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Abstract: In this paper, we study the influence of sn(G) on simple K3-groups. Through the
analysis of the subgroups and chief factor of the finite group G, we give a characterization of simple
K3-groups and the results are as follows. If |G| = p®qr and sn(G) = {r,pr, pq}, where p < ¢ < r are
different primes, then G = As. And the similar conclusions hold for all the other simple K3-groups.
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1 Introduction

Let G be a finite group and p a prime. The number n,(G) of Sylow p-subgroups of G
is an important invariant pertaining to G and we call it the Sylow p-number of G. By a
Sylow number for GG, we mean an integer which is a Sylow p-number of G for some prime
p. The Sylow number was investigated by many authors such as Hall, Brauer, Hall, Zhang,
and Moret6 (see for instance [1, 3, 4, 6-9]). Zhang [9] launched a systematic study on the
influence of arithmetical properties on the group structure.

We set sn(G) = {n,(G)|p | |G|}. Zhang [9] posed the following problem, namely what
can we see about the finite groups G in terms of |sn(G)|? And he made the following claim:
it seems true that G is solvable if |sn(G)| = 2. The above claim was proved in [7]. Now we
consider the influence of sn(G) on simple K3-groups.

A finite simple group G is called a simple Kj-group if |G| has exactly three distinct
=2%.3-5 and sn(45) = {5,2-5,2-3}. So the following
problem is interesting: if |G| = p?*qr and sn(G) = {r,pr,pq}, where p < ¢ < r are different

prime divisors. We know that |As;

primes, then G = Aj holds? The answer of the problem is yes. In this paper, we get the
following results by using an elementary and skillful method of applying Sylow’s theorem.

Main Theorem (1) Let |G| = p?qr and sn(G) = {r,pr,pq}, where p < q < r are
different primes, then G = As.
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(2)Let |G| = p*¢®r and sn(G) = {¢*r, pr,p*q®}, where p < q < r are different primes,
then G & Ag.

(3) Let |G| = p*qr and sn(G) = {qr, p*r,p*}, where p < q < r are different primes, then
G = Ly(7).

(4) Let |G| = p*¢®r and sn(G) = {¢?, p*r,p*q*}, where p < ¢ < r are different primes,
then G = Ly(8).

(5) Let |G| = p*¢®r and sn(G) = {¢*r, pr, pg*}, where p < q < r are different primes,
then G = Ly(17).

(6) Let |G| = p*¢®r and sn(G) = {¢*r, p?r,p*¢®}, where p < q < r are different primes,
then G = L3(3).

(7) Let |G| = p°¢®r and sn(G) = {¢*r, p?r,p°¢*}, where p < q < r are different primes,
then G = Us(3).

(8) Let |G| = pS¢*r and sn(G) = {r, pr,pq}, where p < q < r are different primes, then
G = Uy(2).

In this paper, all groups are finite and by simple groups we mean non-abelian simple

groups. All further unexplained notations are standard (cf. [2] for example).

2 Preliminaries

We need the following two simple lemmas to show our results.

Lemma 2.1 (see [5]) If G is a simple K3-group, then G is isomorphic to one of the
following groups: As, Ag, L2(7), La(8), L2(17), L3(3), Us(3) or Us(2).

Lemma 2.2 (see [9]) Let G be a finite group and M a normal subgroup of G, then the
product of n,(G) and n,(G/M) divides n,(G).

3 Proof of Main Theorem

Now we will prove the main theorem case by case.

Proof (1) If G is solvable, then G has an elementary abelian minimal normal subgroup
N. Note that sn(G) = {r,pr,pq}, thus |[N| = p and |G/N| = pgr. And it follows that G/N
is supersolvable. Therefore G is supersolvable and n,.(G) = 1, which is a contradiction. And
so (G is unsolvable and G = A5 by Lemma 2.1.

(2) Assume that G is solvable, then G' has a {gq,r}-Hall subgroup H and |H| = ¢*r.
By Sylow’s theorem, we know that n,.(H) | ¢>. If n,.(H) = g, then ¢ = 1 (mod 7), which
is a contradiction since ¢ < r. If n.(H) = ¢?, then ¢> = 1 (mod r), which implies that
r | ¢+ 1. Consequently ¢ = 2 and r = 3, a contradiction since p < ¢. Thus n,.(H) = 1. Note
that |G : Ng(H)| | p?, thus n,.(G) is at most p3, which is impossible since n,.(G) = p*q¢>.
Therefore G is unsolvable.

We obtain that G has a chief factor H/N such that H/N = As, Ag, L2(7) or Ly(8) by
Lemma 2.1, where N is a maximal solvable normal subgroup of G. Set H := H/N = Aj,
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G := G/N, we have
A = T = HCo(H)/Co(H) < G/Cal(H) = No(H)/Co(H) < Aut(H).

Let K := {z € G|zN € Cz(H)}, then A5 < G/K < Aut(45) & S5. Hence G/K = Aj;
or G/K = S5. If G/K = Aj, then |[K| = 6 and so K = N. Let P5; € Syl;(G), it follows
that |G/N : Ng(Ps)N/N| = 6. Note that |[Ng(Ps)| = 10 and |Ng(P5)N/N| = 10, thus
N Ng(Ps) = 1 and consequently ns(Ng(Ps)N) = 6. Since Ng(Ps)N is of order 60 and
not 5-closed, we get that Ng(Ps)N = As, which is contradict to the solvability of Ng(Ps)N.
If G/K = Ss, similarly we can get a contradiction. If H/N = Ly(7), then n3(H/N) | n3(G)
by Lemma 2.2, namely 28 | 14, a contradiction. In fact 14 is not a Sylow 3-number. Similarly
H/N % Ly(8). If H/N = Ag, then by Lemma 2.1, we have N =1 and H = G = Ag since
G = pP¢®r and |Ag| = 2% - 3% - 5.

(3) If G is solvable, then G has a maximal subgroup M such that M <G and |G : M|
is a prime. If |[M| = p3q, then n,(G) = n,(M) | p3, a contradiction since n,(G) = p*r. By
the same reason |M| # p3r. Hence |M| = p?qr. Let N be a minimal normal subgroup of M,
then |[N| = p or p?. If [N| = p, then |M/N| = pgr and so M/N is supersovable. Therefore
M is supersolvable, which implies n,.(G) = n,.(M) = 1, a contradiction. If [N| = p?, then
N Char M and so N < G. Since |G/N| = pgr, we obtain that G/N is supersolvable. Let
R € Syl.(G), then RN/N < G/N. Since Ng/N(RN/N) = Ng(R)N/N = G/N, we have
G = Ng(R)N. Note that |G| = p?>qr and |[N| = p?, we get that p | [Ng(R)|, contradict to
n,.(G) = p3. Therefore G is unsolvable.

By Lemma 2.1, it follows that G has a chief factor H/N such that H/N = As or Lo(7).
If H/N = Ajs, then n,.(G) = ns(G) = p* = 8, which is a contradiction. If H/N = Ly(7), then
by Lemma 2.1, we have N = 1 and H = G = Ly(7) since G = p*qr and |Ly(7)| =2%-3- 7.

(4) Suppose that G is solvable, then G has a {¢, r}-Hall subgroup H and |G : Ng(H)| |
p?. It is easy to show that n,.(H) = 1 by Sylow’s theorem. Therefore n,.(G) is at most p,
contradict to n,.(G) = p?¢®. So G is unsolvable.

By Lemma 2.1 G has a chief factor H/N such that H/N = As, Ag, Lo(7) or Lo(8).
If H/IN = Aj, then na(G) = n,(G) = ¢* = 9. By Lemma 2.2, we get that ny(H/N) |
na(G), namely 5 | 9, which is a contradiction. By the same reason, H/N 2 Ag, Lo(7). If
H/N = L,(8), then by Lemma 2.1 we have N =1 and H = G 2 Ly(8) since G = p3¢*r and
|Ly(8)| =2%-3%-7.

(5) Suppose that G is solvable, then G has a maximal subgroup M such that M < G
and |G : M| is a prime. If |G : M| = ¢, then the Sylow p-subgroup P of M is also the the
Sylow p-subgroup of G. Since n,(G) = ¢*r we have Ng(P) = P < M, which implies that
Ng(M) = M, contradict to M < G. Similarly |G : M| # r. Consequently |G : M| = p and
|M| = p3¢*r. Now we consider the {q,r}-Hall subgroup N of M. It is easy to show that
n,.(N) = 1. Therefore n,.(M) is at most p3, a contradiction since n,(M) = n,.(G) = pg*. So
G is unsolvable.

We get that G has a chief factor H/N such that H/N = A5, Ag, La(7), L2(8) or Ly(17)
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by Lemma 2.1. Similarly to the above, we can show that G = Ly(17).

(6) Suppose that G is solvable, then there exist a maximal subgroup M of G such that
M <G and |G : M| is a prime. If |G : M| = r, then n,(G) = n,(M) | p* by Sylow’s theorem,
contradict to n,(G) = p*r. If |G : M| = q, then n,(G) = n,(M) =| ¢*r, a contradiction
since n,(G) = ¢*r. If |G : M| = p, then n,.(G) = n,.(M) | p*¢*, which is impossible since
n,.(G) = p*q®. Therefore G is unsolvable.

We can see from Lemma 2.1 that G has a chief factor H/N such that H/N = As, Ag,
Ly(7), La(8), La(17) or L3(3). Now similarly to the above, we can show that G = L3(3).

(7) Assume that G is solvable, then G has a maximal subgroup M such that M <G
and |G : M| is a prime. If |G : M| = r, then n,(G) = n,(M) | p° by Sylow’s theorem, which
is contradict to n,(G) = p?r. If |G : M| = g, then n,(G) = n,(M) | ¢*r, a contradiction
since n,(G) = ¢*r. If |G : M| = p, then n,.(G) = n,.(M) | p*¢q*, which is impossible since
n.(G) = p°¢®. Therefore G is unsolvable.

It is easy to see that G has a chief factor H/N such that H/N = A5, Ag, L2(7),
L(8), Lo(17), L3(3) or Us(3) by Lemma 2.1. Now similarly to the above, we can show that
G = Us(3).

(8) Suppose that G is solvable, then G has a maximal subgroup M such that M <G
and |G : M| is a prime. If |G : M| = r, then n,(G) = n,(M) | ¢* by Sylow’s theorem, which
is contradict to n,(G) = ¢*r. If |G : M| = ¢, then n,.(G) = n,.(M) | p°¢3, a contradiction
since n,(G) = pq*. Tt follows that |G : M| = p and |M| = p°¢*r. Now we consider a
{g,r}-Hall subgroup H of M. It is evident that H is also a {¢,r}-Hall subgroup of G. Note
that n,.(G) = p*q¢* and |G : Ng(H)| | p°, thus n,.(H) = ¢* by Sylow’s theorem. In fact, if
n.(H) < ¢, then n,.(G) is at most p°¢>, a contradiction since p°¢® < n,.(G) = p*q*. Hence
rl¢*—1=(*+1)(¢*>—1). Ifr| ¢*>— 1, then r | ¢+ 1 since ¢ < r. Consequently ¢ = 2 and
r = 3, which is contradict to p < ¢ < r. Therefore 7 | ¢*> + 1. Since n,.(G) = pq*, we get
that 7 | p*¢* — 1. Hence r | p* — 1 since r | ¢* — 1. Therefore r | p? + 1. And it follows that
r|(¢*+1)— (p*> + 1), namely r | (¢ — p)(¢ + p), which implies that r | p + q. Now we get a
contradiction since p + ¢ < 2r. Therefore GG is unsolvable.

By Lemma 2.1, we know that G has a chief factor H/N such that H/N = Aj, Ag, L2(7),
Ly (8), Lo(17), L3(3), Us(3) or Uy(2). Now similarly to above, we can show that G = Uy(2).

Now the proof of the theorem is complete.
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