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Abstract: This paper is to derive a Schur’s lemma for Bakry-Emery Ricci curvature on
Kahler manifolds. That is, the equation R;; + f;; = Ag;; with two smooth real-valued functions
f, A is studied on Kéahler manifolds. By the Bianchi identity, we obtain that A must be a constant.
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1 Introduction

The Ricci soliton is a natural generalization of Einstein metrics, which is a self-similar
solution to Hamiltion’s Ricci flow. In [1], Pigola, Rigoli, Rimoldi and Setti introduced the

gradient Ricci almost soliton. That is, if there exist two smooth functions f, A such that
Rij + fij = Agij (1.1)

then (M™,g) is called a gradient Ricci almost soliton, where R;; 4+ f;; is called the oo-
dimensional Bakry-Emery Ricci tensor. Clearly, a gradient Ricci soliton is a special case
of the gradient Ricci almost soliton when A is a constant. In particular, if A = pR + p,
where R is the scalar curvature and p, u are two constants, then (1.1) is called the gradient
p-Einstein soliton defined in [2] which is a self-similar solution to the following geometric

flow first considered by Bourguignon in [3]
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For some study with respect to the gradient Ricci almost soliton, the interested reader can
refer to [1, 4-7] for more details.

Note that if f given in (1.1) satisfies f;; = 0, then (1.1) becomes
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and the classical Schur’s lemma states that the scalar curvature R = nA must be a constant
when n > 3. However, there exist gradient Ricci almost solitons with nontrivial function
f such that X is not a constant. A natural question is to consider whether can one find
manifolds satisfying (1.1) with nontrivial function f on which X is constant. In this paper,
we consider this problem on Kéahler manifolds and prove the following results.

Theorem 1.1 Let (M", g;;) be an n-dimensional Kahler manifold with n > 2. If there

exist two smooth real-valued functions f, A satisfying the equation
Rij + fi5 = Agij» (1.4)

then A\ must be a constant.

Therefore, by virtue of Theorem 1.4 of Chen and Zhu in [8], we obtain the following.

Corollary 1.2 Let (M",g,;;) be an n-dimensional (n > 2) complete Kéhler manifold
with harmonic Bochner tensor. If there exist two smooth real-valued functions f, A satisfying
(1.4) with f;; = O(that is, V f is a holomorphic vector field), then we have

1) if the function A > 0, then (M™, g,5) is isometric to the quotient of N* x C*~*, where
N* is a k-dimensional K#hler-Einstein manifold with positive scalar curvature;

2) if the function A < 0, then (M™, g;5) is isometric to the quotient of N* x C"*, where
N* is a k-dimensional Kihler-Einstein manifold with negative scalar curvature.

Remark If A defined in (1.4) is a constant, then it is called a K&hler-Ricci soliton. For

the classification of the Kéhler-Ricci soliton, we refer to [8, 9].

2 Proof of Results

Using the concepts as in [8], under the Kéhler metric g = (g,;), the Ricci curvature and

the scalar curvature defined by
Rij = szkka R=R;= 155

respectively. By the first Bianchi identity, we have

R =Rgiu; = —(Riur: + Rjur;) = —Riju: = Rjju: = Ra- (2.1)
By virtue of (1.4), we obtain
R =try(R;;) =nA —Af. (2.2)
Therefore, from (2.3), we obtain
(nN); = R, +(Af)i=R;+ fj5.=Ri+ fij;
= R;+[Ngj— Rl =Ri+X;—Rij; =X\, (2.3)

where in the third equality we used

fi7i = f50 = fGij — fiRii0 = f305 = fij (2.4)
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and in the last equality we used (2.1). Therefore, from (2.4), it is easy to see that
(n—1)A; =0 for all ¢, (2.5)

which shows that A is a constant.

We complete the proof of Theorem 1.1.
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