @ X; and each X is an s-space. Fix a compactification bX

1EW
of X, and let bX; be the closure of X; in bX for i € w. Then each bX; is a compactification
of X;. Since X is an s-space, there exists a countable open source O; in b.X;. Observing that
each X; is open in X, we can fix an open subset U; of bX such that U; N X = X;. Clearly,
X is dense in U;. Hence be = Yibx = bX;, which follows that U, is contained in bX;. Put
S, ={0NU; : 0 € O;} for each i € w. It is easy to see that S; is a countable open source of
X, in bX. Therefore, |J S; is a countable family of open subsets of bX. It remains to show
€W

that (J S; is a source of X in bX. Take any distinct points 2,y such that z € X,y € bX \ X.

€W
There exists X; such that x € X;. Since S; is a source of X; in bX, (\{S:2 € S € §;} is
contained in X;. Hence, we can take S € S; C |J S; such that x € S C bX \ {y}. Therefore,

PEW

X is an s-space.
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Theorem 2.3 Let X be the union of a countable family 7 of closed subspaces such that
each Z € n is an s-space. If n is locally finite in X, then X is an s-space.

Proof Let Y be the sum space of 1, i.e., Y = @n. By Lemma 2.2, Y is an s-space.
Let f:Y — X be the canonical mapping that restricts to the identity on each Z € 7. Since
1 is a family of closed subsets of X and locally finite in X, it follows that f is a perfect
mapping. By Theorem 2.13 in [2], the image of an s-space under a perfect mapping is an
s-space. Therefore, X is an s-space.

Corollary 2.4 If X be the union of a finite family 7 of closed subspaces and each Z € 5
is an s-space, then X is an s-space.

The following example shows that the assumption in Theorem 2.3 that 7 is locally finite
cannot be dropped.

Example 1 The union of a countable family of closed s-subspaces need not be an
s-space.

Proof Fix a o-compact X such that X is not a p-space (for instance, the o-product
of wy copies of two-elements topological group). Since each compact space is an s-space, X
is the union of a countable family of closed s-spaces. We claim that X is not an s-space.
Assume the contrary. Let bX be a compactification of X. By Theorem 1.1, bX \ X is
a Lindelof Y-space. Notice that X is also a Lindelof X-space. By Corollary 6.3 in [2], a
Lindelof Y-space Y is a p-space provided that Y is a subspace of a Lindel6f p-space Z and
Z\'Y is also a Lindel6f ¥-space. Hence, X is a p-space since X is a Lindelof X-space. This
is a contradiction. Therefore, X is not an s-space.

For open s-subspaces the circumstances is different, which can be seen from the following
result whose proof is similar with Lemma 2.2.

Theorem 2.5 If X is the union of a countable family 7 of open subspaces such that
each Z € n is an s-space, then X is an s-space.

Theorem 2.6 Let X be the union of a countable family 7 of metrizable subspaces. If
X is an s-space, then X is a sequential space.

Proof Since X is an s-space, X is a k-space by Corollary 2.12 in [2]. In fact, it follows
from the fact that every space of point-countable type is a k-space. Fix any non-closed
subset A of X. Then there is a compact subset K of X such that A N K is not closed
in K. By [11], every compact space that is the union of a countable family of metrizable
subspaces is sequential. Since K is the union of a countable metrizable subspaces, it follows
that K is sequential. Hence, there is a sequence {z, : n € w} of AN K converging to a point
x € K\ AC X\ A. Therefore, X is a sequential space.

Corollary 2.7 Let X be a topological group that is an s-space. If X is the union of
a countable family 1 of metrizable subspaces, then X is metrizable.

Proof By the assumption and Theorem 2.6, X is sequential. Hence, X has countable
tightness. Since X is an s-space, it is of countable type. Fix a compact subset K of X such
that K has a countable base in X. Since K is a compact space with countable tightness,
K has countable m-character by [12]. Then it follows from the fact K having a countable
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base in X that X has countable m-character at each point of K. Since X is homogeneous,
X has countable m-character. Hence, X is first countable since it is a topological group (see
Proposition 5.2.6 in [4]). Therefore, X is metrizable (see Theorem 3.3.12 in [4]).

In [2], Arhangel’skii proved that s-spaces are preserved by a perfect mapping in both
directions. It is also known that the image of a Lindel6f Y-space under any continuous
mapping is also a Lindeldf Y-space [10]. However, the image of an s-space under a continuous
closed mapping need not be an s-space.

Theorem 2.8 The image of an s-space under a continuous closed mapping need not
be an s-space.

Proof Let X = € I; be the sum space of w copies of closed unit interval I, where each
I; is homeomorphic égwl. Let 0, be the zero of I;, and identify all 0;s to be one point 0.
Then we obtain a quotient space Y of X with respect to the canonical mapping f: X — Y
defined by f(0;) = 0 for each i € w, and f(x) = x for each x € X \ {0; : i € w}. Clearly, f is
a continuous closed mapping. Since X is separable and metrizable, X is an s-space.

Claim Y is not an s-space.

Assume the contrary. By Theorem 7.1 in [2], w(Z) = nw(Z) provided that Z is an
s-space, where w(Z) and nw(Z) denotes the weight and network weight of Z, respectively.
Since Y has a countable network, it follows that Y has a countable base, which contradicts
with the fact that Y is not first countable.

The following results complement Theorem 1.1.

Theorem 2.9 If B is a compact space and a subspace X of B is a Lindel6f X-space,
then the subspace B\ X of B is an s-space.

Proof Let Y be the closure of X in B. Then Y is a compactification of X, and there
exists a countable closed source F of X in Y. Clearly, O = {B\ F': F € F} is a countable
family of open subsets of B. Let Z be the closure of B\ X in B, and S ={0ONZ:0 € O}.
Obviously, Z is a compactification of B\ X and S is a countable open source of B\ X in Z.
Therefore, B\ X is an s-space.

Example 2 There exists a compact space B and its subspace X which is an s-space,
the subspace B\ X of B need not be a Lindelof X-space.

Proof Let B = Cy UC, be the Alexandroff double of the circle, where C; = {(x,y) :
x® +y? =i}, i = 1,2 (see Example 3.1.26 in [6]). It is known that B is a compact space,
C; is a compact subspace of B, and hence C is an s-space. Since C5 is an open discrete
subspace of B with cardinality 2¢, it follows that C5 is not a Lindel6f Y-space.

Theorem 2.10 Suppose that B is a compact space, and X is a subspace of B such
that X is dense in some open subspace U of B. If X is an s-space, then B\ X is a Lindel6f
Y.-space.

Proof Let Y be the closure of X in B. Then Y is a compactification of X, and there
exists a countable open source O of X in Y. Notice that U is an open subspace of Y. It is
easy to see that V = {ONU : O € O} is a family of open subsets of B and a source of X in
Y. Let Z be the closure of B\ X in B. Then the family F = {(B\V)NZ :V € V} is a
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countable closed source of B\ X in Z. Therefore, B\ X is a Lindeldf X-space.

In the end, we study some spaces with a compactification such that the remainder is
(locally) an s-space.

Theorem 2.11 Let X be a non-locally compact homogeneous space with a compacti-
fication bX such that the remainder Y = bX \ X is locally an s-space. Then X is a Lindelof
Y-space and Y is an s-space.

Proof Since Y is locally an s-space and every closed subspace of an s-space is also an
s-space, we can fix an open subspace U of Y such that the closure of U in Y, denoted by F',
is an s-space. Since X be a non-locally compact homogeneous space, it is nowhere locally
compact. Therefore, Y is dense in bX. Let Z be the closure of F in bX. Then Z \ F' is a
Lindel6f ¥-space and contained in X. Clearly, Z \ F' is a closed subspace of X and has non-
empty interior in X. It follows that X is locally a Lindelof X-space. Since every s-space is of
countable type, Y is of locally countable type. By [13], every space of locally countable type
is of countable type. Hence, Y is of countable type. By Theorem 1.2, X is a Lindelof space.
It follows that X is covered by a countable family of its Lindelof X-subspaces. Therefore, X
is a Lindelof Y-space (see Proposition 5.3.8 in [4]). Hence, Y is an s-space by Theorem 1.1.

Corollary 2.12 If a first-countable paratopological group G has a compactification
bG such that the remainder Y = bG \ G is locally an s-space, then G is metrizable.

Proof If G is locally compact, then G is a topological group by [5]. A first-countable
topological group is metrizable by Theorem 3.3.12 in [4]. Therefore, G is metrizable.

If G is non-locally compact, then G is a Lindelof 3-space by Theorem 2.11. Since a
semitopological group with countable m-character has a Gs-diagonal (see Corollary 5.7.5 in
[4]), G has a Gs-diagonal. Hence, G has a countable network, since every -space with
a Gs-diagonal is a o-space [8] and every Lindeléf o-space has a countable network. By
Proposition 5.7.14 in [4], a first-countable paratopological group with a countable network
has a countable base, so has GG. Therefore, GG is metrizable.

Theorem 2.13 Let GG be a non-locally compact topological group with a compactifi-
cation bG such that the remainder Y = bG \ G is an s-space and is the union of a countable
family 7 of metrizable subspaces. Then G is separable and metrizable.

Proof Since Y is an s-space, it is of countable type. Take an arbitrary point y € Y and
a compact subset K C Y such that y € K and K has a countable base in Y. From the proof
of Corollary 2.7 we can see that Y has countable m-character at y. It follows that Y has
countable w-character. Since Y is dense in bG, it follows that bG has countable m-character
at each point of Y.

By [7], every countably compact space that is the union of a countable family of D-
spaces is compact. Since every metrizable space is a D-space and Y is non-compact, it
follows that Y is not countably compact. Then there is a countable closed subset A C Y
which is discrete in Y. Since bG is compact, there exists a point ¢ € G such that c is a
accumulation point of A.

For every a € A, we take a countable m-base 7, of bG at a. Then the family |J 7,
acA
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is a countable m-base of bG at ¢. Put O = {ONG : O € | n.}. Since G is dense in
acA
bG, it follows that O is a countable m-base of G at c. Hence, G has countable w-character

since it is homogeneous. Therefore, it follows from G being a topological group that G is
metrizable. Clearly, G is Lindelof, since it is a Lindel6f Y-space. Therefore, G is separable
and metrizable.

Theorem 2.14 Let G be a non-locally compact semitopological group with a com-
pactification bG such that the remainder Y = bG \ G is an s-space and is the union of a
countable family 7 of metrizable subspaces. Then G has a countable network.

Proof From the proof of Corollary 2.7 we can see that G has countable w-character.
Since G is a semitopological group, it follows that G has a Gs-diagonal. Clearly, G is a
Lindelof Y-space. Therefore, G has a countable network.

Theorem 2.15 Let GG be a non-locally compact topological group with a compactifi-
cation bG such that the remainder Y = bG \ G is hereditarily an s-space. Then either G is
separable and metrizable, or G is o-compact.

Proof Clearly, both G and Y are dense in bG. Then Y is nowhere locally compact,
which implies that Y is dense-in-itself. By Theorem 7.11 in [2], if a dense-in-itself space is
hereditarily an s-space, then it is first-countable. Hence, Y is first-countable.

If Y is not countably compact, then from the proof of Theorem 2.13 we can see that G is
separable and metrizable. If Y is countably compact, then Y is éech—complete by Theorem
3.6 in [2]. It follows that G is o-compact.

Corollary 2.16 Let G be a non-locally compact topological group with a compactifi-
cation bG such that the remainder Y = bG \ G is hereditarily an s-space. If G has the Baire
property, then G is separable and metrizable.

Proof Suppose to the contrary that G is not separable and metrizable. Then G is
o-compact by Theorem 2.15. Hence, it follows from G having the Baire property that G is

locally compact. This is a contradiction.
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