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1 Introduction
In this paper, we will first consider the following system

—Apu + \u = pu?" + puP P,z € int B,
—Agv + Aov = v~ 4 BuP~ Pz € int B, (1.1)

u>0,v>0 in int B,u=v=0 on 0B,
where N > 5, p = %,2* = %, “A1(B) < A, A < 0,p1,2 > 0 and 8 # 0. Here B
is [0,1) x X and X C R¥~! is a smooth compact domain, A\;(B) is the first eigenvalue of
—Ag with zero Dirichlet condition on OB, Ag =(x,0,,)% + (952 4t 8§N. We will look for
the positive least energy solutions for (1.1) in the cone Sobolev space H;O% (B), which was
introduced in [13]. In [2], Chen-Liu-Wei considered the following problem

(1.2)

—Agu+ = |ul> "2u, wuc H;:()% (B),
u=0 on OB,

and got a positive solution ¢. Recently, the authors in [8] also studied the positive least

energy solutions for p-Laplacian system. Our study is in fact motivated by the study of
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Chen-Zou (see [1]), and we investigate the semi-linear equations with critical cone Sobolev
exponent terms.

We call a solution (u,v) € H nontrivial if u # 0,v # 0, where H := H;O% (B) x H;:O% (B).
The weak solutions of (1.1) are the critical points of the functional J : H — R, which is
given by
1

d / d
Wi 5 [(Vaol + 2t o
T 2 B Z1

/

1
J(U,U) :5 /(|V]Bgu|2 + )\1U2)
B

’

1 dx
B /wwW+wwww+mw%ww (1.3)
2p B X1

We say that a solution (u,v) of (1.1) is a least energy solution if (u,v) is nontrivial and
J(u,v) < J(p, 1) for any other nontrivial solution (p,) of (1.1). If we define a “ Nehari”
manifold (see [1, 4-7, 9])

N ={(u,v) € H:u#0,v#0,J (u,v)(u,0) = J (u,v)(0,v) = 0},

then any nontrivial solutions of (1.1) belong to A/, here J'(-,-) is the Fréchet differentiation
of J. We define the least energy of (1.3) as

1 dx ’
A= inf = inf {= [(Vgul? 2 4 |Vpol? N da' ).
(J&Nﬂww (J&NQVA“]W|+AW_H M|+Aw)x1m}

If the equation

pdP=t 4 BdE gt =1,
Bdsgs ! + pagh Tt =1, (14)
d>0,g>0
has a solution (do, go) with
dy = min{d : (d, g) satisfies (1.4)}, (1.5)

then we prove the following theorem.
Theorem 1.1 Let (dy, go) be a solution of (1.4) with dp in (1.5) and =X\ (B) < Ay =
A2 = A < 0. Then for any 8 > 0, (v/dow, /go) is a positive solution of (1.1). Moreover, if

B > 125 max{pu1, o}, then we have J(vdow, \/gop) = A, that is, (v/doyp, \/gow) is a positive
least energy solution of (1.1).

In the second part of this paper, we consider the existence of the least energy solution

of the following problem

—Apu = p1|ul?2u+ BlulP2ulvP, z € RY,
~ Asv = pafol%0 + BloP2ulul, - € RY, (16)

LY N
u,v € Dy 2 (RY),
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where RY = Ry x RV~ and D;%(Rf) =: {u € LQ% . |Vpul € LQ%(RQI)} with norm
d "1 N N
||“HD1,% = (/ |VBU|2ﬂd£B )2. Let D := D)2 (RY) x D)z (RY) and the energy func-
2 RY x1
tional E for (1.6) is defined as

1 dx 1 dz
Bluv) =5 [ (VauP + [Vaol) 0o’ = oo [ Gualul® + 280l + o) o
]RN Rf

2 N 2p
(1.7)

’

Analogously, we let

M ={(u,v) € D:u#0,v#0,E (u,v)(u,0) = E'(u, v)(O v) =0},

B:= inf E f (|Vgul? + |V d
a0 0) = u%f;eM{N/ (Vsul? + Va0f) ')

it is easy to see that any nontrivial solutions of (1.6) belong to M. Then we get the following
theorem.

Theorem 1.2 (1) If § < 0, then B is not attained.

(2) If B8 > 0, then there exists a positive least energy solution (U,V) of (1.6) with
E(U,V) = B, which is partly radially symmetric decreasing. Furthermore, we have

(2-1) Let (do, go) be as in Theorem 1.1. If 8 > 25 max{ui, po}, then

E(\/%Usv \/gioUs) =B

That is, (v/doUs, \/goU.) is a positive least energy solution of (1.6).
(2-2) There exists 0 < 81 < max{m uo} such that for any 0 < 5 < 3, we have a
solution (d(3),g(3)) of (1.4) Wlth

E(Vd(B)Ue, v 9(B)U:) > B = E(U,V).

That is, (MUE, \/9(7)U5) is a different positive solution of (1.6) with respect to (U, V).
The terminology “partly radially symmetrization decreasing” in Theorem 1.2 will be
explained in Section 3. Meanwhile, we will introduce “cone Schwartz symmetrization” in
the same section.
The paper is organized as follows. In Section 2, we will give some preliminaries about

cone Sobolev spaces and some auxiliary results. In Section 3, we will give the proofs of
Theorems 1.1 and 1.2.

2 Preliminaries

Here we first introduce the cone Sobolev spaces. Let X be a closed, compact C*
manifold of dimension N — 1, and set X* = (R, x X)/({0} x X) which is the local model
interpreted as a cone with the base X. More details about the manifold with singularities

can be found in [10].
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Definition 2.1 For (z1,2') € Ry x RN~ we say that u(z,2") € L,(RY, dx—"’”lldx’) if

d 1/p
llullz, = (/ / xivlu(an,x'ﬂpildx’) < 4o00.
Ry JRN-1 1

The weighted L,-spaces with weight data v € R is denoted by L7(RY, dz—mlldx’ ), and then
ay u(ay, @) € Ly(RY, % dz’) with the norm

d 1/p
iz = ([ [ el i) < o
Ry JRN-1 1

Definition 2.2 For m € N, and v € R, we define the spaces
N d
HII(RY) = {u eD'(RY)iay " (2105,)°0%u € Ly(RY, xilldx')}

for arbitrary o € N, 3 € NV~! and |a| + || < m. In other words, if u(zy,z") € HJ»7(RY),
then (18,,)*0%u € Ly(RY, dx—ﬁldx ). It’s easy to see that H)"?(RY) is a Banach space with
the norm

dx1 1/p
I ([ [ el @onroiuw,op )"
R, JRN-1

\a|+\l3\<m

We will always denote w(z1,2") € C5°(B) as a real-valued cut-off function which equals 1
near {0} x 0B.

Definition 2.3 Let B be the stretched manifold to a manifold B with conical singu-
larities. Then H7(B) for m € N,v € R denotes the subspace of all u € W7 (int B) such
that

HI(B) = {u € WP (int B); wu € H;M(XA)}

for any cut off function w, supported by a collar neighbourhood of [0,1) x dB. Moreover,
the subspace H,'y"(B) of H;*7(B) is defined as follows
Hp' (B) := [wHy g (X7) + [L — w] W5 (int B),

p,0

where W™ (int B) denotes the closure of Cg°(int B) in Sobolev spaces W™?(X) when X is
a closed compact C'*° manifold of dimension of N that containing B as a submanifold with
boundary More details on the properties of the spaces H,'y’'(B) and H;"7(B) can be found
n [10].
Next, we will recall the cone Sobolev inequality and Poincaré inequality. For details we
refer to [12].
Lemma 2.1 (Cone Sobolev inequality) Assume that 1 < p < N, pi =

1 1
P N and

v € R. The following estimate

N
el o2 sy < 1l @a0n Jull iz + (01 + €2) 3 o

=2

Iy + c2llullLy e
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- (V-1)p e = S
holds for all u € C§°(B), where v* =~v —1,¢; = NV C2 = ~

u € pro( ), we have ||u||L; @ < cllullyo @), where the constant ¢ = ¢1 + ¢z and ¢y, 3 are

. Moreover, if

given.

Lemma 2.2 (Poincaré inequality). Let B = [0,1) x X ba a bounded subset in Rf ,
and 1 < p < 4o00,v € R. If u(xy,2’) € ’Hzl,:g(B), then [[u(z1,2)||Ly@) < cllVeu(zi,2')|| L@
where the positive constant ¢ depending only on B and p.

Lemma 2.3 For 2 < p < 2*, the embedding H’ N/2( B) — HO N/p( B) is compact. Then
we set

l1(d, g) = pud" ™ + Bd> g5 —1,d > 0,9 > 0;
I2(d, g) == pag” " + Bg*'dE — 1,9 > 0,d > 0;

Lemma 2.4 Suppose that § > (p — 1) max{pu1, p2}. Then the following system

d—+ g < do + do,
ll(d7g) Z 07l2(d7g) Z 07 (21)
d>0,9=0,(d,g)#(0,0)

has a unique solution (dg, go).
Proof See [1, Lemmas 2.1, 2.2, 2.3, 2.4].
Now we consider the solution of (1.2), we will prove that this solution is also a least
energy solution.
Lemma 2.5 Assume that —\;(B) < A < 0, and then (1.2) has a positive least energy
. 1, .
solution ¢ € H, ¢ (B) with energy

1 d:17 ’
A= — N S
1 N/B(IVWI AT ~de

IVeul® § +Alull® 5
Proof Let Sy(u;B) = e 1 "2 and S,(B) = inf Sx(u;B).  Set

T .
L22: “€H2‘02 (B),u#0

Co = %[S:(B)]* and the functional

d od «d
=5 [P+ 5 [ - o [ S
B

From the result in [2], we know that (1.2) has a positive solution with energy Cy. Further-
more, we will show that Cj is the least energy of (1.2). We set

_ N d «d
N = {ueHyy (B )7/(|V]Bu|2+)\ T /| g
If u is the solution of (1.2), then u € N and fy(u) = ﬁ| N = N[S,\(u; B)]=. If we denote
L2}
inf  f\(u) as the least energy of (1.2), then
wEN ,u#0
. 1 . N 1 N
inf  fi(u) = <[ inf Sy\(w;B)]? = =[S\(B)]> = Co.
wEN ,u#0 N wEN , u#0 N
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Therefore Co = A; = inf  fy(u). Let ¢ be a positive critical point of fy(u) with a critical
ueN ,u#0

d ’
value A;. Then it is easy to get A; := + /(|V]Bg0|2 + A@Q)ﬂdx
B x1

3 Proof of Theorem 1.1 and Theorem 1.2

In this section, we will prove Theorem 1.1 and Theorem 1.2. In particular, we will
separate the proof of Theorem 1.2 into several steps.

Proof of Theorem 1.1 For —\;(B) < A\; = Ay = A < 0, we can easily get that
A= inf J(u v) > 0. >0, so (1.3) has a solution (do, go). By Lemma 2.5, we obtain

(u,0)EN

/ wd

that /(|V]Bg02 + Agp%ﬂdx = / 2% 42, For a direct computing, we can get that
B I B L1

(Vdow, \/gow) is a positive solution of (1.1). Moreover, we have

0 < A < J(\/dop, /aop) = (do + go) Ar- (3.1)

Now if 3 > (p— 1) max{p1, po}, then we have A = J(v/dow, /o). In fact, we can take
a minimizing sequence{ (t,, v,)}ney C N for A such that J(u,,v,) — A. Then we get

2 d
(NAy N e, < /(IVBunI2 + ) Ild
B

/ (i 2+ Bl o) 2 < et + e (3.2)
and
> d ,
(NA)Fk, < /(|van|2 +a0?) Py
B I

dx ’ p_p
— [l + Blunl o) e’ < okt 4 pekRE, (33)
B 1

pd
Wherecn:(/u |2 xld
B

Z1

'ﬁ\»—\

d 1
/| n|2pﬂdx ». Note that

1 doy |
It v0) = +- /(|VBun|2 + M2 + |V |? + Avg)xllldx ,
B

and then from (3.1), we have

(NADF (¢, + kn) < NJ(tn,vp) < N(do + go) Ay + o(1), (3.4)
/chz_l +ﬁcn n = (NAl)ﬁa (35>
ok 4 Beiki Tt > (NA)F. (3.6)

Therefore, the sequences {¢,, }nen, {kn }nen are uniformly bounded. Passing to a subsequence,
we assume that ¢, — ¢ and k,, — k as n — oo for some ¢ > 0,k > 0. By (3.2) and (3.3),
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we have pi1c? 4+ 26c¢Zk? + puk? > NA > 0. That means ¢ and k are not necessary to be all
vanished. From (3.4)—(3.6), we get

S+ 7 <do+ g0,

(NAD'™F | (NAy)
c p—1 c 2_1 b i
. [m} [(NAI)“%}: [(NAl)lf%p] "zl (3.7)
-1 c b 5—1
- [m}p [<NA1>1*%] 2 [(NAlk)l’%] Tzl

Applying Lemma 2.4, we have

c k

do= e go=
" Nay R P T (AR

here we get ¢, — do(NA;)'"*% and k, — go(NA;)'"% as n — oo, and moreover,

NA= lim NJ(uy,v,) > JLIIOIO(NAl)%(Cn + k) = N(do + go) A
That is, A > (do +g0) A1 = J(Vdow, /o), and so A = J(v/do, /o) = (do+ go)A1. This
tells us that (v/dow, /gop) is a positive least energy solution of (1.1).
Next we start to prove Theorem 1.2.
Lemma 3.1 For —oo < < 0, if B is attained by a couple (u,v) € M, then this
couple is a critical point of F(u,v) in (1.7). The proof is analogous to that in [1, Lemma
2.5]. So we omit it here.

By Lemma 2.1, let S be the sharp constant of D;%(Rf) — L (RY),

d ’ * d ’ 2
Veul2 2 dz > S( [ |ul? Zlda)F. (3.8)
RY 71 RY
For € > 0, let
Uy = — NN =D T (3.9)
(€2 + |Inzq|? 4 |2'|?) =2

Then U, satisfies —Agu = |u/? ~2u in RY (see [2, 5]). Moreover,

d ’ *d / N
/ IVaU. 22t dy :/ U7 My = 5% (3.10)
RN Ty Ri X

+

Now we give the proof of first part of Theorem 1.2.
2—N
Proof of (1) in Theorem 1.2 Let ¢,, := p, * U; with U; being as in (3.9). Then
¢, satisfies the equation —Agu = p;[ul> ~2u in RY. We set e; = (0,1,0,---,0) € RY and
(ur(z),v(2)) = (Puy(2)» Pus(z+res))- Then v, — 0 weakly in D;’T(Rf) and v — 0 weakly
in L7 (RY) as r — oco. That is,
dl?l

P ’
lim ubvl —dz = 0.
T—00 Rf _’L’l
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To complete this proof, we claim that: for r > 0 sufficiently large and 5 < 0, there
exists (tyu,, $,v,) € M with ¢. > 1,s, > 1.

In fact, note that u, and v, satisfy the equation —Agu = p;|ul? ~2u. If (tu,, sv,) € M,
then we have

dJ? ’ d.r ’
t2/ pu? =L da —t2/ Ve, |2 —da
Bf X BN I

+
dx, d
—t2p/ paus p—dw +tpsp/ B|ur|p|vr|p£d:r
]B+

d / d
52/ /Lg’l}fpﬂdl' = / |VBUT|2 ay
BY o BY
2 d$1
=57 [ v} dér +1Ps” ﬁlurlp\er)
BY

Since v,.(z) — 0 (r — o0), there exists 6, > 0 for r sufﬁmently large such that v,.(z) < 0,
and lim 4, = 0. By cone Sobolev inequality, we obtain that for some C > 0,

T—00

and

d.’IJl

/ 5upvp—d ) </3253p2(/ upv—da:)2
RY Z1

dLEl ’ Il
< B2z 2/ u? ——dx v? d;v
sy o Jay

d / d /
gCﬁQ(Sfp_Q/ ,ulufp%dx / szfp%dx
1 ]Rﬁ 1

N
R+

d$ ’ d.'r ’
< / ulufp—ldx / ugvf”—ldz .
Ri I Rir\] X1
For simplicity, we denote

o, AT d /
D, = ul/ u? PO gy — ul/ gpi’iﬂd:ﬂ > 0,
RY L1 RY 1

o, AT / dx /
Dy = ug/ 20 271 —u2/ cpi’;—lda: > 0,
RY RY L1

€1

d ’
F, =g wo? Sy — 0, as r — oo.
X1
So DDy — F? > 0. Recall that (tu,, sv,) € M, and thus we get

t>PD, =tPD; + sPF,,
{ ' ' (3.11)

527PDy = sPDy + tPF,., t,s > 0.

From the first equality of (3.11), we obtain s? = (> — t*)21 > 0, and therefore ¢ > 1.
Similarly, we have s > 1. Note that (3.11) is equivalent to w(t) = 0, where

D 2=y DDy — F? DD
w(t) = Dl (2 )5 4 DSt S
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For 1 < p <2, we get w(l) = —F, > 0, and hm w(t) < 0. So there exists ¢, > 1 such that
w(t) = 0.
Note that (¢,u,, s,v,.) € M, and then we have

2Dy = P D, — tPsPF,, s> Dy = P Dy — tPsPF,. (3.12)
Up to a subsequence, if t, — 0o as r — oo, then by the fact
tzle — tEDl = SngQ — SEDQ,
we also get t — 0o (r — 00). As 2 — p < p, for r large enough, we have
2— 1 2— 1
t£D1 — t,,, le Z §th1,S£D2 — S, ng Z §S£D2.

Therefore, we obtain

P —t2p tP sP —
F. = TDl > EDMFT = 7TD2 > 2tpDz

This means that 0 < lD1D2 < F? — 0, as r — oo, which is a contradiction. Hence ¢, and
s, are uniformly bounded. By (3.12) and F,, — 0 (r — o0), we have hm t, = lim s, = 1.
For (t,u,,s,v,) € M, from (3.10) we have

B < E(tyuy, $,v,.)

1 d / d /
= (t,%/ Vi, 222 dx +s§/ Vo2 d')
N RN T RN T
+ +
1 _N-2
<t2N1 = +572nﬁ¢2 : )S%

N

Let 7 — oo, we get that B < %(,ul_N; + g = )Sz.
On the other hand, for any (u,v) € M , by the fact § < 0 and (3.8), we get that

d / d
[ vt < [ e < sy
R} SARE

d / _N-2 y d / _N-2 y
Therefore/ |V]Bu|2ﬂd;v >y 2 S7, and similarly,/ |V]Bv|2ﬂdx >y 2S7.
Rif I Ri’ X1
d ’
Note that B = ( 1r)1fM{ L / (|Veul® + |V]Bv|2)ﬂdx }, and then we obtain that B >
€ Rﬁ

N—-2

_ N— _
w1 B +hHy T )57- Hence B =  (u; 5 +ps 7 )SE,

Now if B is attained by some (u,v) € M, then (Ju|,|v]) € M and E(|u|,|v|) = B.
From Lemma 3.1, we know that (|u|, |v|) is a nontrivial solution of (1.6). By the maximum

. . d]} ’
principle, we may assume that « > 0,v > 0, and so uPvP =L dz’ > 0. Moreover, we get
RN T
+

d / dxy d ,
/ \V3u|2ﬂdx < ,ul/ |u|2” dx < S” p(/ |V]Bu|2£dx )P.
RY I Rf RN I

+ +
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It is easy to see that

N-—2 N-—2

1 det ., 1, _ _N-2
B_E(u,v)_N/ (Vsul? + Vaol) s’ > (7 4 T )SE,
Ry

vz

that is a contradiction. We complete the proof.
Now we begin to prove (2-1) in Theorem 1.2.
Proof of (2-1) in Theorem 1.2 For 8 > 0, (v/doU., /goU.) is a nontrivial solution
of (1.6) and B < E(v/doU., /goU.) = +(do + go)S= .
We let 8 > (p — 1) max{uy, 2} and {(un,v,)tneny € M be a minimizing sequence for
d "1 d "
B, that is, E(uy,v,) — B. Define ¢,, = (/ |un|2pﬂda: Ve, ky, = (/ |vn|2”ﬂdar )», and
Rf sl Rf X1
we have
2 dl’l
Se,, < Ve, | —
RY L1
dl‘l

€1

’ d ’ b D
dr = / (] tn | + Blun P[valP) 2da’ < ek + Bebd,
RY Z1

Sdn S / |VIB;’Un|2p
RN

+

/ 2 dxl ’ P D
dr = (,[142|Un| p+ﬁ|un‘p|vn|p>7dx < ,UJQde +ﬁCTQLdT2La
RY xl

+

which imply

pcht + ﬁcé_llm? > S, pakP Tt + ﬂk§_1

ya
c: > 8.

Similarly as in the proof of Theorem 1.1, we have ¢, — doS= ', d, — goS2 ! (n — 0).

Moreover, we obtain

w|2

NB = lim NE(uy,v,) > lim S(c, + k,) = (do + 90)S

n—oo n—oo

Since B < +(do + go)S* , we obtain that

1 N
B = N(do +90)S% = E(\/doU., /gU.).

Therefore (v/doUs, \/g0U:) is a positive least energy solution of (1.6).
Next we continue the proof of (2-2) in Theorem 1.2 . For this purpose we need to show
that (1.6) has a positive least energy solution for any 0 < 8 < (p—1) max{p1, pu2}. Therefore,

we assume 3 > 0, and define B := inf FE(u,v), where
(u,v)eM’

M’ = {(u,v) € D\{(0,0)}, E'(u, v)(u,v) = 0}.
It is easy to see that M C M, and so B' < B. By cone Sobolev inequality, we have B" > 0.
’ ’ N
We set Qg(1,0) = {(z1,2) € RY;(Inz1)* + |z |* < R*}, H(zo,R) = 'H;:Oz (Qgr(z0)) x
H;:O% (Qr(z0)) for zo = (1,0,---,0) € RY. Consider the system

—Agu = py|ul??2u + BlulP2ulv|P, z € Qr(xo),
—Apv = po|v[*P7?0 4 BlulPPo|ulP, x € Qr(20), (3.13)
u,v € Hylg? (Qr(wo)),
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and define B (R) := inf  FE(u,v), where
(u,v)eM’ (R)
’ d.’I,' ’
M (R) = {(u,v) € H(zo,R)\ {(0,0)}, (|Veul? + |Vmﬂ)|2)—:r Lda
1

QR(ZQ)

d 7
‘/ (aul®® + 28lul? ol + pofv]*?) = da” = 0},
QR(CE()) :I:l
Lemma 3.2 For all R > 0, we have B'(R) = B'.
Proof Let R, > R, since M/(Rg) cM Ry), we get B(R;) < B'(R2). For any
(u,v) € M'(Ry), we define

R N—-2 isE R ’ R N—-2 By R ’
(o)) = (0 T utel, o), (G 7ol ).

It is easy to see that (uy,v,) € M (Ry), and so
B (Ry) < E(uy,v1) = E(u,v) for(u,v) € M (Ry).

That is, B'(Ry) < B'(R;). Hence we have B (R;) = B (R).
Let {(tn, vn)}nen € M’ be a minimizing sequence of B'. Moreover, we may assume
N

that u,,v, € H;:g(QRn (x0)) for some R, > 0. Then (u,,v,) € M (R,) and

B = lim E(u,,v,) > lim B(R,) = B (R).

n—oo n—o0

Note that B' < B'(R) and consequently we have B'(R) = B for any R > 0.
Let 0 <e < p—1. Consider

—Agu = py |u?P7275u + BlulP72Fulv|P7E 2 € Q4 (o),

—Agv = po|v|?P 7270 + Blo|P2Cv|ulP~F x € Q4 (z0), (3.14)
1,4

u,v € Hy'¢7 (1(0)),

and define B. = inf FE.(u,v), where
(u,v)eM’

1 dl‘ ’
E.(u,v) _2/ (IVauf? +[Vaof*) T do
Q1 (z0)

1

X1 ’
2p — 2¢ '

d
/ (ki [u*P25 4 2BulP = [[P7F + oo ) ——dz
Q1 (o) X1

Set M. := {(u,v) € H(zo,R)\ (0,0), H.(u,v) := E.(u,v)(u,v) = 0}.
Lemma 3.3 For 0 < e < p — 1, there holds

B. <min{ inf F.(u,0), inf E.(0,v)}.
(u,0)EM. (0,0)EM”

The proof is analogous to that in [1, Lemma 2.7]. So we omit it here.
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Similarly as in Lemma 3.3, we have

B/<min{ inf  FE(u,0), inf E(O,U)}
(u,0)eM’ (0,0)eM’

_N-2 N-2 n
2

1
:min{E(cpm,O),E(O,gouz)}:min{ﬁ,ul 2 S

where ¢, is the same as in the proof of (1) in Theorem 1.2.

Now we introduce the “Cone Schwartz symmetrization”. Assume that € is a bounded
domain of RY and u is a real measurable function defined on 2. We define the distribution
function of w as follows uy(t) = meas{z € Q : |u(z)] > t} for t € R, where “meas”
denotes the corresponding measure in cone Sobolev space. Then we can define the decreasing
rearrangement of u in the form u(s) = inf{t € R : uy(t) < s} for s € [0, |€2]]. We call u*(x)
the cone Schwarz symmetrization of u if u*(z) = u(o,|x|}) for z € Q, where  is the sphere

),

z = (21, z'), here o, is the measure of the unit ball in Rf. Since w is decreasing, u* is partly

/

centred at xy with the same measure of 2, and |z—z|p = (|In ”z”—ll|2+|zr:'—z' 2)2 for z = (21,

radially symmetric decreasing in relation to |z|g.

Lemma 3.4 For any 0 < € < p—1, (3.14) has a classical least energy solution (u.,v.),
and u., v, are both partly radially symmetric decreasing.

Proof Fix any 0 < e < p— 1, and then it is easy to see that B, > 0. Let (u,v) € M.
with u > 0,v > 0, and (u*,v*) be its cone Schwartz symmetrization. Then we have

dz,
/ (IVsu* |2 + |Vav*[2) 2L der
Ql(mg) xl

d.ﬁUl ’

< / (PP + 281 P[0 [P~ + pualo]?2) 2L de
Ql(mg) xl

Similarly as in Lemma 3.3, there exists 0 < t* < 1 such that (t*u*,t*v*) € M., and

then we get

* ok * ok 1 1 * * * de’ 4
E(tu, t'v") = (5 — o (t )2/ ( )(lVBu 2 + |Vgv |2)x—11dac
Q] xo
1 1 dl‘ ’
< (= 2 N dr' = E : 1
< (5 2p_26)/91(960)(|v153u| +|Vao) e’ = Buw). (3.15)

We take a minimizing sequence {(un,vn)}nen C M; with u, > 0,v, > 0 such that
E (upn,v,) — B.. Let (u},v}) be its “cone Schwartz symmetrization”. Then there ex-
ists 0 < t* <1 such that (£5u*,t5v:) € M_. By (3.15), we get

n-n’'n"n

B. < E.(thu),trvr) < (t

n-n’’'n-'n n

VE (tn,vn) < Eo(tn, vy).

Therefore, we obtain t! — 1, E.(uf,v:) — B, as n — oo, and u’,v} are bounded in

1,4 .
Hy's (S (w0)). Passing to a subsequence, we may assume that u; — u., v,

H;o% (Q1(xp)). By the compactness of the embedding H;:O%(Ql(aco)) — Lyr 5. (1 () and

— v, weakly in
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N

H;O% (Q1(z0)) — L;’T‘Z(Ql(mo), we have

dxy
[ a2 2l o a2 S
Ql(mo)
2p — 2 2p — 2
=L i B(ul,vf) = 2B >0,
p—l—énﬁoo p—l—E

which means (ue,v:) # (0,0). Moreover, u. > 0,v. > 0 are partly radially symmetric.

Meanwhile, since

dry . dzy , -
4 40" < lim (IVpup ? + [Vaos ) = de,
X n— o0 Q1($0) I

/ (Vsuel? + [Vav.]?)
Ql(wo)

we get

d ,
/ (Va2 + [Vave?) XL da
Ql(x()) xl

d ’
ﬂd:): .

S/ (pia e 7725 + 2Bue P75 ve [P7° + prafve [ 77)
Ql(mo) xl

Therefore, there exists 0 < t. < 1 such that (t.ue,t.v.) € M;, and then

1 1

d
Be < Butete, teve) = (0)°(5 = 5-—57) / ( )<IVB“6|2+'VB”6'2)EC’$
Ql )

= (t=)? lim E.(u},v}) = (t)*B: < B..

’

That is t. = 1 and (u.,v.) € ./\/l; with E.(u.,v:) = Be. Therefore, u — u., v’ — v, strongly
in H;O% (Q4(x0)) as n — oo.

By Lagrange multiplier theorem, we get that there exists a Lagrange multiplier 7 € R
such that E.(ue,v.) — 7H_(uc,v.) = 0. Note that E.(ue,ve)(ue,ve) = He(ue,v.) = 0 and

’

H_(ue, ve)(ue, ve)

=(2+2:-2p) / (ke P72 4 2Buc [P v P75 + o[ 72) —
Q1 (zo0) 1

dxl ’

dx

We get that 7 = 0 and E. (u., v.) = 0. By Lemma 3.3, we see that u. % 0, v, % 0. This means
that (ue,v.) is a least energy solution of (3.14). By regularity theory and the maximum
principle, we see that u. > 0,v. > 0 in Qy(xg), ue,v. € C*(Q(xp)). This completes the
proof.

Completion of the Proof of (2-2) in Theorem 1.2 For any (u,v) € M (1), it is
easy to see that there exists t. > 0 such that (t.u,t.v) € M, with t. — 1 (¢ — 0), then

limsup B, < limsup E.(t.u,t.v) = E(u,v) for (u,v) € /\/l/(l).

e—0 e—0

By Lemma 3.2, we have

limsup B. < B'(1) = B'. (3.16)

e—0
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By Lemma 3.4, we know that there exists a positive least energy solution (u.,v.) of (3.14),
which is partly radically symmetric decreasing. Recall that E;(us, ve)(ue,v.) = 0. By cone

Sobolev inequality, we have

2 — 2 dey 1
T g / (IVsue? + |Veve ) “tde’ > Wy for 0<e< 2= (3.17)
p—e—1 01 (0) T 2

where Wy is a positive constant independent of €. Then wu,.,v. are uniformly bounded in

1,N . .
Hy'g (S (0)). Passing to a subsequence, we may assume that u. — uo, v. — vy weakly in

H;:()% (Q1(zo)) as € — 0. Then (ug,vo) is a solution of the following problem

—Apu = p[u*P?u + BlulPPulvlP, z € (o),
—Apv = p|v*~ 20 + BluP2vlul?, z € Q4 (z0),

u,v € 7‘(;’07 (4 (z0)).

Note that u.(z¢) = én(ax) ue (), ve (o) = Sgn(ax) ve(x) and define K. = max{u.(x),ve(zo)}-
1(Zo 1(xo
We claim that K. — oo as € — 0. Suppose the contrary. If K. is uniformly bounded, then
by the dominated convergent theorem, we have that

del ’ de ’
. _ 2p AT
lim P dy = ug’ —dz
=70/ (@0) 1 Q(zo) T

dl’l ’ dzr
. _ 2p ATy ,
lim v dy = vy —dx |
e—0 Ql(wo) xl Ql(wo) :Z:]-
. dxl ’ dxl ’
lim uPEP Tt —dr = ubvl —dx .
=0 J 0, (o) L1 Q1 (wo) 1

Note that E. (ue,v.) = E (ug,v9) = 0. It is standard to show that u* — ug, v* — v strongly
N

in Hézoz (Q4(x0)) as e — 0. By (3.17), we get that (ug,vo) # (0,0). Moreover, ug > 0,v9 > 0.

By the strong maximum principle, ug > 0,v9 > 0 in Q;(z(). Combining this with Pohozaev

identity (see [11]), we get
o</ (IVeuol® + |Vauol?) [(Inzy,2) - v]dS = 0,
an(ZEo)

which is a contradiction, here v denotes the outward unit normal vector on 9€Q;(xg). So
K. — +o0 as € — 0. Define

—ae

Ud(zr,2) = K- bua (e K2%), Vi(ey,a) = K- e (ay's  K2%2), ac=p—1-c.

Then we have

1 = max{U.(xg), Ve(x0)} = maX{ermaX Ue(z) max  V.(z)}, (3.18)

)
Ks—as (Io) ‘TEQKE—as (wO)
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and U,, V. satisfy

_A]BUE = M1U52p72671 + BUg)iliEvapii YIS QK?E (.CU()),

— AV = pa VP72 4 BVPTITEUPTE 1 € Qpeos (o),
N

Us, V. € Hé:oz Qe (w0)).

Since

d dz, dz,
/ VU, |2 L1 —KE(Nz)E/ Ve 2 do g/ Vw2t da,
RN RN I N X1

+ + RY

we get that {(U.,V.)} is bounded in D;%(Rf) X D;%(Rf) = D. By elliptic estimates, up
to a subsequence, we have (U.,V.) — (U,V) € D uniformly in every compact subset of RY
as ¢ — 0, and (U, V) satisfies (1.6), that is E'(U,V) = 0. Moreover, U,V > 0 are partly
radially symmetric decreasing. Note that (3.18) we get (U, V) # (0,0), and so (U, V) € M.
Then we deduce from (3.16) that

B < E(U.V) = (f _ 1 / (VaUP + |VaV| )d‘”l

1 1 d
< liminf(= — ) 1y
e—0 2 2p — 2¢

1 1
< liminf(= —
e—0 2 2p — 2¢

>/ (V5L + [VaVil?
Qe (o)

/

d
)/ (IVsuel® + |vaal2>ﬂd
Ql(iﬂo) Il

= liminf B. < B'.

e—0

So E(U,V) = B'". Note that B' < min{ inf FE(u,0), inf FE(0,0)} and we have U #
(u,0)eM’ (0,0)eM’
0,V # 0. By the strong maximum principle, U > 0, V > 0 are partly radially symmetric

decreasing. We also have (U, V) € M, andso E(U,V) > B > B', thatis, E(U,V) = B = B'.
Moreover (U, V') is positive least energy solution of (1.6), which is partly radially symmetric
decreasing.

Finally, with the help of (2.1) and [1, (2-2) in Theorem 1.6 |, we get that there exists
d(B) and g(B3) on (=2, Bs) for some (3 > 0, and I;(d(3), g()) = 0 for i = 1,2. This implies
that (\/d(B)U., /g(B)U.) is a positive solution of (1.6). Therefore we have

N-—-2 N-—-2

lim(d(B) + g(8)) = d(0) +g(0) =y = +py 7,

that is, there exists 0 < —(; < —[f5 such that

d(B) +g(8) > min{p; 7 ,py 7 } for any B € (0,5).

Recall that

N ’ 1 _v2 5y 1 _N—2 y
B<E\/ UE,\/7U (Clo-i-go)s7 B <min{ﬁu1 2§72
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and we have

E(U,V)=B" =B < E(\/d(8)U.,\/9(B)U.) for B € (0,5,),

that is, (1/d(8)U., v/g(B)U.) is a different positive solution of (1.6) with respect to (U, V).
We complete the proof of (2-2) in Theorem 1.2.
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