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Abstract: In this paper, we study the delayed modified Leslie-Gower predator-prey model

with Holling-type III schemes. By applying the coincidence degree theorem and the comparison
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obtained, which extend and complement the previously known result. Furthermore, examples show

that the obtained criteria are easily verifiable.
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1 Introduction

Leslie [1] introduced the famous Leslie predator-prey system

ẋ(t) = x(t)
[
a− bx(t)

]− p(x)y(t),
ẏ(t) = y(t)

[
e− f y(t)

x(t)

]
,

where x(t), y(t) stand for the population (the density) of the prey and the predator at time
t, respectively, and p(x) is the so-called predator functional response to prey. The term f y

x

of the above equation is called Leslie-Gower term, which measures the loss in the predator
population due to rarity (per capita y/x) of its favorite food. In case of severe scarcity, y

can switch over to other populations but its growth will be limited by the fact that its most
favorite food x is not available in abundance. This situation can be taken care of by adding
a positive constant k to the denominator, see [2–7] and references cited therein.

It is well known that time delays play important roles in many biological dynamical
systems. In general, delay differential equations exhibit much more complicated dynamics
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than ordinary differential equations since a time delay could cause a stable equilibrium
to become unstable and cause the populations to fluctuate (see [5–7]). Furthermore, the
existence of periodic solutions may be changed. Naturally, more realistic and interesting
models of population interactions should take into account both the seasonality of changing
environment and the effects of time delay.

In recent years, Leslie-Gower model with Holling-type II was extensively studied by
many scholars, many excellent results were obtained concerned with the persistent property
and positive periodic solution of the system (see [18–23] and the reference therein). Because
Holling-type III can describe the relationship between the predator and prey clearly. So
Zhang et al. [7] studied the following system





x′(t) = x(t)
[
r1 − b1x(t− τ1)− a1x(t)y(t)

x2(t)+k1

]
,

y′(t) = y(t)
[
r2 − a2y(t−τ2)

x(t−τ2)+k2

]
,

(1.1)

where x(t) and y(t) represent the densities of the prey and predator population, respectively;
τi ≥ 0; r1, b1, a1, k1, r2, a2, and k2 are positive values. Some sufficient conditions for the
local stability of the positive equilibrium and the existence of periodic solutions via Hopf
bifurcation with respect to the two delays are obtained; however, Zhang did not give sufficient
conditions for the existence of positive periodic solutions and permanence. Moreover, We
know that coincidence degree theory is an important method to investigate the positive
periodic solutions, and some excellent results were obtained concerned with the existence of
periodic solutions of the predator-prey system (see [8–14] and the references therein).

Stimulated by the above reasons, in this paper, we consider the following system:




x′(t) = x(t)
[
r1(t)− b(t)x(t− τ1(t))− a1(t)x(t)y(t−σ(t))

x2(t)+k2
1(t)

]
,

y′(t) = y(t)
[
r2(t)− a2(t)y(t−τ2(t))

x(t−τ2(t))+k2(t)

]
,

(1.2)

where x(t) and y(t) represent the densities of the prey and predator population, respectively;
b(t), a1(t), a2(t), k1(t), k2(t), σ(t), τi(t), i = 1, 2 are all positive periodic continuous functions
with period ω > 0; ri(t) ∈ C(R, R), i = 1, 2 are ω-periodic continuous functions. In addition,

we request that
∫ ω

0

ridt > 0, i = 1, 2, and the growth functions ri(t), i = 1, 2 are not

necessarily positive, because the environment fluctuates randomly. Obviously, where k2
1, k2

are positive constants, system (1.1) is the special case of (1.2).
To our knowledge, no such work has been done on the existence of positive periodic

solutions and permanence of (1.2). Our aim in this paper is, by using the coincidence degree
theory developed by Gaines and Mawhin [15], to derive a set of easily verifiable sufficient
conditions for the existence of positive solutions. Then by utilizing the comparison, we
obtain sufficient conditions for permanence of system (1.2).
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2 Preliminaries

Let X, Z be real Banach spaces, L : DomL ⊂ X → Z be a linear mapping, and
N : X → Z be a continuous mapping. The mapping L is said to be a Fredholm mapping of
index zero if dim Ker L = codim ImL < +∞ and Im L is closed in Z. If L is a Fredholm
mapping of index zero, then there exist continuous projectors P : X → X and Q : Z → Z

such that Im P = Ker L, Ker Q = ImL = Im(I −Q). It follows that the restriction LP of
L to DomL ∩KerP : (I − P )X → ImL is invertible. Denote the inverse of LP by KP . The
mapping N is said to be L-compact on Ω if Ω is an open bounded subset of X, QN(Ω) is
bounded and KP (I − Q)N : Ω → X is compact. Since ImQ is isomorphic to KerL, there
exist an isomorphic J : ImL → KerL.

Lemma 2.1 (Continuation theorem [15]) Let Ω ⊂ X be an open bounded set, L be a
Fredholm mapping of index zero and N be L-compact on Ω. Suppose that

(i) for each λ ∈ (0, 1), x ∈ ∂Ω ∩DomL,Lx 6= λNx;
(ii) for each x ∈ ∂Ω ∩KerL,QNx 6= 0;
(iii) deg{JQN, Ω ∩KerL, 0} 6= 0.

Then Lx = Nx has at least one solution in Ω ∩DomL.
Lemma 2.2 [17] Suppose that g ∈ PC1

ω = {x : x ∈ C1(R, R), x(t + ω) ≡ x(t)}, then

0 ≤ max
s∈[0,ω]

g(s)− min
s∈[0,ω]

g(s) ≤ 1
2

∫ ω

0

|g′(s)|ds.

3 Existence of Periodic Solutions

For convenience, we denote

f̄ =
1
ω

∫ ω

0

f(t)dt, fL = min
t∈[0,ω]

f(t), fU = max
t∈[0,ω]

f(t),

where f(t) is a continuous ω-periodic function.
Theorem 3.1 Assume r1 > ( a1

2k1
)eH2 hold, where H2 is defined in the proof, then

system (1.2) has at least one positive ω-periodic solution.
Proof Let x(t) = ex1(t), y(t) = ex2(t), then from (1.2), we have

{
x′1(t) = r1(t)− b(t) exp{x1(t− τ1(t))} − a1(t) exp{x1(t)+x2(t−σ(t))}

exp{2x1(t)}+k2
1(t)

,

x′2(t) = r2(t)− a2(t) exp{x2(t−τ2(t))}
exp{x1(t−τ2(t))}+k2(t)

.
(3.1)

It is easy to see that if system (3.1) has one ω-periodic solution (x∗1(t), x
∗
2(t))

T , then
(x∗(t), y∗(t))T = (ex∗1(t), ex∗2(t))T is a positive ω-periodic solution of (1.2). Therefore, we only
need to prove that (3.1) has at least one ω-periodic solution.

Take X = Z = {x(t) = (x1(t), x2(t))T ∈ C(R, R2) : x(t + ω) = x(t)} and denote

‖x‖ = max
t∈[0,ω]

{|x1(t)|+ |x2(t)|},
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then X and Z are Banach spaces when they are endowed with the norms ‖ · ‖.
We define operators L,P and Q as follows, respectively,

L : DomL ∩X → Z, Lx = x′; P (x) =
1
ω

∫ ω

0

x(t)dt, x ∈ X,

Q(x) =
1
ω

∫ ω

0

z(t)dt, z ∈ Z,

where DomL = {x ∈ X : x(t) ∈ C1(R, R2)}, and define N : X → Z by the form

Nx =

[
r1(t)− b(t) exp{x1(t− τ1(t))} − a1(t) exp{x1(t)+x2(t−σ(t))}

exp{2x1(t)}+k2
1(t)

r2(t)− a2(t) exp{x2(t−τ2(t))}
exp{x1(t−τ2(t))}+k2(t)

]
.

Evidently, KerL = R2, ImL = {z|z ∈ Z,

∫ ω

0

z(t)dt = 0} is closed in Z. dim KerL =

codim ImL = 2, and P , Q are continuous projectors such that

ImP = KerL, KerQ = ImL = Im(I −Q),

thus L is a Fredholm mapping of index zero. Furthermore, the generalized inverse (to L)
KP : ImL → KerP ∩DomL has the form

KP (z) =
∫ t

0

z(s)ds− 1
ω

∫ ω

0

∫ t

0

z(s)dsdt.

Thus

QNx =




1
ω

∫ ω

0

[
r1(t)− b(t) exp{x1(t− τ1(t))} − a1(t) exp{x1(t) + x2(t− σ(t))}

exp{2x1(t)}+ k2
1(t)

]
dt

1
ω

∫ ω

0

[
r2(t)− a2(t) exp{x2(t− τ2(t))}

exp{x1(t− τ2(t))}+ k2(t)
]
dt




and

KP (I −Q)Nx

=




∫ t

0

[
r1(s)− b(s) exp{x1(s− τ1(s))} − a1(s) exp{x1(s) + x2(s− σ(s))}

exp{2x1(s)}+ k2
1(s)

]
ds

∫ t

0

[
r2(s)− a2(s) exp{x2(s− τ2(s))}

exp{x1(s− τ2(s))}+ k2(s)
]
ds




−




1
ω

∫ ω

0

∫ t

0

[r1(s)− b(s) exp{x1(s− τ1(s))} − a1(s) exp{x1(s) + x2(s− σ(s))}
exp{2x1(s)}+ k2

1(s)
]
dsdt

1
ω

∫ ω

0

∫ t

0

[
r2(s)− a2(s) exp{x2(s− τ2(s))}

exp{x1(s− τ2(s))}+ k2(s)
]
dsdt




−




( t
ω
− 1

2
)
∫ ω

0

[
r1(s)− b(s) exp{x1(s− τ1(s))} − a1(s) exp{x1(s) + x2(s− σ(s))}

exp{2x1(s)}+ k2
1(s)

]
ds

( t
ω
− 1

2
)
∫ ω

0

[
r2(s)− a2(s) exp{x2(s− τ2(s))}

exp{x1(s− τ2(s))}+ k2(s)
]
ds


 .
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Obviously, QN and KP (I − Q)N are continuous. Moreover, QN(Ω) Kp(I − Q)N(Ω) are
relatively compact for any open bounded set Ω ⊂ X. Hence, N is L-compact on Ω, here Ω
is any open bounded set in X.

Corresponding to the operator equation Lx = λNz, λ ∈ (0, 1), we have

x′1(t) = λ

[
r1(t)− b(t) exp{x1(t− τ1(t))} − a1(t) exp{x1(t) + x2(t− σ(t))}

exp{2x1(t)}+ k2
1(t)

]
,

x′2(t) = λ

[
r2(t)− a2(t) exp{x2(t− τ2(t))}

exp{x1(t− τ2(t))}+ k2(t)

]
. (3.2)

Suppose that x(t) = (x1(t), x2(t))T ∈ X is an ω-periodic solution of system (3.2) for a certain
λ ∈ (0, 1). By integrating (3.2) over the interval [0, ω], we obtain

∫ ω

0

[
r1(t)− b(t) exp{x1(t− τ1(t))} − a1(t) exp{x1(t) + x2(t− σ(t))}

exp{2x1(t)}+ k2
1(t)

]
dt = 0, (3.3)

∫ ω

0

[
r2(t)− a2(t) exp{x2(t− τ2(t))}

exp{x1(t− τ2(t))}+ k2(t)

]
dt = 0. (3.4)

From (3.2)–(3.4), we obtain
∫ ω

0

|x′1(t)|dt = λ

∫ ω

0

|r1(t)− b(t) exp{x1(t− τ1(t))} − a1(t) exp{x1(t) + x2(t− σ(t))}
exp{2x1(t)}+ k2

1(t)
|dt

≤ (|r1|+ r̄1)ω (3.5)

and
∫ ω

0

|x′2(t)|dt ≤
∫ ω

0

|r2(t)− a2(t) exp{x2(t− τ2(t))}
exp{x1(t− τ2(t))}+ k2(t)

|dt ≤ (|r2|+ r̄2)ω. (3.6)

Noting that x = (x1(t), x2(t))T ∈ X. Then there exist ξi, ηi ∈ [0, ω] such that

xi(ξi) = sup
t∈[0,ω]

xi(t), xi(ηi) = inf
t∈[0,ω]

xi(t), i = 1, 2. (3.7)

It follows from (3.3) and (3.7) that

ωr1 ≥
∫ ω

0

b(t) exp{x1(t− τ1)}dt ≥ ωbex1(η1),

which implies that

x1(η1) ≤ ln
r1

b
. (3.8)

It follows from (3.5), (3.8) and Lemma 2.2 that, for any t ∈ [0, ω],

x1(t) ≤ x1(η1) +
1
2

∫ ω

0

|x′1(t)|dt ≤ ln
r1

b
+

1
2
ω(|r1|+ r̄1) , H1. (3.9)
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From (3.7), (3.9) and (3.4) that

ωa2e
x2(η2)

eH1 + kU
2

≤
∫ ω

0

a2e
x2(t)

ex1(t) + k2(t)
dt = ωr2,

i.e.,

x2(η2) ≤ ln
r2(eH1 + kU

2 )
a2

,

which together with (3.6) and Lemma 2.2 imply

x2(t) ≤ x2(η2) +
1
2

∫ ω

0

|x′2(t)|dt ≤ ln
r2(eH1 + kU

2 )
a2

+
1
2
ω(|r2|+ r2) , H2. (3.10)

In addition, from (3.3) and (3.7), we get

ωbex1(ξ1) ≥ ωr1 −
∫ ω

0

a1(t) exp{x1(t) + x2(t− σ(t))}
exp{2x1(t)}+ k2

1(t)

≥ ωr1 − ω(
a1

2k1

)eH2 ,

which implies that

x1(ξ1) ≥ ln
r1 − ( a1

2k1
)eH2

b̄
,

then together with (3.5) and Lemma 2.2 imply

x1(t) ≥ x1(ξ1)− 1
2

∫ ω

0

|x′1(t)|dt ≥ ln
r1 − ( a1

2k1
)eH2

b̄
− 1

2
ω(|r1|+ r̄1) , H3. (3.11)

From (3.9), (3.7) and (3.4), we have

ωā2e
x2(ξ2)

eH3 + kL
2

≥
∫ ω

0

a2(t) exp{x2(t)}
exp{x1(t)}+ k2(t)

dt = ωr̄2,

i.e.,

x2(ξ2) ≥ ln
r̄2(exp{H3}+ kL

2 )
ā2

,

which, together with (3.6) and Lemma 2.2 imply

x2(t) ≥ x2(ξ2)− 1
2

∫ ω

0

|x′2(t)|dt ≥ ln
r̄2(exp{H3}+ kL

2 )
ā2

− 1
2
ω(|r2|+ r2) , H4. (3.12)

It follows from (3.9)–(3.12) that

‖x‖ ≤ |H1|+ |H2|+ |H3|+ |H4| , H0. (3.13)

Obviously, H0 is independent of λ.
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Considering the following algebraic equations





r̄1 − b̄ exp{x1} − 1
ω

∫ ω

0

a1(t) exp{x1 + x2}
exp{2x1}+ k2(t)

dt = 0,

r̄2 − 1
ω

∫ ω

0

a2(t) exp{x2}
exp{x1}+ k2(t)

= 0.
(3.14)

If system (3.14) has a solution or a number of solutions x∗ = (x∗1, x
∗
2)

T , then similar argu-
ments as those of (3.9)–(3.12) show that

x∗1 ≤ ln
r̄1

b̄
≤ H1, x∗2 ≤ ln

r̄2(eH1 + kU
2 )

ā2

≤ H2,

x∗1 ≥ ln
r̄1 − ( a1

2k1
)eH2

b̄
≥ H3, x∗2 ≥ ln

r̄2(eH3 + kL
2 )

ā2

≥ H4.

Hence

‖x∗‖ = ‖(x∗1, x∗2)T‖ = max{|x∗1|+ |x∗2|} < H0. (3.15)

Set Ω = {x = (x1, x2)T ∈ X : ‖x‖ < H0}. Then, Lx 6= λNx for x ∈ ∂Ω and λ ∈ (0, 1),
that is Ω satisfies condition (i) in Lemma 2.1.

Suppose x ∈ ∂Ω ∩ KerL with ‖x‖ = H0. If (3.14) has at least one solution, we obtain
from (3.15) that

QNx =




r̄1 − b̄ exp{x1} − 1
ω

∫ ω

0

a1(t) exp{x1 + x2}
exp{2x1}+ k2

1(t)
dt

r̄2 − 1
ω

∫ ω

0

a2(t) exp{x2}
exp{x1}+ k2(t)

dt


 6= 0.

If system (3.14) does not have a solution, then

QNx =




r̄1 − b̄ exp{x1} − 1
ω

∫ ω

0

a1(t) exp{x1 + x2}
exp{2x1}+ k2

1(t)
dt

r̄2 − 1
ω

∫ ω

0

a2(t) exp{x2}
exp{x1}+ k2(t)

dt


 6= 0.

Thus condition (ii) in Lemma 2.1 is satisfied.
Finally in order to prove (iii) in Lemma 2.1 we define homomorphism mapping

J : ImQ → KerL, x → x

and

H : DomX × [0, 1],

H(x1, x2, µ) =

[
r̄1 − b̄ex1 − ( a1

2k1
)eH2

r̄2 − ā2ex2

eH3+kL
2

]
+ µ




( a1
2k1

)eH2 − 1
ω

∫ ω

0

a1e
x1+x2

e2x1 + k2
1(t)

dt

ā2ex2

eH3+kL
2
− 1

ω

∫ ω

0

a2(t) exp{x2}
exp{x1}+ k2(t)

dt


 ,
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where µ ∈ [0, 1] is a parameter. We will show that if x = (x1, x2)T ∈ ∂Ω∩KerL, x = (x1, x2)T

is a constant vector in R2 with max{|x1|, |x2|} = H0, then H(x1, x2, µ) 6= 0. Otherwise,
suppose that x = (x1, x2)T ∈ R2 with max{|x1|, |x2|} = H0 satisfying H(x1, x2, µ) = 0, that
is,

r̄1 − b̄ex1 − (
a1

2k1

)eH2 + µ[(
a1

2k1

)eH2 − 1
ω

∫ ω

0

a1e
x1+x2

e2x1 + k2
1(t)

dt] = 0,

r̄2 − ā2e
x2

eH3 + kL
2

+ µ[
ā2e

x2

eH3 + kL
2

− 1
ω

∫ ω

0

a2(t) exp{x2}
exp{x1}+ k2(t)

dt] = 0.

Similar argument as those of (3.14), (3.15) show that

‖x‖ = max{|x1|+ |x2|} ≤ H0,

which is a contradiction.
Hence by a direct calculation, we have

deg{JQN,Ω ∩KerL, 0} = deg{H(x1, x2, 1),Ω ∩KerL, 0}
= deg{H(x1, x2, 0),Ω ∩KerL, 0}
6= 0. (3.16)

So (iii) in Lemma 2.1 is satisfied. By applying Lemma 2.1, we conclude that system (1.2)
has at least one positive ω-periodic solution. The proof is completed.

Remark 3.1 It is notable that our result only need b(t), a1(t), a2(t), k1(t), k2(t),
τi(t) i = 1, 2, σ(t) are all positive ω-periodic continuous functions; but ri(t) ∈ C(R, R), i =

1, 2 are ω-periodic continuous functions,
∫ ω

0

ri(t)dt > 0, i = 1, 2, and the growth functions

ri(t), i = 1, 2 are not necessarily positive. It is reasonable on the biology. In addition, one
can easily find that time delays τi(t), i = 1, 2, σ(t) do not necessarily remain nonnegative.
Moreover, Theorem 3.1 will remain valid for systems (1.2) if the delayed terms are replaced
by the term with discrete time delays, state-dependent delays, or deviating argument. Hence,
time delays of any type or the deviating argument have no effect on the existence of positive
solutions.

If the time delayed term σ(t) vanishes, τ1(t) ≡ τ1, τ2 ≡ τ2 and k2
1(t) ≡ k1,k2(t) ≡ k2,

then system (1.2) is reduced to system (1.1) which was studied by Zhang et al. in [7]. Thus
from Theorem 3.1, we have the following result.

Corollary 3.1 Assume r1 > a1
2k1

eH∗
2 hold, where

H∗
2 = ln

r∗2(e
H∗

1 + k2)
a2

+
1
2
ω(|r2|+ r2), H∗

1 = ln
r1

b
+

1
2
ω(|r1|+ r̄1).

Then system (1.1) has at least one positive ω-periodic solution.
Remark 3.2 In [7], Zhang et al. suppose ri(t), i = 1, 2 are positive. From Corollary 3.1,

it is easy to known that ri(t) ∈ C(R, R),
∫ ω

0

ri(t)dt > 0, so ri(t), i = 1, 2 are not necessarily

positive. We improve the result of [7].
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4 Permanence

Definition 4.1 System (1.2) is said to be permanent if there exist positive constants T ,
Mi, mi, i = 1, 2, such that any solution (x(t), y(t))T of (1.2) satisfies m1 ≤ x(t) ≤ M1,m2 ≤
y(t) ≤ M2 for t ≥ T.

Lemma 4.1 [16] If a > 0, b > 0, τ(t) ≥ 0, then
(1) if y′(t) ≤ y(t)[b − ay(t − τ(t))], then there exists a constant T > 0 such that

y(t) ≤ b
a

exp{bτU} for t > T ;
(2) if y′(t) ≥ y(t)[b − ay(t − τ(t))], then there exists a constant T and M such that

y(t) < M for t > T, then for any small constant ε > 0, there exists a constant T ∗ > T such
that y(t) ≥ min{ b

a
exp{(b− aM)τU}, b

a
− ε} for t ≥ T ∗.

Lemma 4.2 There exists positive constant T0 such that the solution (x(t), y(t)) of (1.2)
satisfies

0 < x(t) ≤ M1 and 0 < y(t) ≤ M2 for t ≥ T0,

where

M1 =
rU
1

bL
1

exp{rU
1 τU

1 }, M2 =
(M1 + kU

2 )rU
2

aL
2

exp{rU
2 τU

2 }.

Proof If follows from system (1.2) that

x′(t) ≤ x(t)[rU
1 − bLx(t− τ1(t))].

From Lemma 4.1 yield that there exists a positive constant T1 such that x(t) ≤ M1 for
t ≥ T1. Then we get

y′(t) ≤ y(t)[rU
2 −

aL
2 y(t− τ2(t))
M1 + kU

2

] for t ≥ T1.

So there exists a positive T0 ≥ T1 such that y(t) ≤ M2 for t ≥ T0.

Lemma 4.3 If ∆1 > 0 then there exists a positive constant T ∗ such that the solution
(x(t), y(t)) of system (1.2) satisfies

x(t) ≥ m1 and y(t) ≥ m2 for t ≥ T ∗,

where ε is a small enough positive constant and

∆1 =
[
r1 − a1M2

2k1

]L
,m1 = min

{
∆1

bU
exp

{
(∆1 − bUM1)τU

1

}
,
∆1

bU
− ε

}
,

m2 = min
{

rL
2 kL

2

aU
2

exp
{
(rL

2 −
aU

2 M2

kL
2

)τU
2

}
,
rL
2 kL

2

aU
2

− ε

}
.

Proof If follows from Lemma 4.2 and system (1.2) that for t ≥ T0,
{

x′(t) ≥ x(t)[∆1 − bUx(t− τ1(t))],

y′(t) ≥ y(t)[rL
2 − aU

2 y(t−τ2(t))

kL
2

],
(4.1)
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which, together with Lemma 4.1 and Lemma 4.2, implies that there exists a positive constant
T ∗ ≥ T0 such that x(t) ≥ m1 and y(t) ≥ m2 for t ≥ T ∗.

From Lemma 4.2 and Lemma 4.3, we can get the following result on the permanence of
system (1.1).

Theorem 4.1 If ∆1 > 0, then system (1.2) is permanent.
Similar to the proofs of Lemma 4.2 and Lemma 4.3, we have
Corollary 4.1 If ∆1 > 0, then system (1.1) is permanent.
Example 1 Consider the following equation





x′(t) = x(t)
[
r1(t)− b(t)x(t− τ1)− a1(t)x(t)y(t)

x2(t)+k2
1

]
,

y′(t) = y(t)
[
r2(t)− a2(t)y(t−τ2)

x(t−τ2)+k2

]
,

(4.2)

where r1(t) = 3 + 2 sin(12πt), b(t) = 1 − 0.1 sin(12πt), a1(t) = 0.5 + 0.1 sin(12πt), k2
1 = 9,

r2(t) = 0.8 + 0.2 sin(12πt), τ1 = 1
10

, τ2 = 0, a2(t) = 0.3− 0.1 sin(12πt), and k2 = 1, It is easy
to calculation, and all the conditions in Theorems 3.1, 3.2 and 4.1 hold. So we know system
(4.3) has at least one positive periodic solution and permanent (see Figures 1, 2, we take
x(0) = 1, y(0) = 5 and x(0)) = 4, y(0) = 5).
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Example 2 If r1(t) = 8+2 sin(2πt), b(t) = 2− 0.1 sin(2πt), a1(t) = 0.5+0.1 sin(2πt),
k2

1(t) = 9, r2(t) = 0.8+0.2 sin(2πt), τ1(t) = 1, τ2(t) = 0.5, σ(t) = 0, a2(t) = 0.3−0.1 sin(2πt),
and k2(t) = 1, It is easy to calculation, and all the conditions in Theorems 3.1, 3.2 and 4.1
hold. So we know system (4.2) has at least one positive periodic solution and permanent
(see Figure 3).
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一类具有修正Leslie-Gower和Holling-type III型的时滞食饵捕食

模型的周期解与持久性

王利波,徐瑰瑰

(凯里学院数学科学学院, 贵州凯里 556011)

摘要: 本文研究了一类具有修正的Leslie-Gower和Holling-type III型时滞食饵捕食模型. 运用重合度

理论和比较定理, 得到系统正周期解和持久性的充分条件. 结论拓展和完善了已有的结论. 最后, 从例子可以

看到结论是容易验证的.
关键词: Holling III型反应函数; 时滞; 正周期解; 持久性; 重合度
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