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Abstract: In this paper, we study the delayed modified Leslie-Gower predator-prey model
with Holling-type III schemes. By applying the coincidence degree theorem and the comparison
theorem, sufficient conditions for the existence of positive periodic solutions and permanence are
obtained, which extend and complement the previously known result. Furthermore, examples show
that the obtained criteria are easily verifiable.
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1 Introduction

Leslie [1] introduced the famous Leslie predator-prey system

where x(t), y(t) stand for the population (the density) of the prey and the predator at time
t, respectively, and p(z) is the so-called predator functional response to prey. The term f¥
of the above equation is called Leslie-Gower term, which measures the loss in the predator
population due to rarity (per capita y/x) of its favorite food. In case of severe scarcity, y
can switch over to other populations but its growth will be limited by the fact that its most
favorite food x is not available in abundance. This situation can be taken care of by adding
a positive constant k to the denominator, see [2-7] and references cited therein.

It is well known that time delays play important roles in many biological dynamical

systems. In general, delay differential equations exhibit much more complicated dynamics

* Received date: 2016-05-16 Accepted date: 2016-10-26
Foundation item: Supported by the planning project in 2014 of Kaili University (Z1406); 2015 of
Kaili University (Z1506).
Biography: Wang Libo (1985-), male, born at Anyang, Henan, lecturer, major in differential

equations.



242 Journal of Mathematics Vol. 38

than ordinary differential equations since a time delay could cause a stable equilibrium
to become unstable and cause the populations to fluctuate (see [5-7]). Furthermore, the
existence of periodic solutions may be changed. Naturally, more realistic and interesting
models of population interactions should take into account both the seasonality of changing
environment and the effects of time delay.

In recent years, Leslie-Gower model with Holling-type II was extensively studied by
many scholars, many excellent results were obtained concerned with the persistent property
and positive periodic solution of the system (see [18-23] and the reference therein). Because
Holling-type III can describe the relationship between the predator and prey clearly. So
Zhang et al. [7] studied the following system

2'(t) =x(t) |r1 — bz(t — 1) — m] ,

} (1.1)

() = ylt) [ra — 225
where z(t) and y(¢) represent the densities of the prey and predator population, respectively;
7 > 0; r1, by, a1, ki, T2, as, and ko are positive values. Some sufficient conditions for the
local stability of the positive equilibrium and the existence of periodic solutions via Hopf
bifurcation with respect to the two delays are obtained; however, Zhang did not give sufficient
conditions for the existence of positive periodic solutions and permanence. Moreover, We
know that coincidence degree theory is an important method to investigate the positive
periodic solutions, and some excellent results were obtained concerned with the existence of
periodic solutions of the predator-prey system (see [8-14] and the references therein).

Stimulated by the above reasons, in this paper, we consider the following system:

/(1) = 2(t) |11 (8) = b(t)a(t — ma(r)) — Ltz
(1.2)
Y1) = y() | ra(t) — 22tesmi) |
where z(t) and y(t) represent the densities of the prey and predator population, respectively;
b(t), ai(t), as(t), k1(t), ka(t), o(t), (t), i = 1,2 are all positive periodic continuous functions
with period w > 0; ’I“Z}(t) € C(R,R), i = 1,2 are w-periodic continuous functions. In addition,

we request that / ridt > 0,i = 1,2, and the growth functions r;(¢),i = 1,2 are not

necessarily positive?, because the environment fluctuates randomly. Obviously, where k%, k,
are positive constants, system (1.1) is the special case of (1.2).

To our knowledge, no such work has been done on the existence of positive periodic
solutions and permanence of (1.2). Our aim in this paper is, by using the coincidence degree
theory developed by Gaines and Mawhin [15], to derive a set of easily verifiable sufficient
conditions for the existence of positive solutions. Then by utilizing the comparison, we

obtain sufficient conditions for permanence of system (1.2).
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2 Preliminaries

Let X, Z be real Banach spaces, L : DomL C X — Z be a linear mapping, and
N : X — Z be a continuous mapping. The mapping L is said to be a Fredholm mapping of
index zero if dim Ker L = codim ImL < 400 and Im L is closed in Z. If L is a Fredholm
mapping of index zero, then there exist continuous projectors P : X — X and Q : Z — Z
such that Im P = Ker L, Ker @ = ImL = Im(I — Q). It follows that the restriction Lp of
L to DomL NKerP : (I — P)X — ImL is invertible. Denote the inverse of Lp by Kp. The
mapping N is said to be L-compact on € if Q is an open bounded subset of X, QN () is
bounded and Kp(I — Q)N : Q — X is compact. Since ImQ is isomorphic to KerL, there
exist an isomorphic J : ImL — KerL.

Lemma 2.1 (Continuation theorem [15]) Let Q@ C X be an open bounded set, L be a
Fredholm mapping of index zero and N be L-compact on Q. Suppose that

(i) for each A € (0,1),2 € 02N DomL, Lz # ANz;

(ii) for each x € 90 NKerL, QNz # 0;

(iii) deg{JQN,QNKerL,0} # 0.
Then Lz = Nz has at least one solution in @ N DomL.

Lemma 2.2 [17] Suppose that g € PC! = {x: 2 € CY(R,R),z(t + w) = z(t)}, then

1 w
0< — mi <= "(s)|ds.
< maxo(s) — min () < 3 [ lg(o)las

3 Existence of Periodic Solutions

For convenience, we denote

Fol / TFOd F = min £0), fU = max £(2),
0

w te[0,w] tel0,w]

where f(t) is a continuous w-periodic function.

Theorem 3.1 Assume 7; > (;T?l)eH"‘ hold, where H, is defined in the proof, then

system (1.2) has at least one positive w-periodic solution.
Proof Let z(t) = e ™ y(t) = e*2() then from (1.2), we have

ri(t) = b(t) expfas (t — ()} — USRS,
ro(t) — az(t) exp{aa(t—72(t))}
2T axpla (t=ma(0)} +ha (1)

(3.1)

—N—
8 8
BNl
—
~
S—
(I

It is easy to see that if system (3.1) has one w-periodic solution (x3(t),z3(¢))”, then
(2 (t),y*(1))T = (em1®, 2T is a positive w-periodic solution of (1.2). Therefore, we only
need to prove that (3.1) has at least one w-periodic solution.

Take X = Z = {z(t) = (z1(t), 22(t))T € C(R, R?) : (t + w) = z(t)} and denote

]l = max {Jz1 ()] + |z2(8)]},
te[0,w]
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then X and Z are Banach spaces when they are endowed with the norms || - ||.
We define operators L, P and () as follows, respectively,

1 w
L:DomLNX — Z, Lx=21; P(:C):/ z(t)dt, z € X,
w.Jo

Qz) = /Ow ()t =€ 2,

w

where DomL = {z € X : z(t) € C*(R, R?)}, and define N : X — Z by the form

N [ () bt eplen(t = m(0)) - e s

az(t) exp{z2(t—72(t))}
T2<t) exp{z1(t—72(t)) }+ka(t)

w

Evidently, KerL = R? ImL = {z|z € Z,/ z(t)dt = 0} is closed in Z. dim KerL =

0
codim ImZL = 2, and P, Q are continuous projectors such that
ImP =KerL, Ker@Q =ImL=Im(l —@Q),

thus L is a Fredholm mapping of index zero. Furthermore, the generalized inverse (to L)
Kp: ImL — KerP N DomlZL has the form

K()/ ds—// $)dsdt.

Thus
[ a1 (t) exp{z; t)+x2(t—0(t))}
oo [F 10— sl - 2B
1/ (ra(t) — as(t) exp{zz(t — (1))} Jat
“ Jo exp{xz1(t — m2(t))} + ka(t)
and
Kp(I — Q)Nz

t — 0(s) expz1(s — T1(s _ au(s) exp{zi(s) + 2a(s — 0(s))} s
/0 [71(s) = b(s) tp{ 1 ( 1(()))} o eXp{(Qﬁgﬁs)}+k%(s) Jd
az2(S) eXp1Ta2(s — T2(S
/ [TQ(S) exp{x1<3—7'2( ))}+I€2< )]ds

(s) explaa(s — m2(5))}
/ / )~ el — )] + (o

(=3 [ [ = s explos(s = o)) - LD L2l oD,
N PN as(s) exp{wa(s — 1a(s
L =2 0 [T2(S) B exp{zi(s — m2(s))} + k‘g(s)]ds

€ |~




No. 2 Periodic solutions and permanence for a delayed predator-prey model with ... 245

Obviously, QN and Kp(I — Q)N are continuous. Moreover, QN (Q) K,(I — Q)N (Q) are
relatively compact for any open bounded set 2 C X. Hence, N is L-compact on 2, here 2
is any open bounded set in X.

Corresponding to the operator equation Lz = ANz, A € (0,1), we have

ai(t) exp{z1(t) +zo(t — o(t))}
exp{2x(t)} + k3(¢) ’

y(t) = A [rl(t) —b(t) exp{z(t — 11 ())} —

as(t) exp{xa(t — 12(t))}
exp{zi(t — m2(t))} + ko(t) |

zh(t) = )\|:’I“2(t)— (3.2)

Suppose that z(t) = (z1(t), z2(t))T € X is an w-periodic solution of system (3.2) for a certain
A € (0,1). By integrating (3.2) over the interval [0, w], we obtain

[ [0 = s exptonte ey - 2O OL ln ol0)

/wpxw a2(t) xpias(f —72(D)) |4, _ (3.4)

dt =0, (3.3)

exp{a1(t — 12 (8))} + ka(t)
From (3.2)—(3.4), we obtain

[ e = i seyesptat e - 2

< (] + 7w (3.5)

b

and

[ ionae < [ i) - 20RO < ] e G0

Noting that x = (x1(t), z2(t))” € X. Then there exist &, n; € [0,w] such that
(&) = sup x;(t), x;(m;) = inf z;(t), i=1,2. (3.7)
te[0,w] t€[0,w]
It follows from (3.3) and (3.7) that
wry > / b(t) exp{z1(t — ) }dt > whe™ (M)
0
which implies that
z1(m) <ln %1 (3.8)

It follows from (3.5), (3.8) and Lemma 2.2 that, for any ¢ € [0, w],

[ ool
x1(t) <x1(771)+2/ |x'1(t)|dt§1n?1+§w(|r1\+f1) 2 H,. (3.9)
0
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From (3.7), (3.9) and (3.4) that
o e®2(n2) w z2(t)
wase o€ _
< dt =
et + kg — / ex1(t) 4 kQ(t) wra,
ie.,
= H, k‘U
2a(np) < In M’
Qa2
which together with (3.6) and Lemma 2.2 imply
[ ro(efr + k) 1 —
wa(t) < w2(12) + 5 / |2 (£)]dt < m¥ +gw(fral +72) & Hp.  (3.10)
0 2
In addition, from (3.3) and (3.7), we get
Bt 5 o, - [ OO el o)
0 exp{2z1(t)} + ki(?)
> wry — w(;—kll)eHQ,
which implies that
1 — (57 )e™
z1(&1) 2 In %kl :
then together with (3.5) and Lemma 2.2 imply
[ T (gE)e™ 1
x1(t) > x1(&) — 2/ |z (¢)|dt > ln% - §w(\r1| +71) £ Hs. (3.11)
0
From (3.9), (3.7) and (3.4), we have
w%em(ii) . /°u as(t) exp{xa(t)} dt = wi,
1k Jy exp{m(®)} + kaD
ie.,
2 H kL
$2(§2) 2 ln TZ(eXp{ ~ 3} + 2 )’
a2
which, together with (3.6) and Lemma 2.2 imply
I Folexp{Hs} + k&) 1 —
To(t) > 22(&) — = [ |ah(¢)|dt > In 2( Xp{f’} 2) _ “w(fra| +72) £ Hy.  (3.12)
2 0 a9 2
It follows from (3.9)-(3.12) that
|l < |Hy| + |Ha| + |Hs| + |Ha| £ Ho. (3.13)

Obviously, Hy is independent of A.
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Considering the following algebraic equations

I “ ay(t) exp{zs + 22}
~b _1 [l dt =0,
robeelnd S ) e + R0 (5.14)
1/w az(t) exp{za} _ '

0

27U aplan) £ (D)

w

If system (3.14) has a solution or a number of solutions z* = (z%,z3)”, then similar argu-
ments as those of (3.9)—(3.12) show that

r (e + kY

2 < W< H, op<n 20 < H,,
b a9
7 — (G2 7o (eHs 4 kL
mT > IH%ZH;),, 17;2111702(677—%2)2]‘]4.
b a9
Hence
(| = |z}, 23)" || = max{|}] + 3]} < Ho. (3.15)

Set Q = {x = (z1,22)" € X : ||z|| < Hop}. Then, Lz # ANz for z € 9Q and X € (0,1),
that is € satisfies condition (i) in Lemma 2.1.

Suppose z € 0Q N KerL with ||z|| = Hy. If (3.14) has at least one solution, we obtain
from (3.15) that

) ) w t) exp{.%j + :13‘2}
3 1 ay( dt
2 exp{z} w / exp{2z1} + k2(t) #0.

L [* () explas)
"2 w/o exp{m}—i—kz(t)dt

QNzx =

If system (3.14) does not have a solution, then

o L [* @) explan + )

7 —bexp{zi} — L /0 exp{2z,} +K{(t) |

o — 1/“’ UL R |
0

exp{z1} + ka(t)

Thus condition (ii) in Lemma 2.1 is satisfied.

Finally in order to prove (iii) in Lemma 2.1 we define homomorphism mapping
J:ImQ — KerL, =z —x
and

H: DomX x [0,1],

e _ T e 1 [ _met
Py — et — (E et e =3 | e
Hnan) = | 0T P asersiss |
Ty — EH3+]€£‘ a2612L 1 2 EXP T2 dt
efotky @ fo exp{x1} + ka(t)
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where ;1 € [0,1] is a parameter. We will show that if z = (21, 25)T € 0QNKerL, x = (x1,22)T
is a constant vector in R? with max{|z,|,|z2|} = Hy, then H(z1, 22, 1) # 0. Otherwise,
suppose that z = (z1,22)7 € R? with max{|z,|,|z2|} = Hy satisfying H(zy,xs, ) = 0, that

is,

_ 1 w T1+T2
F1— be™ — (sl )et 4o pf(ok et — / . )
0

2]{71 2k1 w e2r1 | k%(t)
ry 62€x2 _ { C_Lger __ l /’W a,2(t) eXp{ZL“Q} dt] —0.
efs + k2 efls + k3w ), exp{xi} + ka(t)

Similar argument as those of (3.14), (3.15) show that
]| = max{|1] + [z2[} < Ho,

which is a contradiction.

Hence by a direct calculation, we have

deg{JQN,QNKerL,0} = deg{H (z1,x2,1),2NKerL,0}
= deg{H(x1,2,0),Q2NKerL,0}
£ 0. (3.16)

So (iii) in Lemma 2.1 is satisfied. By applying Lemma 2.1, we conclude that system (1.2)
has at least one positive w-periodic solution. The proof is completed.
Remark 3.1 It is notable that our result only need b(t), a1(t), as(t), ki(t), kao(t),

7:i(t) i = 1,2, o(t) are all positive w-periodic continuous functions; but r;(t) € C(R, R), i =
1,2 are w-periodic continuous functions, / r;(t)dt > 0,7 = 1,2, and the growth functions

ri(t),7 = 1,2 are not necessarily positive. %t is reasonable on the biology. In addition, one
can easily find that time delays 7;(¢), i = 1,2, o(t) do not necessarily remain nonnegative.
Moreover, Theorem 3.1 will remain valid for systems (1.2) if the delayed terms are replaced
by the term with discrete time delays, state-dependent delays, or deviating argument. Hence,
time delays of any type or the deviating argument have no effect on the existence of positive
solutions.

If the time delayed term o (t) vanishes, 71(t) = 71, 7o = 72 and ki(t) = ky,ka(t) = ko,
then system (1.2) is reduced to system (1.1) which was studied by Zhang et al. in [7]. Thus
from Theorem 3.1, we have the following result.

Corollary 3.1 Assume 7 > 2-ef2 hold, where

2k
I 5 L - B S e S RS R B e
Hy =ln ————+ §w(\7"2| +79), Hf = hlf + §w(|1“1| + 7).

az
Then system (1.1) has at least one positive w-periodic solution.

Remark 3.2 In [7], Zhang et al. suppose r;(t),7 = 1,2 are positive. From Corollary 3.1,

it is easy to known that r;(t) € C(R, R), / ri(t)dt > 0, so r;(t),7 = 1,2 are not necessarily
0
positive. We improve the result of [7].
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4 Permanence

Definition 4.1 System (1.2) is said to be permanent if there exist positive constants 7',
M;, m;,i = 1,2, such that any solution (x(t),y(t))” of (1.2) satisfies m; < x(t) < My, my <
y(t) < My for t > T.

Lemma 4.1 [16] If a > 0, b > 0, 7(¢) > 0, then

(1) if y'(t) < y(t)[b — ay(t — 7(t))], then there exists a constant 7' > 0 such that
y(t) < Lexp{brV} for ¢t > T;

(2) if y'(t) > y(t)[b — ay(t — 7(t))], then there exists a constant 7" and M such that
y(t) < M for t > T, then for any small constant ¢ > 0, there exists a constant 7% > T such
that y(¢) > min{2 exp{(b — aM)7Y}, 2 — &} for ¢t > T™.

Lemma 4.2 There exists positive constant T such that the solution (x(t),y(t)) of (1.2)
satisfies

0<zx(t)<M; and 0<y(t) <My for t>T,,

where v LY U
r My + k3')r
M, = b—lLexp{rleU}, M, = (M A+ kg )rs. aL2 i exp{rdry}.
1 2

Proof If follows from system (1.2) that
() <z@t)[rY —bra(t — 7 (1))].

From Lemma 4.1 yield that there exists a positive constant T; such that x(t) < M; for
t > T). Then we get

ayy(t — (t))

/ < U _

] for ¢ 2 Tl.

So there exists a positive Ty > Ty such that y(t) < M for t > Tg.
Lemma 4.3 If A; > 0 then there exists a positive constant 7™ such that the solution
(z(t),y(t)) of system (1.2) satisfies

x(t) >my and y(t) >me for t>T7,

where ¢ is a small enough positive constant and

arMsqL . A A
Alz [rl_;Tf] ’ml:m]n{b[}exp{(Al_bUMl)TlU}ab[}_6}7
[ riEL ay M. ry ky
mgzmln{ 2U2 eXp{(r2L_ 2L2)T2U}7 2U2 _6}'
as k3 a3

Proof If follows from Lemma 4.2 and system (1.2) that for t > Ty,

2! (t) > z(t)[Ay — bYz(t — 71 (t))],
> y(t)[rk — @ulom0))

ky
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which, together with Lemma 4.1 and Lemma 4.2, implies that there exists a positive constant
T* > Ty such that () > m; and y(t) > my for t > T*.

From Lemma 4.2 and Lemma 4.3, we can get the following result on the permanence of
system (1.1).

Theorem 4.1 If A; > 0, then system (1.2) is permanent.

Similar to the proofs of Lemma 4.2 and Lemma 4.3, we have

Corollary 4.1 If A; > 0, then system (1.1) is permanent.

Example 1 Consider the following equation

2'(t) = z(t) |ra(t) = b(t)z(t — 7) — W],

] (4.2)

y/(t) = y(t) | ra(t) — 2iult)

where r1(t) = 3 + 2sin(127t), b(t) = 1 — 0.1sin(127t), a1 (t) = 0.5 + 0.1sin(12xt), k? = 9,
ro(t) = 0.8+ 0.2sin(127t), 7 = 15, 72 = 0, az(t) = 0.3 — 0.1sin(127¢), and ky = 1, It is easy
to calculation, and all the conditions in Theorems 3.1, 3.2 and 4.1 hold. So we know system

(4.3) has at least one positive periodic solution and permanent (see Figures 1, 2, we take
z(0) = 1,y(0) =5 and z(0)) = 4,y(0) = 5).

‘‘‘‘‘

Figure 1 Figure 2

Example 2 If ri(t) = 8+ 2sin(2nt), b(t) = 2 — 0.1sin(27t), a1 (t) = 0.5+ 0.1sin(27¢),
E2(t) = 9, ro(t) = 0.8+0.2sin(27t), 71 (t) = 1, 72(t) = 0.5, o(t) = 0, as(t) = 0.3—0.1sin(27t),
and ko(t) = 1, It is easy to calculation, and all the conditions in Theorems 3.1, 3.2 and 4.1
hold. So we know system (4.2) has at least one positive periodic solution and permanent
(see Figure 3).

Figure 3
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