A NEW CHARACTERIZATION OF SIMPLE K_{3}－GROUPS

DAI Xue，ZHANG Qing－liang，GONG Lü
（School of Sciences，Nantong University，Nantong 226019，China）

Abstract

In this paper，we study the influence of $s n(G)$ on simple K_{3}－groups．Through the analysis of the subgroups and chief factor of the finite group G ，we give a characterization of simple K_{3}－groups and the results are as follows．If $|G|=p^{2} q r$ and $\operatorname{sn}(G)=\{r, p r, p q\}$ ，where $p<q<r$ are different primes，then $G \cong A_{5}$ ．And the similar conclusions hold for all the other simple K_{3}－groups．

Keywords：Sylow subgroup；Sylow number；simple K_{3}－group 2010 MR Subject Classification：20D05；20D20；20D60 Document code：A Article ID：0255－7797（2018）02－0209－05

1 Introduction

Let G be a finite group and p a prime．The number $n_{p}(G)$ of Sylow p－subgroups of G is an important invariant pertaining to G and we call it the Sylow p－number of G ．By a Sylow number for G ，we mean an integer which is a Sylow p－number of G for some prime p ．The Sylow number was investigated by many authors such as Hall，Brauer，Hall，Zhang， and Moretó（see for instance［1，3，4，6－9］）．Zhang［9］launched a systematic study on the influence of arithmetical properties on the group structure．

We set $\operatorname{sn}(G)=\left\{n_{p}(G)|p||G|\right\}$ ．Zhang［9］posed the following problem，namely what can we see about the finite groups G in terms of $|\operatorname{sn}(G)|$ ？And he made the following claim： it seems true that G is solvable if $|\operatorname{sn}(G)|=2$ ．The above claim was proved in［7］．Now we consider the influence of $\operatorname{sn}(G)$ on simple K_{3}－groups．

A finite simple group G is called a simple K_{3}－group if $|G|$ has exactly three distinct prime divisors．We know that $\left|A_{5}\right|=2^{2} \cdot 3 \cdot 5$ and $\operatorname{sn}\left(A_{5}\right)=\{5,2 \cdot 5,2 \cdot 3\}$ ．So the following problem is interesting：if $|G|=p^{2} q r$ and $s n(G)=\{r, p r, p q\}$ ，where $p<q<r$ are different primes，then $G \cong A_{5}$ holds？The answer of the problem is yes．In this paper，we get the following results by using an elementary and skillful method of applying Sylow＇s theorem．

Main Theorem（1）Let $|G|=p^{2} q r$ and $s n(G)=\{r, p r, p q\}$ ，where $p<q<r$ are different primes，then $G \cong A_{5}$ ．

[^0](2)Let $|G|=p^{3} q^{2} r$ and $s n(G)=\left\{q^{2} r, p r, p^{2} q^{2}\right\}$, where $p<q<r$ are different primes, then $G \cong A_{6}$.
(3) Let $|G|=p^{3} q r$ and $s n(G)=\left\{q r, p^{2} r, p^{3}\right\}$, where $p<q<r$ are different primes, then $G \cong L_{2}(7)$.
(4) Let $|G|=p^{3} q^{2} r$ and $s n(G)=\left\{q^{2}, p^{2} r, p^{2} q^{2}\right\}$, where $p<q<r$ are different primes, then $G \cong L_{2}(8)$.
(5) Let $|G|=p^{4} q^{2} r$ and $s n(G)=\left\{q^{2} r, p^{3} r, p q^{2}\right\}$, where $p<q<r$ are different primes, then $G \cong L_{2}(17)$.
(6) Let $|G|=p^{4} q^{3} r$ and $\operatorname{sn}(G)=\left\{q^{3} r, p^{2} r, p^{4} q^{2}\right\}$, where $p<q<r$ are different primes, then $G \cong L_{3}(3)$.
(7) Let $|G|=p^{5} q^{3} r$ and $s n(G)=\left\{q^{3} r, p^{2} r, p^{5} q^{2}\right\}$, where $p<q<r$ are different primes, then $G \cong U_{3}(3)$.
(8) Let $|G|=p^{6} q^{4} r$ and $s n(G)=\{r, p r, p q\}$, where $p<q<r$ are different primes, then $G \cong U_{4}(2)$.

In this paper, all groups are finite and by simple groups we mean non-abelian simple groups. All further unexplained notations are standard (cf. [2] for example).

2 Preliminaries

We need the following two simple lemmas to show our results.
Lemma 2.1 (see [5]) If G is a simple K_{3}-group, then G is isomorphic to one of the following groups: $A_{5}, A_{6}, L_{2}(7), L_{2}(8), L_{2}(17), L_{3}(3), U_{3}(3)$ or $U_{4}(2)$.

Lemma 2.2 (see [9]) Let G be a finite group and M a normal subgroup of G, then the product of $n_{p}(G)$ and $n_{p}(G / M)$ divides $n_{p}(G)$.

3 Proof of Main Theorem

Now we will prove the main theorem case by case.
Proof (1) If G is solvable, then G has an elementary abelian minimal normal subgroup N. Note that $s n(G)=\{r, p r, p q\}$, thus $|N|=p$ and $|G / N|=p q r$. And it follows that G / N is supersolvable. Therefore G is supersolvable and $n_{r}(G)=1$, which is a contradiction. And so G is unsolvable and $G \cong A_{5}$ by Lemma 2.1.
(2) Assume that G is solvable, then G has a $\{q, r\}$-Hall subgroup H and $|H|=q^{2} r$. By Sylow's theorem, we know that $n_{r}(H) \mid q^{2}$. If $n_{r}(H)=q$, then $q \equiv 1(\bmod r)$, which is a contradiction since $q<r$. If $n_{r}(H)=q^{2}$, then $q^{2} \equiv 1(\bmod r)$, which implies that $r \mid q+1$. Consequently $q=2$ and $r=3$, a contradiction since $p<q$. Thus $n_{r}(H)=1$. Note that $\left|G: N_{G}(H)\right| \mid p^{3}$, thus $n_{r}(G)$ is at most p^{3}, which is impossible since $n_{r}(G)=p^{2} q^{2}$. Therefore G is unsolvable.

We obtain that G has a chief factor H / N such that $H / N \cong A_{5}, A_{6}, L_{2}(7)$ or $L_{2}(8)$ by Lemma 2.1, where N is a maximal solvable normal subgroup of G. Set $\bar{H}:=H / N \cong A_{5}$,
$\bar{G}:=G / N$, we have

$$
A_{5} \cong \bar{H} \cong \bar{H} C_{\bar{G}}(\bar{H}) / C_{\bar{G}}(\bar{H}) \leq \bar{G} / C_{\bar{G}}(\bar{H})=N_{\bar{G}}(\bar{H}) / C_{\bar{G}}(\bar{H}) \lesssim \operatorname{Aut}(\bar{H})
$$

Let $K:=\left\{x \in G \mid x N \in C_{\bar{G}}(\bar{H})\right\}$, then $A_{5} \leq G / K \leq \operatorname{Aut}\left(A_{5}\right) \cong S_{5}$. Hence $G / K \cong A_{5}$ or $G / K \cong S_{5}$. If $G / K \cong A_{5}$, then $|K|=6$ and so $K=N$. Let $P_{5} \in S y l_{5}(G)$, it follows that $\left|G / N: N_{G}\left(P_{5}\right) N / N\right|=6$. Note that $\left|N_{G}\left(P_{5}\right)\right|=10$ and $\left|N_{G}\left(P_{5}\right) N / N\right|=10$, thus $N \bigcap N_{G}\left(P_{5}\right)=1$ and consequently $n_{5}\left(N_{G}\left(P_{5}\right) N\right)=6$. Since $N_{G}\left(P_{5}\right) N$ is of order 60 and not 5-closed, we get that $N_{G}\left(P_{5}\right) N \cong A_{5}$, which is contradict to the solvability of $N_{G}\left(P_{5}\right) N$. If $G / K \cong S_{5}$, similarly we can get a contradiction. If $H / N \cong L_{2}(7)$, then $n_{3}(H / N) \mid n_{3}(G)$ by Lemma 2.2, namely $28 \mid 14$, a contradiction. In fact 14 is not a Sylow 3-number. Similarly $H / N \nsupseteq L_{2}(8)$. If $H / N \cong A_{6}$, then by Lemma 2.1, we have $N=1$ and $H=G \cong A_{6}$ since $G=p^{3} q^{2} r$ and $\left|A_{6}\right|=2^{3} \cdot 3^{2} \cdot 5$.
(3) If G is solvable, then G has a maximal subgroup M such that $M \unlhd G$ and $|G: M|$ is a prime. If $|M|=p^{3} q$, then $n_{q}(G)=n_{q}(M) \mid p^{3}$, a contradiction since $n_{q}(G)=p^{2} r$. By the same reason $|M| \neq p^{3} r$. Hence $|M|=p^{2} q r$. Let N be a minimal normal subgroup of M, then $|N|=p$ or p^{2}. If $|N|=p$, then $|M / N|=p q r$ and so M / N is supersovable. Therefore M is supersolvable, which implies $n_{r}(G)=n_{r}(M)=1$, a contradiction. If $|N|=p^{2}$, then N Char M and so $N \unlhd G$. Since $|G / N|=p q r$, we obtain that G / N is supersolvable. Let $R \in \operatorname{Syl}_{r}(G)$, then $R N / N \unlhd G / N$. Since $N_{G / N}(R N / N)=N_{G}(R) N / N=G / N$, we have $G=N_{G}(R) N$. Note that $|G|=p^{3} q r$ and $|N|=p^{2}$, we get that $p\left|\left|N_{G}(R)\right|\right.$, contradict to $n_{r}(G)=p^{3}$. Therefore G is unsolvable.

By Lemma 2.1, it follows that G has a chief factor H / N such that $H / N \cong A_{5}$ or $L_{2}(7)$. If $H / N \cong A_{5}$, then $n_{r}(G)=n_{5}(G)=p^{3}=8$, which is a contradiction. If $H / N \cong L_{2}(7)$, then by Lemma 2.1, we have $N=1$ and $H=G \cong L_{2}(7)$ since $G=p^{3} q r$ and $\left|L_{2}(7)\right|=2^{3} \cdot 3 \cdot 7$.
(4) Suppose that G is solvable, then G has a $\{q, r\}$-Hall subgroup H and $\left|G: N_{G}(H)\right| \mid$ p^{3}. It is easy to show that $n_{r}(H)=1$ by Sylow's theorem. Therefore $n_{r}(G)$ is at most p^{3}, contradict to $n_{r}(G)=p^{2} q^{2}$. So G is unsolvable.

By Lemma $2.1 G$ has a chief factor H / N such that $H / N \cong A_{5}, A_{6}, L_{2}(7)$ or $L_{2}(8)$. If $H / N \cong A_{5}$, then $n_{2}(G)=n_{p}(G)=q^{2}=9$. By Lemma 2.2, we get that $n_{2}(H / N) \mid$ $n_{2}(G)$, namely $5 \mid 9$, which is a contradiction. By the same reason, $H / N \nsubseteq A_{6}, L_{2}(7)$. If $H / N \cong L_{2}(8)$, then by Lemma 2.1 we have $N=1$ and $H=G \cong L_{2}(8)$ since $G=p^{3} q^{2} r$ and $\left|L_{2}(8)\right|=2^{3} \cdot 3^{2} \cdot 7$.
(5) Suppose that G is solvable, then G has a maximal subgroup M such that $M \unlhd G$ and $|G: M|$ is a prime. If $|G: M|=q$, then the Sylow p-subgroup P of M is also the the Sylow p-subgroup of G. Since $n_{p}(G)=q^{2} r$ we have $N_{G}(P)=P \leq M$, which implies that $N_{G}(M)=M$, contradict to $M \unlhd G$. Similarly $|G: M| \neq r$. Consequently $|G: M|=p$ and $|M|=p^{3} q^{2} r$. Now we consider the $\{q, r\}$-Hall subgroup N of M. It is easy to show that $n_{r}(N)=1$. Therefore $n_{r}(M)$ is at most p^{3}, a contradiction since $n_{r}(M)=n_{r}(G)=p q^{2}$. So G is unsolvable.

We get that G has a chief factor H / N such that $H / N \cong A_{5}, A_{6}, L_{2}(7), L_{2}(8)$ or $L_{2}(17)$
by Lemma 2.1. Similarly to the above, we can show that $G \cong L_{2}(17)$.
(6) Suppose that G is solvable, then there exist a maximal subgroup M of G such that $M \unlhd G$ and $|G: M|$ is a prime. If $|G: M|=r$, then $n_{q}(G)=n_{q}(M) \mid p^{4}$ by Sylow's theorem, contradict to $n_{q}(G)=p^{2} r$. If $|G: M|=q$, then $n_{p}(G)=n_{p}(M)=\mid q^{2} r$, a contradiction since $n_{p}(G)=q^{3} r$. If $|G: M|=p$, then $n_{r}(G)=n_{r}(M) \mid p^{3} q^{3}$, which is impossible since $n_{r}(G)=p^{4} q^{2}$. Therefore G is unsolvable.

We can see from Lemma 2.1 that G has a chief factor H / N such that $H / N \cong A_{5}, A_{6}$, $L_{2}(7), L_{2}(8), L_{2}(17)$ or $L_{3}(3)$. Now similarly to the above, we can show that $G \cong L_{3}(3)$.
(7) Assume that G is solvable, then G has a maximal subgroup M such that $M \unlhd G$ and $|G: M|$ is a prime. If $|G: M|=r$, then $n_{q}(G)=n_{q}(M) \mid p^{5}$ by Sylow's theorem, which is contradict to $n_{q}(G)=p^{2} r$. If $|G: M|=q$, then $n_{p}(G)=n_{p}(M) \mid q^{2} r$, a contradiction since $n_{p}(G)=q^{3} r$. If $|G: M|=p$, then $n_{r}(G)=n_{r}(M) \mid p^{4} q^{3}$, which is impossible since $n_{r}(G)=p^{5} q^{2}$. Therefore G is unsolvable.

It is easy to see that G has a chief factor H / N such that $H / N \cong A_{5}, A_{6}, L_{2}(7)$, $L_{2}(8), L_{2}(17), L_{3}(3)$ or $U_{3}(3)$ by Lemma 2.1. Now similarly to the above, we can show that $G \cong U_{3}(3)$.
(8) Suppose that G is solvable, then G has a maximal subgroup M such that $M \unlhd G$ and $|G: M|$ is a prime. If $|G: M|=r$, then $n_{p}(G)=n_{p}(M) \mid q^{4}$ by Sylow's theorem, which is contradict to $n_{p}(G)=q^{3} r$. If $|G: M|=q$, then $n_{r}(G)=n_{r}(M) \mid p^{6} q^{3}$, a contradiction since $n_{r}(G)=p^{4} q^{4}$. It follows that $|G: M|=p$ and $|M|=p^{5} q^{4} r$. Now we consider a $\{q, r\}$-Hall subgroup H of M. It is evident that H is also a $\{q, r\}$-Hall subgroup of G. Note that $n_{r}(G)=p^{4} q^{4}$ and $\left|G: N_{G}(H)\right| \mid p^{5}$, thus $n_{r}(H)=q^{4}$ by Sylow's theorem. In fact, if $n_{r}(H) \leq q^{3}$, then $n_{r}(G)$ is at most $p^{5} q^{3}$, a contradiction since $p^{5} q^{3}<n_{r}(G)=p^{4} q^{4}$. Hence $r \mid q^{4}-1=\left(q^{2}+1\right)\left(q^{2}-1\right)$. If $r \mid q^{2}-1$, then $r \mid q+1$ since $q<r$. Consequently $q=2$ and $r=3$, which is contradict to $p<q<r$. Therefore $r \mid q^{2}+1$. Since $n_{r}(G)=p^{4} q^{4}$, we get that $r \mid p^{4} q^{4}-1$. Hence $r \mid p^{4}-1$ since $r \mid q^{4}-1$. Therefore $r \mid p^{2}+1$. And it follows that $r \mid\left(q^{2}+1\right)-\left(p^{2}+1\right)$, namely $r \mid(q-p)(q+p)$, which implies that $r \mid p+q$. Now we get a contradiction since $p+q<2 r$. Therefore G is unsolvable.

By Lemma 2.1, we know that G has a chief factor H / N such that $H / N \cong A_{5}, A_{6}, L_{2}(7)$, $L_{2}(8), L_{2}(17), L_{3}(3), U_{3}(3)$ or $U_{4}(2)$. Now similarly to above, we can show that $G \cong U_{4}(2)$.

Now the proof of the theorem is complete.

References

[1] Brauer R, Reynolds W F. On a problem of E. Artin[J]. Ann. Math., 1958, 68(2): 713-720.
[2] Conway J H, Curtis R T, Norton S P, Parker R A, Wilson R A. Atlas of finite groups[M]. Eynsham: Oxford University Press, 1985.
[3] Hall P. A note on soluble groups[J]. J. London Math. Soc., 1928, 3: 98-105.
[4] Hall M. On the number of Sylow subgroups in a finite groups[J]. J. Alg., 1967, 7: 363-371.
[5] Herzog M. On finite simple groups of order divisible by three primes only[J]. J. Alg., 1968, 120(10): 383-388.
［6］Li T Z，Liu Y J．Mersenne primes and solvable Sylow numbers［J］．J．Alg．Appl．，2016，15（9）：1－16．
［7］Moretó A．Groups with two Sylow numbers are the product of two nilpotent Hall subgroups［J］． Arch．Math．，2012，99：301－304．
［8］Moretó A．Sylow numbers and nilpotent Hall subgroups［J］．J．Alg．，2013，379：80－84．
［9］Zhang J P．Sylow numbers of finite groups［J］．J．Alg．，1995，176：111－123．
［10］Wang Y，Jiang M M，Ren Y L．Ore extensions of nil－semicommutative rings［J］．J．Math．，2016， 36（1）：17－29．

单 K_{3}－群的新刻画

戴 雪，张庆亮，龚律
 （南通大学理学院，江苏 南通 226019）

摘要：本文研究了 $\operatorname{sn}(G)$ 对单 K_{3}－群的影响。通过对有限群 G 的子群和主因子的分析，给出了单 K_{3}－群的一个刻画，结果如下：如果 $|G|=p^{2} q r$ 且 $s n(G)=\{r, p r, p q\}$ ，这里 $p<q<r$ 为不同素数，那么 $G \cong A_{5}$ 。类似的结论对其它单 K_{3}－群都成立。

关键词：Sylow子群；Sylow数；单 K_{3}－群
MR（2010）主题分类号：20D05；20D20；20D60 中图分类号：O152．1

[^0]: ＊Received date：2016－10－22 Accepted date：2016－11－02
 Foundation item：Supported by National Natural Science Foundation of China（11401324； 11526114；11601245；11371207；11671402）．

 Biography：Dai Xue（1994－），female，born at Yancheng，Jiangsu，postgraduate，major in finite groups．

 Corresponding author：Zhang Qingliang．

