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Abstract: In this paper, we study the Lp-Minkowski problem (under the assumption that

the solutions are ellipsoids centered at the origin). Through the relation between support function
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1 Introduction

The Minkowski problem was popular for more than one hundred years. It had a signif-
icant impact on 20th century mathematics. Lp-Minkowski problem introduced by Lutwak
[1] was intensively studied in recent decades. There existed many good references on the
Lp-Minkowski problem [1–24]. However, very little is known on the uniqueness of the Lp-
Minkowski problem for p < 1, even in R3.

In this paper, we discuss the uniqueness of Lp-Minkowski problem for all p ∈ R in
general dimensions under the assumption that the solutions are ellipsoids centered at the
origin, which needs to study the following Monge-Ampère equation

det (hij + hδij) = hp−1 on Sn, (1.1)

where h is the support function (see Definition 2.1) of convex bodies, hij are the second-order
covariant derivations of h with respect to any orthonormal frame {e1, e2, · · · , en} on the unit
sphere Sn, δij is the Kronecker delta and p ∈ R. Similarly, we obtain the uniqueness for the
Christoffel-Minkowski problem of Lp-sum under the same assumption, which needs to study
a k-Hessian equation as follows

σk (hij + hδij) = Ck
nhp−1 on Sn, (1.2)
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where k ∈ {1, 2, · · · , n}, Ck
n = n!

k!(n−k)!
and σk is the k-th elementary symmetric function

whose definition is the following: for λ = (λ1, λ2, · · · , λn) ∈ Rn,

σk(λ) =
∑

16i1<i2<···<ik6n

λi1λi2 · · ·λik
.

The definition can be extended to a symmetric matrix W ∈ Rn×n by σk(W ) = σk(λ(W )),
where λ(W ) is the eigenvalue vector of W .

(1.1) comes from the geometry of convex bodies. A compact convex subset of Euclidean
space Rn+1 with a nonempty interior is a convex body. Minkowski developed a few basic
concepts on convex bodies: support function, Minkowski sum and mixed volumes (see, e.g.
[9, 25]).

The classical Minkowski problem asks the existence of a convex body whose surface area
measure is prescribed. It was studied by [26–34] (or see [9] for history) and many others.
The uniqueness of solutions to the classical Minkowski problem was solved by the Brunn-
Minkowski inequality (Gardner gave some equivalent inequalities in [35]): let Q1, Q2 ⊂ Rn+1

be two convex bodies and 0 < λ < 1, then

Vol ((1− λ)Q1 + λQ2) > Vol (Q1)1−λVol (Q2)λ, (1.3)

where Vol(·) denotes the volume of a convex body and ‘+’ denotes the Minkowski sum (see
Definition 2.2). The equality in (1.3) holds if and only if Q1 and Q2 are translates.

Firey [36] extended the Minkowski sum to the general cases for p > 1, which is called
Lp-sum (see Definition 2.3). Later, in [1], Lutwak generalized the classical surface area
measure (see Definition 2.5) to the Lp surface area measure (see Definition 2.6) for p > 1
and studied the generalised Minkowski problem, which was called Lp-Minkowski problem
thereafter. Given a finite Borel measure m on Sn, the Lp-Minkowski problem concerns
whether there exists a unique convex body Q ⊂ Rn+1 such that m is the Lp surface area
measure of Q. Let µ denote the surface area measure of Q, then the Lp-Minkowski problem
is equivalent to solving the equation

dµ = hp−1dm, (1.4)

where h denotes the support function of Q. Obviously, the classical Minkowski problem is a
special case of Lp-Minkowski problem for p = 1. In the smooth category, (1.4) is equivalent
to considering the following Monge-Ampère equation

det(hij + hδij) = fhp−1 on Sn, (1.5)

where f is a positive continuous function on Sn.
Lutwak [1] proved the existence of solutions to (1.4) when p > 1, except for p = n + 1,

under an evenness assumption. Then in [2], Lutwak and Oliker obtained a C∞ solution to the
even Lp-Minkowski problem for p > 1. Lutwak, Yang and Zhang [6] obtained the existence
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of solutions to discrete and non-discrete Lp-Minkowski problems with a normalized volume
for all p > 1, still under the evenness assumption. Without the evenness assumption, Chou
and Wang [8] solved (1.5) for general measures for p > 1. In addition, Hug, Lutwak, Yang
and Zhang [7] obtained a different proof of the existence of solutions to the Lp-Minkowski
problem for p > n + 1 and to the discrete measure for p > 1. A C2,α solution to (1.5) for
p > n + 1 was given by Chou and Wang [8] and Guan and Lin [14] independently. When
1 < p < n + 1, the solution convex body may have the origin on the boundary (see, e.g. [8,
7]), thus it is not necessary to discuss the C2,α regularity. However, for the discrete case,
Hug, Lutwak, Yang and Zhang [7] obtained that the solution polytope always has the origin
in its interior for p > 1 with p 6= n + 1.

The cases p < 1 are difficult to settle. Chou and Wang [8] got the weak solution to (1.5)
when −n− 1 < p < n+1. Also, some special cases were studied. In [10], Böröczky, Lutwak,
Yang and Zhang gave the existence of solutions to the even L0-Minkowski problem. Zhu [11]
studied the discrete L0-Minkowski problem without the evenness assumption. In R2, Stancu
[4] studied the discrete L0-Minkowski problem. And in R3, Firey [37] built a mathematical
model to describe the ultimate shape of worn stones. This is a parabolic problem related to
the L0-Minkowski problem when f is a constant. Chou and Wang studied the critical case
p = −n− 1 in [8]. In [38], Lu and Wang established the existence of rotationally symmetric
solutions of (1.5) for p = −n − 1 (see [39, 22]). When p = −n − 1 and f ≡ 1, all solutions
to (1.5) are ellipsoids centered at the origin, see [40–42].

The uniqueness of Lp-Minkowski problem for p > 1 and p 6= n + 1 (the uniqueness upto
a dilation when p = n + 1) was solved by the Brunn-Minkowski-Firey inequality [1]: let
Q1, Q2 ⊂ Rn+1 are two convex bodies that contain the origin in their interiors, p > 1 and
0 < λ < 1, then

Vol ((1− λ) ◦Q1 +p λ ◦Q2) > Vol (Q1)1−λVol (Q2)λ, (1.6)

where ‘+p’ is the Lp-sum and ‘◦’ is the Firey multiplication. The equality in (1.6) holds if
and only if Q1 = Q2. However, the uniqueness for p < 1 is difficult and still open because
the Brunn-Minkowski inequality for p < 1 is still open. In [12], Jian, Lu and Wang obtained
that for any −n− 1 < p < 0, there exists a positive function f ∈ C∞(Sn) to guarantee that
(1.5) has two different solutions, which means that we need more conditions to consider the
uniqueness. The uniqueness results of polygonal L0-Minkowski problem in R2 were given by
Stancu in [5]. And in R3, Huang, Liu and Xu [13] obtained the uniqueness of Lp-Minkowski
problem for −1 6 p < 1 when f ≡ 1 for the C4 smooth convex bodies. Chen and Zhou
obtained the generalised dual Minkowski inequalities in [43].

Christoffel-Minkowski problem arises in the study of surface area functions and it asks
the existence of a convex body Q whose k-th elementary symmetric function of all principal
radii of the boundary is prescribed [9]. It needs to solve a k-Hessian equation

σk(hij + hδij) = f on Sn, (1.7)
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where σk is the k-th elementary symmetric function defined in the beginning. When k = n,
(1.7) is the classical Minkowski problem. A necessary condition for (1.7) to have a solution
[33] is ∫

Sn

xif(x)dx = 0, ∀i = 1, 2, · · · , n + 1. (1.8)

Guan and Ma [46] gave a sufficient condition for the existence of a unique convex solution to
(1.7), and Guan, Ma and Zhou [3] proved (1.8) is sufficient for (1.7) to have an admissible
solution. The convex solution and admissible solution are defined in Definition 2.7.

Similarly, we can consider the Lp analog of Christoffel-Minkowski problem, which we
call the Christoffel-Minkowski problem of Lp-sum, or equivalently

σk(hij + hδij) = fhp−1 on Sn. (1.9)

When p = 1, (1.9) is reduced to (1.7), and when k = n, (1.9) is reduced to (1.5). When p >
k+1 and 1 6 k < n, under the condition that the function 0 < f ∈ Cm(Sn) (m > 2) satisfies((

f
−1

p+k+1

)
ij

+ δijf
−1

p+k+1

)
> 0 on Sn, Hu, Ma and Shen [45] obtained the Christoffel-

Minkowski problem of Lp-sum has a unique convex body that has the origin in its interior
with a Cm+1,α (0 < α < 1) boundary (the uniqueness upto a dilation when p = k + 1). The
uniqueness of (1.9) for 1 < p < k + 1 can be obtained via the Alexandrov-Fenchel inequality
[44]. However, the uniqueness of (1.9) for p < 1 is still open.

In this paper, we consider the uniqueness of Lp-Minkowski problem and Christoffel-
Minkowski problem of Lp-sum for p < 1 when the solutions to (1.1) and (1.2) are ellipsoids
centered at the origin.

Our main result is
Theorem 1.1 If the solution to (1.1) is an ellipsoid centered at the origin, then the

uniqueness holds for any p ∈ R\{−n − 1} (the uniqueness holds upto a dilation when
p = n + 1). And when p = −n − 1, the solutions to (1.1) are all ellipsoids centered at
the origin with a volume ωn+1, where ωn+1 is the volume of the unit ball in Rn+1.

Theorem 1.2 If the solution to (1.2) is an ellipsoid centered at the origin, then the
uniqueness holds for any p ∈ R (the uniqueness holds upto a dilation when p = k + 1).

The organization of this paper is as follows: after the preliminary Section 2, we discuss
the ellipsoid solutions of Lp-Minkowski problem (Theorem 1.1) in Section 3. Then in Section
4, we prove Theorem 1.2.

2 Preliminary

Associated with a convex body is its support function.
Definition 2.1 Let Q ⊂ Rn+1 be a convex body and M be its boundary. The support

function of Q (or M) is defined by

h(x) = max{〈x, y〉 : y ∈ Q}, ∀x ∈ Rn+1, (2.1)
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where 〈 · , · 〉 denotes the inner product in Rn+1.
If M is smooth and strictly convex, then it can be represented by its inverse Gauss map

ν : Sn → M . Then the support function of M can be represented by

h(x) = 〈x, ν(x)〉, ∀x ∈ Sn, (2.2)

and be positively homogeneous degree 1 after being extended to Rn+1 by h(x) = |x|h(x/ |x|)
for all x ∈ Rn+1.

Clearly, the support function of a convex body is convex and positively homogeneous
degree 1, thus it is determined by its value on Sn completely. Conversely, any continuous
function h on Sn, which can be convex after being extended to be positively homogeneous
degree 1 on Rn+1, can determine a convex body by

Q =
⋂

x∈Sn

{
y ∈ Rn+1 : 〈x, y〉 6 h(x)

}
.

Definition 2.2 Given two convex bodies Q1, Q2 ∈ K with respective support function
h1 and h2, and λ, µ > 0 (λ2 + µ2 > 0), the Minkowski sum λQ1 + µQ2 ∈ K is defined by the
convex body whose support function is λh1 + µh2, which means

λQ1 + µQ2 =
⋂

x∈Sn

{
y ∈ Rn+1 : 〈x, y〉 6 λh1(x) + µh2(x)

}
. (2.3)

Let K0 collect convex bodies in K that contain the origin in their interiors. In 1962,
Firey [36] generalized the concept of Minkowski sum from p = 1 to Lp-sum for p > 1 as
follows.

Definition 2.3 For p > 1, given two convex bodies Q1, Q2 ∈ K0 with respective support
function h1 and h2, and λ, µ > 0 (λ2 + µ2 > 0), the Lp-sum λ ◦ Q1 +p µ ◦ Q2 ∈ K0 is the
convex body with support function (λhp

1 + µhp
2)

1
p , which means

λ ◦Q1 +p µ ◦Q2 =
⋂

x∈Sn

{
y ∈ Rn+1 : 〈x, y〉p 6 λhp

1(x) + µhp
2(x)

}
, (2.4)

where ‘+p’ means the Lp summation and ‘ ◦’ means Firey multiplication.
It is clear that λ ◦Q = λ

1
p Q. And if p = 1, they are equal.

Furthermore, we consider the set of positive support functions in S, denoted by S0, i.e.,
S0 = S∩{h > 0}. Then we can further extend the Lp-sum (2.4) to any p ∈ R. For 0 < λ < 1
and a, b > 0, define

Mp(a, b, λ) =





min {a, b} , if p = −∞,

((1− λ)ap + λbp)
1
p , if p ∈ (−∞, 0) ∪ (0,∞),

a1−λbλ, if p = 0,

max {a, b} , if p = ∞.

(2.5)

Mp(a, b, λ) is increasing with respect to p, namely, if −∞ 6 p < q 6 ∞, then

Mp(a, b, λ) 6 Mq(a, b, λ), (2.6)
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where Mp(a, b, λ) = Mq(a, b, λ) if and only if a = b > 0.
Definition 2.4 For Q1, Q2 ∈ K0 with respective support function h1, h2 ∈ S0, λ ∈ (0, 1)

and p ∈ R, the generalised Lp-sum is

(1− λ) ◦Q1 +p λ ◦Q2 =
⋂

x∈Sn

{
y ∈ Rn+1 : 〈x, y〉 6 Mp(h1(x), h2(x), λ)

}
. (2.7)

It is obvious that when p > 1, the convex body defined by (2.7) is the Lp-sum (2.4).
Definition 2.5 Suppose Q ∈ K, the surface area measure S(Q, ·) of Q is a Borel measure

defined on Sn, such that
∫

Sn

hQ′(ω)S(Q, dω) = lim
ε→0+

Vol (Q + εQ′)−Vol (Q)
ε

(2.8)

for any convex body Q′ ∈ K, where hQ′ is the support function of Q′ and Q + εQ′ is the
Minkowski sum defined in Definition 2.2.

Definition 2.6 For p > 1 and Q ∈ K0, the Lp surface area measure Sp(Q, ·) of Q is a
Borel measure defined on Sn satisfying

1
p

∫

Sn

hp
Q′(ω)Sp(Q, dω) = lim

ε→0+

Vol (Q +p ε ◦Q′)−Vol (Q)
ε

(2.9)

for any convex body Q′ ∈ K0, where Q +p ε ◦Q′ is the Lp-sum defined in Definition 2.3.
The relationship between the classical and Lp surface area measure is

Sp(Q, ·) = h1−p
Q S(Q, ·). (2.10)

Definition 2.7 A function u ∈ C2(Sn) is called convex if (uij + uδij) > 0 on Sn. For
1 6 k 6 n, let Γk be the convex cone in Rn determined as

Γk = {σ1(λ) > 0, σ2(λ) > 0, · · · , σk(λ) > 0} .

Suppose u ∈ C2(Sn), we say u is k-convex if for any x ∈ Sn, W (x) = {uij(x) + u(x)δij} ∈ Γk.
Furthermore, u is called an admissible solution to (1.7) if u is k-convex and satisfies (1.7).

Now we represent the Gauss curvature of a convex body by its support function.
Assume that M ⊂ Rn+1 is a smooth, closed and uniformly strictly convex hypersurface

enclosing the origin and parameterised by its inverse Gauss map ν : Sn → M . Let h be the
support function of M , {e1, e2, · · · , en} be the local orthonormal frame on Sn and ∇i be the
covariant differentiation on M along the direction ei. Differentiate (2.2) twice along ei and
ej , then we have

Gij = ∇ijh + hδij , (2.11)

where Gij is the second fundamental form of M . The details can be found in [47]. Let gij

be the metric of M , then according to the relation ∇ix = Gikg
km∇mν, we have

δij = 〈∇ix,∇jx〉 = Gikg
kmGjsg

sl 〈∇mν,∇lν〉 = GikGjmgkm,
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thus

Gjk = Gjmgkm. (2.12)

Due to the uniformly convexity of M , the Gauss curvature K of M can be represented by
its support function as follows

K = det
(
Gjmgkm

)
= det

(
Gjk

)
,

by (2.11), we have
1
K

= det(Gjk) = det(∇jkh + hδjk). (2.13)

Remark 2.8 The principal radii of M are eigenvalues of matrix {hij + hδij}.

3 Proof of Theorem 1.1

We can see that h = 1 is a solution to (1.1). Denote M by the boundary of the ellipsoid
centered at the origin in Theorem 1.1. To prove the uniqueness of solutions to (1.1), we need
to prove that M is a unit sphere when p ∈ R\{−n−1, n+1}. Choose a suitable orthonormal
frame on Rn+1 such that M is in the following form

x2
1

a2
1

+
x2

2

a2
2

+ · · ·+ x2
n

a2
n

+
x2

n+1

a2
n+1

= 1 (a1, a2, · · · , an, an+1 > 0). (3.1)

Setting p0 = p− 1, according to (2.13), (1.1) is equivalent to

1
K

= hp0 , (3.2)

where K is the Gauss curvature of M and h is the support function of M.

3.1 The Gauss Curvature K of M

The lower semi-surface of M is

M− : Rn ⊃ Ω → Rn+1,

(x1, x2, · · · , xn) 7→ (x1, x2, · · · , xn, u−(x1, x2, · · · , xn))
(xi ∈ [−ai, ai] , ai > 0, i = 1, 2, · · · , n).

(3.3)

Set x = (x1, x2, · · · , xn) ∈ Rn, then

M− : Rn ⊃ Ω → Rn+1,

x 7→ (x, u−(x)),

where

u−(x) = −an+1

√√√√1−
n∑

i=1

x2
i

a2
i

, xi ∈ [−ai, ai] , (3.4)
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then M− is the graph of u−. Set

u+(x) = an+1

√√√√1−
n∑

i=1

x2
i

a2
i

, (3.5)

then u− = −u+. When u+ 6= 0, we have

u−xi
(x) =

a2
n+1

a2
i

xi

u+(x)
(i = 1, 2, · · · , n), (3.6)

u−xixj
(x) =

a2
n+1

a2
i

(
δij

u+(x)
+

a2
n+1

a2
j

xixj

(u+(x))3

)
(i, j = 1, 2, · · · , n). (3.7)

Then

det(D2u−) = det
(

a2
n+1

a2
i

(
δij

u+
+

a2
n+1

a2
j

xixj

(u+)3

))

=
a2n

n+1

(u+)n
det




En +




a2
n+1x1

(u+)2

a2
n+1x2

(u+)2

...
a2

n+1xn

(u+)2




(
x1

a2
1

,
x2

a2
2

, · · · ,
xn

a2
n

)



n∏
i=1

1
a2

i

=
a2n

n+1

(u+)n
det




1 +
(

x1

a2
1

,
x2

a2
2

, · · · ,
xn

a2
n

)



a2
n+1x1

(u+)2

a2
n+1x2

(u+)2

...
a2

n+1xn

(u+)2







n∏
i=1

1
a2

i

=
a2n

n+1

(u+)n

(
1 +

a2
n+1

(u+)2

n∑
i=1

x2
i

a2
i

)
n∏

i=1

1
a2

i

=
a2n+2

n+1

(u+)n+2

n∏
i=1

1
a2

i

.

In the third equality above, we have used

det(λEm + AmnBnm) = λm−n det(λEn + AnmBmn),

where λ ∈ R is a constant, Amn is a real m×n matrix and Em is a m-order identity matrix.
Also, we have

(1 +
∣∣Du−

∣∣2)n+2
2 =

(
1 +

a4
n+1

(u+)2

n∑
i=1

x2
i

a4
i

)n+2
2

.

Then the Gauss curvature K− of M− is

K− =
det(D2u−)

(1 + |Du−|2)n+2
2

= a2n+2
n+1

( n∏
i=1

1
a2

i

)(
(
u+

)2
+ a4

n+1

n∑
i=1

x2
i

a4
i

)−n+2
2

.
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By (3.5), we have

K− = (
n+1∏
i=1

1
a2

i

)

(
n+1∑
i=1

x2
i

a4
i

)−n+2
2

.

According to the symmetry of ellipsoids, the Gauss curvature K of M is

K = (
n+1∏
i=1

1
a2

i

)

(
n+1∑
i=1

x2
i

a4
i

)−n+2
2

. (3.8)

Remark 3.1 Although u+ is present in the denominator of det(D2u−) and 1 + |Du−|2,
the quotient K− of them avoids the case. Therefore we can also use (3.8) to obtain the Gauss
curvature of M when u+ = 0 because of the continuity of Gauss curvature of ellipsoids.

3.2 The Support Function h of M

The unit outer normal at an arbitrary point P = (x1, x2, · · · , xn, xn+1) on M is

N(P ) =
(x1

a2
1
, x2

a2
2
, · · · , xn

a2
n
, xn+1

a2
n+1

)
√

n+1∑
i=1

x2
i

a4
i

,

then the support function h at P is

h(P ) = 〈P, N(P )〉 =

n+1∑
i=1

x2
i

a2
i√

n+1∑
i=1

x2
i

a4
i

=
1√

n+1∑
i=1

x2
i

a4
i

.

Thus the support function h of M is

h =

(
n+1∑
i=1

x2
i

a4
i

)− 1
2

. (3.9)

3.3 Proof of Theorem 1.1

Proof Inserting (3.8) and (3.9) into (3.2), we have

(
n+1∏
i=1

a2
i

)(
n+1∑
i=1

x2
i

a4
i

)n+2
2

=

(
n+1∑
i=1

x2
i

a4
i

)− p0
2

,

thus (
n+1∑
i=1

x2
i

a4
i

)n+2+p0
2

=
n+1∏
i=1

a−2
i . (3.10)
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In order that (3.10) is true for all P ∈ M, for any j ∈ {1, 2, · · · , n + 1}, pick Pj =
(0, · · · , 0, aj , 0, · · · , 0) in (3.10), then we have

an+2+p0
j =

n+1∏
i=1

a2
i , ∀j ∈ {1, 2, · · · , n + 1} . (3.11)

Then 



p0 = −n− 2,
n+1∏
i=1

ai = 1,
or

{
p0 6= −n− 2,

a1 = aj , ∀j.

Case 1 When





p0 = −n− 2,
n+1∏
i=1

ai = 1,
the volume of the ellipsoid surrounded byM is a constant

ωn+1, where ωn+1 is the volume of the (n + 1)-dimensional unit ball in Rn+1.

Case 2 When

{
p0 6= −n− 2,

a1 = aj , ∀j, by (3.11), we have

a2n
1 = an+p0

1 ,

then

p0 = n or

{
p0 6= n,

a1 = 1.

Hence, for all p0 ∈ R \ {n,−n− 2}, M is a unit sphere; when p0 = n, M is an arbitrary
sphere; when p0 = −n− 2, the product of all the half-axis of M is 1.

4 Proof of Theorem 1.2

Let M be a uniformly convex hypersurface that can be represented by the graph of a
C2 function u, then the first and second fundamental form of M are

I = (δij + uiuj), II =
1√

1 + |Du|2
(uij),

respectively, where Du, (uij) are the gradient and Hessian matrix of u, respectively, and
(uij) is invertible because of the uniformly convexity of M .

4.1 Proof of Theorem 1.2 for k = 1

When k = 1, (1.2) is reduced to

σ1(hij + hδij) = nhp0 on Sn. (4.1)

We can see that h = 1 is a solution to (1.2). Similarly, let M represented by (3.1) be the
boundary of the ellipsoid centered at the origin in Theorem 1.2. To prove the uniqueness
of solutions to (1.2), we need to prove that M is a unit sphere when p0 ∈ R\{1}. M− is
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represented by the graph of u−, then denote the inverse matrix of the Hessian matrix of u−

by
(u−ij)

−1 = ((u−)ij),

we have

σ1(hij + hδij) =
√

1 + |∇u−|2
(

n∑
i=1

(u−)ii +
n∑

i,j=1

u−i u−j (u−)ij

)
. (4.2)

Proof For the lower semi-surface M−, we have

σ1(hij + hδij) =

√√√√1 +
n∑

i=1

(
a4

n+1

a4
i

x2
i

x2
n+1

)(
n∑

i=1

(u−)ii +
n∑

i,j=1

u−i u−j (u−)ij

)
. (4.3)

Inserting (4.3) and (3.9) into (4.1), we have

n∑
i=1

(u−)ii +
n∑

i,j=1

u−i u−j (u−)ij = n
|xn+1|
a2

n+1

(
n+1∑
i=1

x2
i

a4
i

)− p0+1
2

. (4.4)

Since

δij =
n∑

m=1

u−im(u−)mj =
n∑

m=1

a2
n+1

a2
i

δim

u+
(u−)mj +

n∑
m=1

u−i u−m(u−)mj

u+
(i, j = 1, 2, · · · , n),

then

u+ =
a2

n+1

a2
i

(u−)ii +
n∑

m=1

u−i u−m(u−)mi (i = 1, 2, · · · , n)

and

nu+ = a2
n+1

n∑
i=1

(u−)ii

a2
i

+
n∑

i,m=1

u−i u−m(u−)mi,

thus (4.4) is equivalent to

nan+1

√√√√1−
n∑

i=1

x2
i

a2
i

− a2
n+1

n∑
i=1

(u−)ii

a2
i

+
n∑

i=1

(u−)ii = n
|xn+1|
a2

n+1

(
n+1∑
i=1

x2
i

a4
i

)− p0+1
2

. (4.5)

In order that (4.5) is true for any P on M−, taking Pn+1 = (0, 0, · · · , 0,−an+1), we have
[
nan+1 − a2

n+1

n∑
i=1

(u−)ii

a2
i

+
n∑

i=1

(u−)ii

]∣∣∣∣∣
Pn+1

= nap0
n+1. (4.6)

For all j ∈ {1, 2, · · · , n}, fixed, at Pj = (0, · · · , 0, aj , 0, · · · , 0), we have
[
−a2

n+1

n∑
i=1

(u−)ii

a2
i

+
n∑

i=1

(u−)ii

]∣∣∣∣∣
Pj

= 0. (4.7)
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Without loss of generality, assume that

an+1 = min {a1, a2, · · · , an, an+1} .

Since (u−ij) is positive definite on M−, we have (u−)ii > 0 (i = 1, 2, · · · , n), then (4.7) shows
that [

n∑
i=1

(1− a2
n+1

a2
i

)(u−)ii

]∣∣∣∣∣
Pj

= 0,

then

1− a2
n+1

a2
i

= 0 ⇒ ai = an+1 (i = 1, 2, · · · , n). (4.8)

Using (4.8) in (4.6), we obtain
an+1 = ap0

n+1.

Thus {
p0 = 1,

ai = an+1,
or

{
p0 6= 1,

ai = an+1 = 1
(i = 1, 2, · · · , n).

Hence we obtain the following results: M is a unit sphere for all p0 ∈ R \ {1}, and M is an
arbitrary sphere when p0 = 1.

4.2 Proof of Theorem 1.2 for 1 < k < n

It is complicated to compute the Hessian matrix ((u−)ij) for the intermediate cases

σk(hij + hδij) = Ck
nhp0 on Sn, k ∈ {2, 3, · · · , n− 1}. (4.9)

According to the above discussion, we can pick some special points on the boundary first,
then calculate the Hessian matrix at these special points, and use equation (4.9) to obtain the
conclusion finally. In this part, we need to prove thatM is a unit sphere for any p0 ∈ R\{k}.

Proof For the lower semi-surface M−, at point Pn+1 = (0, 0, · · · , 0,−an+1), according
to (3.6), (3.7), we have

Du− = 0, u−ij =
an+1

a2
i

δij (i, j = 1, 2, · · · , n),

then (
(u−)ij

)
= diag (

a2
1

an+1

,
a2

2

an+1

, · · · ,
a2

n

an+1

).

Thus

σk(hij + hδij)|Pn+1
= σk

(
diag

(
a2

1

an+1

,
a2

2

an+1

, · · · ,
a2

n

an+1

))

= a−k
n+1σk(a2

1, a
2
2, · · · , a2

n).

Using (4.9), we have
σk(a2

1, a
2
2, · · · , a2

n) = Ck
nap0+k

n+1 . (4.10)
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For i = 1, 2, · · · , n, fixed, at point Pi = (0, · · · , 0,
√

2
2

ai, 0, · · · , 0,−
√

2
2

an+1), we have

Du− = (0, · · · , 0,
an+1

ai

, 0, · · · , 0),

u−ii = 2
√

2
an+1

a2
i

, u−mm =
√

2
an+1

a2
m

(m = 1, · · · , i− 1, i + 1, · · · , n),

u−mj = 0 (m, j = 1, 2, · · · , n, m 6= j).

Then

(
(u−)ij

)
=

1√
2
diag

(
a2

1

an+1

, · · · ,
a2

i−1

an+1

,
a2

i

2an+1

,
a2

i+1

an+1

, · · · ,
a2

n

an+1

)
,

(δij + u−i u−j ) = diag (1, · · · , 1, 1 +
a2

n+1

a2
i

, 1, · · · , 1).

Hence

σk(hij + hδij)|Pi
=

(a2
i + a2

n+1)
k
2

2 k
2 ak

i a
k
n+1

σk(a2
1, · · · , a2

i−1,
a2

i + a2
n+1

2
, a2

i+1, · · · , a2
n).

Using (4.9), we have

σk(a2
1, · · · , a2

i−1,
a2

i + a2
n+1

2
, a2

i+1, · · · , a2
n) = Ck

n

2
p0+k

2 ap0+k
i ap0+k

n+1

(a2
i + a2

n+1)
p0+k

2

. (4.11)

For k ∈ {2, 3, · · · , n− 1}, denote

Σ1 = σk−1(a2
1, · · · , a2

i−1, a
2
i+1, · · · , a2

n) > 0,

Σ2 = σk(a2
1, · · · , a2

i−1, a
2
i+1, · · · , a2

n) > 0,

then

a2
i Σ1 + Σ2 = Ck

nap0+k
n+1 , (4.12)

a2
i + a2

n+1

2
Σ1 + Σ2 = Ck

n

2
p0+k

2 ap0+k
i ap0+k

n+1

(a2
i + a2

n+1)
p0+k

2

. (4.13)

Next we prove ai = an+1.
Case 1 p0 + k > 0. Divided (4.13) by (4.12), we have

a2
i +a2

n+1

2
+ Σ2

Σ1

a2
i + Σ2

Σ1

=
2

p0+k
2 ap0+k

i

(a2
i + a2

n+1)
p0+k

2

. (4.14)

If ai > an+1, then right hand side of (4.14) is

2
p0+k

2 ap0+k
i

(a2
i + a2

n+1)
p0+k

2

> 2
p0+k

2 ap0+k
i

(2a2
i )

p0+k
2

= 1,
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while left hand side of (4.14) is

a2
i +a2

n+1

2
+ Σ2

Σ1

a2
i + Σ2

Σ1

6
a2

i + Σ2
Σ1

a2
i + Σ2

Σ1

= 1,

then
a2

i +a2
n+1

2
+ Σ2

Σ1

a2
i + Σ2

Σ1

=
2

p0+k
2 ap0+k

i

(a2
i + a2

n+1)
p0+k

2

= 1 ⇒ ai = an+1.

Similarly, if ai 6 an+1, we also have ai = an+1.
Case 2 p0 + k < 0. Subtracting (4.13) from (4.12), we have

a2
i − a2

n+1

2
Σ1 = Ck

nap0+k
n+1

(
1− 2

p0+k
2 ap0+k

i

(a2
i + a2

n+1)
p0+k

2

)
. (4.15)

Then we prove ai = an+1 by contradiction. If ai 6= an+1, then Σ1 can be represented as

Σ1 =
2Ck

nap0+k
n+1

a2
i − a2

n+1

(
1− 2

p0+k
2 ap0+k

i

(a2
i + a2

n+1)
p0+k

2

)
. (4.16)

Note that Σ1 = σk−1(a2
1, · · · , a2

i−1, a
2
i+1, · · · , a2

n) is independent of a2
i , thus

0 =
∂Σ1

∂(a2
i )

=− 2Ck
nap0+k

n+1

(a2
i − a2

n+1)2

(
1− 2

p0+k
2 ap0+k

i

(a2
i + a2

n+1)
p0+k

2

)

− 2Ck
nap0+k

n+1

a2
i − a2

n+1

p0 + k

2

(
2a2

i

a2
i + a2

n+1

) p0+k−2
2 2a2

n+1

(a2
i + a2

n+1)2

=− 2Ck
nap0+k

n+1

(a2
i − a2

n+1)2

(
1− 2

p0+k
2 ap0+k

i

(a2
i + a2

n+1)
p0+k

2

)
− (p0 + k)2

p0+k
2 Ck

nap0+k+2
n+1 ap0+k−2

i

(a2
i − a2

n+1)(a2
i + a2

n+1)
p0+k+2

2

.

The above equality is equivalent to

(a2
i − a2

n+1)
(
2

p0+k
2 ap0+k

i − (a2
i + a2

n+1)
p0+k

2

)
=

(p0 + k)2
p0+k−2

2 (a2
i − a2

n+1)
2a2

n+1a
p0+k−2
i

a2
i + a2

n+1

.

(4.17)
The right hand side of (4.17) is positive. If ai > an+1, then

2a2
i > a2

i + a2
n+1 ⇒ (2a2

i )
p0+k

2 < (a2
i + a2

n+1)
p0+k

2 .

If ai < an+1,
(2a2

i )
p0+k

2 > (a2
i + a2

n+1)
p0+k

2 ,

then the left hand side of (4.17) is negative. This is a contradiction.
Hence ai = an+1 (i = 1, 2, · · · , n).
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Using (4.10), we have

Ck
na2k

n+1 = Ck
nap0+k

n+1 ⇒ p0 = k or

{
p0 6= k,

an+1 = 1.

Thus we have {
p0 = k,

ai = an+1

or

{
p0 6= k,

ai = an+1 = 1
(i = 1, 2, · · · , n).

Now we have the following results: for any p0 ∈ R \ {k}, M is a unit sphere, and if
p0 = k, M is an arbitrary sphere.

Now we complete the proof of Theorem 1.2.
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Lp-Minkowski问题椭球解的唯一性

李思源

(伍伦贡大学工程与信息科学学院数学与应用统计系, 新南威尔士伍伦贡 2522, 澳大利亚)

摘要: 本文研究了 Lp-Minkowski问题 (解是中心在原点的椭球的假定下). 利用支撑函数与高斯曲率

的关系, 获得了当 p < 1时椭球解的唯一性, 推广了 Lp-Minkowski问题以及 Lp-和的 Christoffel-Minkowski

问题的唯一性结果.
关键词: 唯一性; Minkowski问题; Monge-Ampère方程; k-Hessian方程
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