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Abstract: In this paper, we use Krasnoselskii’s fixed point theorem to study the existence

and uniqueness of periodic solutions of a nonhomogeneous iterative functional differential equation

x′(t) = c1x(t)+ c2x
[2](t)+F (t), which develops the theory about the periodic solutions of iterative

functional differential equation.
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1 Introduction

Recently, iterative functional differential equations of the form

x′(t) = H(x[0](t), x[1](t), x[2](t), · · · , x[n](t))

appeared in several papers, here x[0](t) = t, x[1](t) = x(t), x[2](t) = x(x(t)), · · · , x[n](t) =
x(xn−1(t)). In [1], Cooke pointed out that it is highly desirable to establish the existence
and stability properties of periodic solutions for equations of the form

x′(t) + ax(t− h(t, x(t))) = F (t)

in which the lag h(t, x(t)) implicitly involves x(t). Stephan [2] studied the existence of
periodic solutions of equation

x′(t) + ax(t− r + µh(t, x(t))) = F (t).

Eder [3] considered the iterative functional differential equation

x′(t) = x[2](t)
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and obtained that every solution either vanishes identically or is strictly monotonic. Feckan
[4] studied the equation

x′(t) = f(x[2](t))

and obtained an existence theorem for solutions satisfying x(0) = 0. Later, Wang and Si [5]
studied

x′(x[r](t)) = c0z + c1x(t) + c2x
[2](t) + · · ·+ x[n](t),

and showed the existence theorem of analytic solutions. In particularly, Si and Cheng [6]
discussed the smooth solutions of equation of

x′(t) = c1x(t) + c2x
[2](t) + · · ·+ cnx[n](t) + F (t).

Some various properties of solutions for several iterative functional differential equations, we
refer the interested reader to [7–10].

Since Burton [11] applied Krasnoselskii’s fixed theorem to prove the existence of pe-
riodic solutions, which was extensively used in proving stability, periodic of solutions and
boundedness of solutions in functional differential (difference) equations. 2005, Raffoul [12]
used fixed point theorem to show a nonlinear neutral system

d

dt
[x(t)− ax(t− τ)] = r(t)x(t)− f(t, x(t− τ))

has a periodic solution. In [13], Guo and Yu discussed the existence and multiplicity of
periodic of the second order difference equation. Some other works can also be found in
[14–16].

In this paper, we consider the existence of periodic solutions of equation

x′(t) = c1x(t) + c2x
[2](t) + F (t), (1.1)

where c1 > 0. For convenience, we will make use of C(R,R) to denote the set of all real
valued continuous functions map R into R.

For T > 0, we define

PT =
{

x ∈ C(R,R) : x(t + T ) = x(t), ∀t ∈ R
}

,

then PT is a Banach space with the norm

‖x‖ = max
t∈[0,T ]

|x(t)| = max
t∈R

|x(t)|.

For P, L ≥ 0, we define the set

PT (P, L) =
{

x ∈ PT : ‖x‖ ≤ P, |x(t2)− x(t1)| ≤ L|t2 − t1|, ∀t1, t2 ∈ R
}

,

which is a closed convex and bounded subset of PT , and we wish to find T -periodic functions
x ∈ PT (P, L) satisfies (1.1).
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2 Periodic Solutions of (1.1)

In this section, the existence of periodic solutions of equation (1.1) will be proved. Now
let us state the Krasnoselskii’s fixed point theorem, it will be used to prove our main theorem.

Theorem 2.1 (see [17]) Let Ω be a closed convex nonempty subset of a Banach space
(B, ‖ · ‖). Suppose that A and B map Ω into B such that

(i) A is compact and continuous,
(ii) B is a contraction mapping,
(iii) x, y ∈ Ω, implies Ax + By ∈ Ω,

then there exists z ∈ Ω with z = Az + Bz.
We begin with the following lemma.
Lemma 2.2 For any ϕ,ψ ∈ PT (P, L),

||ϕ[n] − ψ[n]|| ≤
n−1∑
j=0

Lj‖ϕ− ψ‖, n = 1, 2, · · · . (2.1)

The result can be obtained by the definition of PT (P, L).
Lemma 2.3 Suppose c1 6= 0. If x ∈ PT , then x(t) is a solution of equation (1.1) if and

only if

x(t) = c2

∫ t+T

t

x[2](s)G(t, s)ds +
∫ t+T

t

F (s)G(t, s)ds, (2.2)

where

G(t, s) =
ec1(t−s)

e−c1T − 1
. (2.3)

Proof Let x(t) ∈ PT (P, L) be a solution of (1.1), multiply both sides of the resulting
equation with e−c1t and integrate from t to t + T to obtain

x(t + T )e−c1(t+T ) − x(t)e−c1t = c2

∫ t+T

t

x[2](s)e−c1sds +
∫ t+T

t

F (s)e−c1sds.

Using the fact x(t + T ) = x(t), the above expression can be put in the form

x(t) = c2

∫ t+T

t

x[2](s)
ec1(t−s)

e−c1T − 1
ds +

∫ t+T

t

F (s)
ec1(t−s)

e−c1T − 1
ds.

This completes the proof.
It is clear that G(t, s) = G(t+T, s+T ) for all (t, s) ∈ R2, and for s ∈ [t, t+T ], we have

m =
e−|c1|T

|e−c1T − 1| ≤ |G(t, s)| ≤ e|c1|T

|e−c1T − 1| = M. (2.4)



194 Journal of Mathematics Vol. 38

Now we need to construct two mappings to satisfy Theorem 2.1. Set the map A,B :
PT (P, L) → PT as the follwoing,

(Ax)(t) = c2

∫ t+T

t

x[2](s)G(t, s)ds, t ∈ R, (2.5)

(Bx)(t) =
∫ t+T

t

F (s)G(t, s)ds, t ∈ R, (2.6)

where F ∈ PT (P, L), G(t, s) defined as (2.3).

Lemma 2.4 Operator A is continuous and compact on PT (P, L).

Proof Take ϕ,ψ ∈ PT (P, L), t ∈ R, use (2.1) and (2.4),

|(Aϕ)(t)− (Aψ)(t)| ≤ |c2|
∫ t+T

t

|ϕ[2](s)− ψ[2](s)||G(t, s)|ds

≤ |c2|MT (1 + L)‖ϕ− ψ‖.

This proves A is continuous.

Now we show that A is a compact map. It is easy to see that PT (P, L) is uniformly
bounded and equicontinuous on R, thus by Arzela-Ascoli theorem, it is a compact set. Since
A is continuous, it maps compact sets into compact sets, therefore A is compact. This
completes the proof.

Lemma 2.5 Operator B is a contraction mapping on PT (P, L).

Proof Take ϕ,ψ ∈ PT (P, L),

‖Bϕ−Bψ‖ = max
t∈[0,T ]

∣∣∣
∫ t+T

t

F (s)G(t, s)ds−
∫ t+T

t

F (s)G(t, s)ds
∣∣∣ = 0 ≤ η‖ϕ− ψ‖

for any 0 ≤ η < 1, hence B defines a contraction mapping.

Theorem 2.6 Suppose F ∈ PT (P, L) is given, c1 > 0 and the following inequalities are
held

(1 + |c2|)MT ≤ 1, 2P (1 + |c2|) ≤ L, (2.7)

then eq. (1.1) has a periodic solution in PT (P, L).

Proof For any ϕ,ψ ∈ PT (P, L), by (2.4) and (2.7),

∣∣∣(Aϕ)(t) + (Bψ)(t)
∣∣∣ ≤ |c2|

∣∣∣
∫ t+T

t

ϕ[2](s)G(t, s)ds
∣∣∣ +

∣∣∣
∫ t+T

t

F (s)G(t, s)ds
∣∣∣

≤ (1 + |c2|)MTP

≤ P. (2.8)
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Without loss of generality, we assume t2 ≥ t1, by (2.7),
∣∣∣
(
(Aϕ)(t2) + (Bψ)(t2)

)
−

(
(Aϕ)(t1) + (Bψ)(t1)

)∣∣∣

≤ |c2|
∣∣∣
∫ t2+T

t2

ϕ[2](s)G(t2, s)ds−
∫ t1+T

t1

ϕ[2](s)G(t1, s)ds
∣∣∣

+
∣∣∣
∫ t2+T

t2

F (s)G(t2, s)ds−
∫ t1+T

t1

F (s)G(t1, s)ds
∣∣∣

≤ |c2|
|e−c1T − 1|

∣∣∣ec1t2

∫ t2+T

t2

ϕ[2](s)e−c1sds− ec1t1

∫ t1+T

t1

ϕ[2](s)e−c1sds
∣∣∣

+
1

|e−c1T − 1|
∣∣∣ec1t2

∫ t2+T

t2

F (s)e−c1sds− ec1t1

∫ t1+T

t1

F (s)e−c1sds
∣∣∣

≤ |c2|
|e−c1T − 1|

∣∣∣
(
ec1t2 − ec1t1

)∫ t2+T

t2

ϕ[2](s)e−c1sds
∣∣∣

+
|c2|

|e−c1T − 1|
∣∣∣ec1t1

(∫ t2+T

t2

ϕ[2](s)e−c1sds−
∫ t1+T

t1

ϕ[2](s)e−c1sds
)∣∣∣

+
1

|e−c1T − 1|
∣∣∣
(
ec1t2 − ec1t1

)∫ t2+T

t2

F (s)e−c1sds
∣∣∣

+
1

|e−c1T − 1|
∣∣∣ec1t1

(∫ t2+T

t2

F (s)e−c1sds−
∫ t1+T

t1

F (s)e−c1sds
)∣∣∣

≤ |c2|
|e−c1T − 1|

∣∣∣
(
ec1t2 − ec1t1

)∫ t2+T

t2

ϕ[2](s)e−c1sds
∣∣∣

+
|c2|

|e−c1T − 1|
∣∣∣ec1t1

∣∣∣
∣∣∣∣∣
∫ t1

t2

ϕ[2](s)e−c1sds +
∫ t2+T

t1+T

ϕ[2](s)e−c1sds
)∣∣∣∣∣

+
1

|e−c1T − 1|
∣∣∣
(
ec1t2 − ec1t1

)∫ t2+T

t2

F (s)e−c1sds
∣∣∣

+
1

|e−c1T − 1|
∣∣∣ec1t1

∣∣∣
∣∣∣∣∣
∫ t1

t2

F (s)e−c1sds +
∫ t2+T

t1+T

F (s)e−c1sds

∣∣∣∣∣

≤ P |c2|
|e−c1T − 1|

∣∣∣ec1(ξ−t2)
∣∣∣|e−c1T − 1||t2 − t1|

+
P |c2|

|c1||e−c1T − 1|
∣∣∣c1e

c1(t1−ξ)
∣∣∣|e−c1T − 1||t2 − t1|

+
P

|e−c1T − 1|
∣∣∣ec1(ξ−t2)

∣∣∣|e−c1T − 1||t2 − t1|

+
P

|e−c1T − 1|
∣∣∣ec1(t1−ξ)

∣∣∣|e−c1T − 1||t2 − t1|
≤ 2P (1 + |c2|)|t2 − t1|
≤ L|t2 − t1|, (2.9)

where t1 ≤ ξ ≤ t2.
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This shows that (Aϕ)(t) + (Bψ)(t) ∈ PT (P, L). By Lemma 2.4 and Lemma 2.5, we see
that all the conditions of Krasnoselskii’s theorem are satisfied on the set PT (P, L). Thus
there exists a fixed point x in PT (P, L) such that

x(t) = (Ax)(t) + (Bx)(t)

= c2

∫ t+T

t

x[2](s)G(t, s)ds +
∫ t+T

t

F (s)G(t, s)ds. (2.10)

Differential both sides of (2.10) and from Lemma 2.3, we can find (1.1) has a T -periodic
solution. This completes the proof.

3 Uniqueness and Stability

In this section, uniqueness and stability of (1.1) will be proved.
Theorem 3.1 In addition to the assumption of Theorem 2.6, suppose that

|c2|MT (1 + L) < 1, (3.1)

then (1.1) has a unique solution in PT (P, L).
Proof Define an operator H from PT (P, L) into PT ,

(Hx)(t) = (Ax)(t) + (Bx)(t) = c2

∫ t+T

t

x[2](s)G(t, s)ds +
∫ t+T

t

F (s)G(t, s)ds, (3.2)

where G(t, s) defined as (2.3). Denote ϕ,ψ ∈ PT (P, L) are two different T -periodic solutions
of (1.1),

|ϕ(t)− ψ(t)| =
∣∣∣(Hϕ)(t)− (Hψ)(t)

∣∣∣

≤ |c2|
∫ t+T

t

∣∣∣ϕ[2](s)− ψ[2](s)
∣∣∣|G(t, s)|ds

≤ |c2|MT (1 + L)‖ϕ− ψ‖
= Γ‖ϕ− ψ‖,

where Γ = |c2|MT (1 + L), thus

‖ϕ− ψ‖ ≤ Γ‖ϕ− ψ‖.

From (3.1), we know Γ < 1 and the fixed point ϕ must be unique.
Theorem 3.2 The unique solution obtained in Theorem 3.1 depends continuously on

the given functions F and ci (i = 1, 2).
Proof Under the assumptions of Theorem 3.1, for any two functions Fi(x) in PT (P, L)

are given, λi and µi, i = 1, 2 are constants satisfy (2.7). Then there are two unique corre-
sponding functions ϕ(t) and ψ(t) in PT (P, L) such that

ϕ(t) = λ2

∫ t+T

t

ϕ[2](s)G1(t, s)ds +
∫ t+T

t

F1(s)G1(t, s)ds
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and

ψ(t) = µ2

∫ t+T

t

ψ[2](s)G2(t, s)ds +
∫ t+T

t

F2(s)G2(t, s)ds,

where

G1(t, s) =
eλ1(t−s)

e−λ1T − 1
, G2(t, s) =

eµ1(t−s)

e−µ1T − 1
.

We have

‖ϕ− ψ‖ ≤ max
t∈[0,T ]

∣∣∣∣∣λ2

∫ t+T

t

ϕ[2](s)
eλ1(t−s)

e−λ1T − 1
ds− µ2

∫ t+T

t

ψ[2](s)
eµ1(t−s)

e−µ1T − 1
ds

∣∣∣∣∣

+ max
t∈[0,T ]

∣∣∣∣∣
∫ t+T

t

F1(s)
eλ1(t−s)

e−λ1T − 1
ds−

∫ t+T

t

F2(s)
eµ1(t−s)

e−µ1T − 1
ds

∣∣∣∣∣

≤ max
t∈[0,T ]

|λ2 − µ2|
∣∣∣∣∣
∫ t+T

t

ϕ[2](s)
eλ1(t−s)

e−λ1T − 1
ds

∣∣∣∣∣

+|µ2| max
t∈[0,T ]

∫ t+T

t

|ϕ[2](s)− ψ[2](s)|
∣∣∣∣∣

eµ1(t−s)

e−µ1T − 1

∣∣∣∣∣ds

+|µ2| max
t∈[0,T ]

∣∣∣∣∣
∫ t+T

t

|ϕ[2](s)|
(

eλ1(t−s)

e−λ1T − 1
− eµ1(t−s)

e−µ1T − 1

)
ds

∣∣∣∣∣

+ max
t∈[0,T ]

∫ t+T

t

|F1(s)− F2(s)|
∣∣∣∣∣

eλ1(t−s)

e−λ1T − 1

∣∣∣∣∣ds

+ max
t∈[0,T ]

∣∣∣∣∣
∫ t+T

t

|F2(s)|
(

eλ1(t−s)

e−λ1T − 1
− eµ1(t−s)

e−µ1T − 1

)
ds

∣∣∣∣∣
≤ TPM1|λ2 − µ2|+ |µ2|TM2(1 + L)‖ϕ− ψ‖+ TM1‖F1 − F2‖

+
P (1 + |µ2|)

λ1µ1

|λ1 − µ1|, (3.3)

where

M1 =
e|λ1|T

|e−λ1T − 1| , M2 =
e|µ1|T

|e−µ1T − 1| ,

thus

(1− |µ2|TM2(1 + L))‖ϕ− ψ‖ ≤ P (1 + |µ2|)
λ1µ1

|λ1 − µ1|+ TPM1|λ2 − µ2|
+TM1‖F1 − F2‖.

From (3.1),

δ = 1− |µ2|TM2(1 + L) > 0

and

‖ϕ− ψ‖ ≤ T

δ

(
P (1 + |µ2|)

λ1µ1

|λ1 − µ1|+ TPM1|λ2 − µ2|+ TM1‖F1 − F2‖
)

.
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This completes the proof.
Example 1 Now we will show that the conditions in Theorem 2.6 do not self-contradict.

Consider the following equation

x′(t) = 5x(t) +
1
10

x(x(t)) +
1
10

sin 20πt, (3.4)

where
c1 = 5, c2 =

1
10

, F (t) =
1
10

sin 20πt, T =
1
10

.

A simple calculation yields 4.19 < M = e

e
1
2−1

< 4.2 and (1 + |c2|)MT < 0.47 < 1. Let

P = 1, L = 8, 2P (1+ |c2|) = 2.2 < 8, then (2.7) is satisfied. By Theorem 2.6, equation (3.4)
has a 1

10
-periodic solution x such that ‖x‖ ≤ 1, and

|x(t2)− x(t1)| ≤ 8|t2 − t1|, ∀t1, t2 ∈ R.
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一类非齐次迭代泛函微分方程的周期解
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摘要: 本文利用Krasnoselskii 不动点定理考虑了一类非齐次迭代泛函微分方程x′(t) = c1x(t) +

c2x
[2](t) + F (t) 周期解的存在唯一性问题, 推广了迭代泛函微分方程周期解的相关理论.
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