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1 Introduction

In this paper, we will first consider the following system




−∆Bu + λ1u = µ1u
2p−1 + βup−1vp, x ∈ int B,

−∆Bv + λ2v = µ2v
2p−1 + βvp−1up, x ∈ int B,

u ≥ 0, v ≥ 0 in int B, u = v = 0 on ∂B,

(1.1)

where N ≥ 5, p = N
N−2

, 2∗ = 2N
N−2

, −λ1(B) < λ1, λ2 < 0, µ1, µ2 > 0 and β 6= 0. Here B
is [0, 1) × X and X ⊂ RN−1 is a smooth compact domain, λ1(B) is the first eigenvalue of
−∆B with zero Dirichlet condition on ∂B, ∆B =(x1∂x1)2 + ∂2

x2
+ · · ·+ ∂2

xN
. We will look for

the positive least energy solutions for (1.1) in the cone Sobolev space H1, N
2

2,0 (B), which was
introduced in [13]. In [2], Chen-Liu-Wei considered the following problem

{
−∆Bu + λu = |u|2∗−2u, u ∈ H1, N

2
2,0 (B),

u = 0 on ∂B,
(1.2)

and got a positive solution ϕ. Recently, the authors in [8] also studied the positive least
energy solutions for p-Laplacian system. Our study is in fact motivated by the study of
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Chen-Zou (see [1]), and we investigate the semi-linear equations with critical cone Sobolev
exponent terms.

We call a solution (u, v) ∈ H nontrivial if u 6≡ 0, v 6≡ 0, where H := H1, N
2

2,0 (B)×H1, N
2

2,0 (B).
The weak solutions of (1.1) are the critical points of the functional J : H → R, which is
given by

J(u, v) =
1
2

∫

B
(|∇Bu|2 + λ1u

2)
dx1

x1

dx
′
+

1
2

∫

B
(|∇Bv|2 + λ2v

2)
dx1

x1

dx
′

− 1
2p

∫

B
(µ1|u|2p + 2β|u|p|v|p + µ2|v|2p)

dx1

x1

dx
′
. (1.3)

We say that a solution (u, v) of (1.1) is a least energy solution if (u, v) is nontrivial and
J(u, v) ≤ J(ϕ,ψ) for any other nontrivial solution (ϕ,ψ) of (1.1). If we define a “ Nehari”
manifold (see [1, 4–7, 9])

N = {(u, v) ∈ H : u 6≡ 0, v 6≡ 0, J ′(u, v)(u, 0) = J ′(u, v)(0, v) = 0},

then any nontrivial solutions of (1.1) belong to N , here J ′(·, ·) is the Fréchet differentiation
of J . We define the least energy of (1.3) as

A := inf
(u,v)∈N

J(u, v) = inf
(u,v)∈N

{ 1
N

∫

B
(|∇Bu|2 + λ1u

2 + |∇Bv|2 + λ2v
2)

dx1

x1

dx
′}.

If the equation 



µ1d
p−1 + βd

p
2−1g

p
2 = 1,

βd
p
2 g

p
2−1 + µ2g

p−1 = 1,

d > 0, g > 0

(1.4)

has a solution (d0, g0) with

d0 = min{d : (d, g) satisfies (1.4)}, (1.5)

then we prove the following theorem.
Theorem 1.1 Let (d0, g0) be a solution of (1.4) with d0 in (1.5) and −λ1(B) < λ1 =

λ2 = λ < 0. Then for any β > 0, (
√

d0ϕ,
√

g0ϕ) is a positive solution of (1.1). Moreover, if
β ≥ 2

N−2
max{µ1, µ2}, then we have J(

√
d0ϕ,

√
g0ϕ) = A, that is, (

√
d0ϕ,

√
g0ϕ) is a positive

least energy solution of (1.1).
In the second part of this paper, we consider the existence of the least energy solution

of the following problem





−∆Bu = µ1|u|2p−2u + β|u|p−2u|v|p, x ∈ RN
+ ,

−∆Bv = µ2|v|2p−2v + β|v|p−2v|u|p, x ∈ RN
+ ,

u, v ∈ D
1, N

2
2 (RN

+ ),

(1.6)
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where RN
+ = R+ × RN−1 and D

1, N
2

2 (RN
+ ) =: {u ∈ L

N
2∗
2∗ : |∇Bu| ∈ L

N
2
2 (RN

+ )} with norm

‖u‖
D

1, N
2

2

= (
∫

RN
+

|∇Bu|2 dx1

x1

dx
′
)

1
2 . Let D := D

1, N
2

2 (RN
+ ) × D

1, N
2

2 (RN
+ ) and the energy func-

tional E for (1.6) is defined as

E(u, v) =
1
2

∫

RN
+

(|∇Bu|2 + |∇Bv|2)dx1

x1

dx
′ − 1

2p

∫

RN
+

(µ1|u|2p + 2β|u|p|v|p + µ1|v|2p)
dx1

x1

dx
′
.

(1.7)
Analogously, we let

M = {(u, v) ∈ D : u 6≡ 0, v 6≡ 0, E′(u, v)(u, 0) = E′(u, v)(0, v) = 0},
B := inf

(u,v)∈M
E(u, v) = inf

(u,v)∈M
{ 1
N

∫

RN
+

(|∇Bu|2 + |∇Bv|2)dx1

x1

dx
′},

it is easy to see that any nontrivial solutions of (1.6) belong to M. Then we get the following
theorem.

Theorem 1.2 (1) If β < 0, then B is not attained.
(2) If β > 0, then there exists a positive least energy solution (U, V ) of (1.6) with

E(U, V ) = B, which is partly radially symmetric decreasing. Furthermore, we have
(2-1) Let (d0, g0) be as in Theorem 1.1. If β ≥ 2

N−2
max{µ1, µ2}, then

E(
√

d0Uε,
√

g0Uε) = B.

That is, (
√

d0Uε,
√

g0Uε) is a positive least energy solution of (1.6).
(2-2) There exists 0 < β1 ≤ 2

N−2
max{µ1, µ2} such that for any 0 < β < β1, we have a

solution (d(β), g(β)) of (1.4) with

E(
√

d(β)Uε,
√

g(β)Uε) > B = E(U, V ).

That is, (
√

d(β)Uε,
√

g(β)Uε) is a different positive solution of (1.6) with respect to (U, V ).
The terminology “partly radially symmetrization decreasing” in Theorem 1.2 will be

explained in Section 3. Meanwhile, we will introduce “cone Schwartz symmetrization” in
the same section.

The paper is organized as follows. In Section 2, we will give some preliminaries about
cone Sobolev spaces and some auxiliary results. In Section 3, we will give the proofs of
Theorems 1.1 and 1.2.

2 Preliminaries

Here we first introduce the cone Sobolev spaces. Let X be a closed, compact C∞

manifold of dimension N − 1, and set X4 = (R+ ×X)/({0} ×X) which is the local model
interpreted as a cone with the base X. More details about the manifold with singularities
can be found in [10].
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Definition 2.1 For (x1, x
′) ∈ R+ × RN−1, we say that u(x1, x

′) ∈ Lp(RN
+ , dx1

x1
dx′) if

‖u‖Lp
=

(∫

R+

∫

RN−1

xN
1 |u(x1, x

′)|p dx1

x1

dx′
)1/p

< +∞.

The weighted Lp-spaces with weight data γ ∈ R is denoted by Lγ
p(RN

+ , dx1
x1

dx′), and then
x−γ

1 u(x1, x
′) ∈ Lp(RN

+ , dx1
x1

dx′) with the norm

‖u‖Lγ
p

=
(∫

R+

∫

RN−1

xN
1 |x−γ

1 u(x1, x
′)|p dx1

x1

dx′
)1/p

< +∞.

Definition 2.2 For m ∈ N, and γ ∈ R, we define the spaces

Hm,γ
p (RN

+ ) :=
{

u ∈ D′(RN
+ );x

N
p −γ

1 (x1∂x1)
α∂β

x′u ∈ Lp(RN
+ ,

dx1

x1

dx′)
}

for arbitrary α ∈ N, β ∈ NN−1, and |α|+ |β| ≤ m. In other words, if u(x1, x
′) ∈ Hm,γ

p (RN
+ ),

then (x1∂x1)α∂β
x′u ∈ Lγ

p(Rn
+, dx1

x1
dx′). It’s easy to see that Hm,γ

p (RN
+ ) is a Banach space with

the norm

‖u‖Hm,γ
p (RN

+ ) =
∑

|α|+|β|≤m

(∫

R+

∫

RN−1

xN
1 |x−γ

1 (x1∂x1)
α∂β

x′u(x1, x
′)|p dx1

x1

dx′
)1/p

.

We will always denote ω(x1, x
′) ∈ C∞

0 (B) as a real-valued cut-off function which equals 1
near {0} × ∂B.

Definition 2.3 Let B be the stretched manifold to a manifold B with conical singu-
larities. Then Hm,γ

p (B) for m ∈ N, γ ∈ R denotes the subspace of all u ∈ W m,p
loc (int B) such

that
Hm,γ

p (B) =
{

u ∈ W m,p
loc (int B);ωu ∈ Hm,γ

p (X∧)
}

for any cut off function ω, supported by a collar neighbourhood of [0, 1) × ∂B. Moreover,
the subspace Hm,γ

p,0 (B) of Hm,γ
p (B) is defined as follows

Hm,γ
p,0 (B) := [ω]Hm,γ

p,0 (X∧) + [1− ω]W m,p
0 (int B),

where W m,p
0 (int B) denotes the closure of C∞

0 (int B) in Sobolev spaces W m,p(X̃) when X̃ is
a closed compact C∞ manifold of dimension of N that containing B as a submanifold with
boundary. More details on the properties of the spaces Hm,γ

p,0 (B) and Hm,γ
p (B) can be found

in [10].
Next, we will recall the cone Sobolev inequality and Poincaré inequality. For details we

refer to [12].
Lemma 2.1 (Cone Sobolev inequality) Assume that 1 < p < N, 1

p∗ = 1
p
− 1

N
, and

γ ∈ R. The following estimate

‖u‖
Lγ∗

p∗ (B) ≤ c1‖(x1∂x1)u‖Lγ
p(B) + (c1 + c2)

N∑
i=2

‖∂xi
u‖Lγ

p(B) + c2‖u‖Lγ
p(B)
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holds for all u ∈ C∞
0 (B), where γ∗ = γ − 1, c1 = (N−1)p

N(N−p)
, c2 =

|N− (γ−1)(N−1)p
N−p | 1

N

N
. Moreover, if

u ∈ H1,γ
p,0(B), we have ‖u‖

Lγ∗
p∗ (B) ≤ c‖u‖H1,γ

p (B), where the constant c = c1 + c2 and c1, c2 are
given.

Lemma 2.2 (Poincaré inequality). Let B = [0, 1) × X ba a bounded subset in RN
+ ,

and 1 < p < +∞, γ ∈ R. If u(x1, x
′) ∈ H1,γ

p,0(B), then ‖u(x1, x
′)‖Lγ

p(B) ≤ c‖∇Bu(x1, x
′)‖Lγ

p(B),

where the positive constant c depending only on B and p.
Lemma 2.3 For 2 < p < 2∗, the embedding H1,N/2

2,0 (B) ↪→ H0,N/p
p,0 (B) is compact. Then

we set

l1(d, g) := µ1d
p−1 + βd

p
2−1g

p
2 − 1, d > 0, g > 0;

l2(d, g) := µ2g
p−1 + βg

p
2−1d

p
2 − 1, g > 0, d > 0;

Lemma 2.4 Suppose that β ≥ (p− 1)max{µ1, µ2}. Then the following system




d + g ≤ d0 + d0,

l1(d, g) ≥ 0, l2(d, g) ≥ 0,

d > 0, g ≥ 0, (d, g) 6= (0, 0)

(2.1)

has a unique solution (d0, g0).
Proof See [1, Lemmas 2.1, 2.2, 2.3, 2.4].
Now we consider the solution of (1.2), we will prove that this solution is also a least

energy solution.
Lemma 2.5 Assume that −λ1(B) < λ < 0, and then (1.2) has a positive least energy

solution ϕ ∈ H1, N
2

2,0 (B) with energy

A1 :=
1
N

∫

B
(|∇Bϕ|2 + λϕ2)

dx1

x1

dx
′
.

Proof Let Sλ(u;B) =
‖∇Bu‖2

L

N
2

2

+λ‖u‖2
L

N
2

2
‖u‖2

L

N
2∗
2∗

and Sλ(B) = inf
u∈H

1, N
2

2,0 (B),u 6=0

Sλ(u;B). Set

C0 = 1
N

[Sλ(B)]
N
2 and the functional

fλ(u) =
1
2

∫

B
|∇Bu|2 dx1

x1

dx
′
+

λ

2

∫

B
u2 dx1

x1

dx
′ − 1

2∗

∫

B
|u|2∗ dx1

x1

dx
′
.

From the result in [2], we know that (1.2) has a positive solution with energy C0. Further-
more, we will show that C0 is the least energy of (1.2). We set

N = {u ∈ H1, N
2

2,0 (B);
∫

B

(|∇Bu|2 + λu2
) dx1

x1

dx
′
=

∫

B
|u|2∗ dx1

x1

dx
′}.

If u is the solution of (1.2), then u ∈ N and fλ(u) = 1
N
‖u‖2∗

L
N
2∗
2∗

= 1
N

[Sλ(u;B)]
N
2 . If we denote

inf
u∈N ,u 6=0

fλ(u) as the least energy of (1.2), then

inf
u∈N ,u 6=0

fλ(u) =
1
N

[ inf
u∈N ,u 6=0

Sλ(u;B)]
N
2 ≥ 1

N
[Sλ(B)]

N
2 = C0.



80 Journal of Mathematics Vol. 38

Therefore C0 = A1 = inf
u∈N ,u 6=0

fλ(u). Let ϕ be a positive critical point of fλ(u) with a critical

value A1. Then it is easy to get A1 := 1
N

∫

B
(|∇Bϕ|2 + λϕ2)

dx1

x1

dx
′
.

3 Proof of Theorem 1.1 and Theorem 1.2

In this section, we will prove Theorem 1.1 and Theorem 1.2. In particular, we will
separate the proof of Theorem 1.2 into several steps.

Proof of Theorem 1.1 For −λ1(B) < λ1 = λ2 = λ < 0, we can easily get that
A = inf

(u,v)∈N
J(u, v) > 0. β > 0, so (1.3) has a solution (d0, g0). By Lemma 2.5, we obtain

that
∫

B
(|∇Bϕ|2 + λϕ2)

dx1

x1

dx
′

=
∫

B
ϕ2∗ dx1

x1

dx
′
. For a direct computing, we can get that

(
√

d0ϕ,
√

g0ϕ) is a positive solution of (1.1). Moreover, we have

0 < A ≤ J(
√

d0ϕ,
√

g0ϕ) = (d0 + g0)A1. (3.1)

Now if β ≥ (p−1)max{µ1, µ2}, then we have A = J(
√

d0ϕ,
√

g0ϕ). In fact, we can take
a minimizing sequence{(un, vn)}n∈N ⊂ N for A such that J(un, vn) → A. Then we get

(NA1)
2
N cn ≤

∫

B
(|∇Bun|2 + λu2

n)
dx1

x1

dx
′

=
∫

B
(µ1|un|2p + β|un|p|vn|p)dx1

x1

dx
′ ≤ µ1c

p
n + βc

p
2
n k

p
2
n (3.2)

and

(NA1)
2
N kn ≤

∫

B
(|∇Bvn|2 + λv2

n)
dx1

x1

dx
′

=
∫

B
(µ2|vn|2p + β|un|p|vn|p)dx1

x1

dx
′ ≤ µ2k

p
n + βc

p
2
n k

p
2
n , (3.3)

where cn = (
∫

B
|un|2p dx1

x1

dx
′
)

1
p and kn = (

∫

B
|vn|2p dx1

x1

dx
′
)

1
p . Note that

J(un, vn) =
1
N

∫

B
(|∇Bun|2 + λu2

n + |∇Bvn|2 + λv2
n)

dx1

x1

dx
′
,

and then from (3.1), we have

(NA1)
2
N (cn + kn) ≤ NJ(un, vn) ≤ N(d0 + g0)A1 + o(1), (3.4)

µ1c
p−1
n + βc

p
2−1
n k

p
2
n ≥ (NA1)

2
N , (3.5)

µ2k
p−1
n + βc

p
2
n k

p
2−1
n ≥ (NA1)

2
N . (3.6)

Therefore, the sequences {cn}n∈N, {kn}n∈N are uniformly bounded. Passing to a subsequence,
we assume that cn → c and kn → k as n → ∞ for some c ≥ 0, k ≥ 0. By (3.2) and (3.3),
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we have µ1c
p + 2βc

p
2 k

p
2 + µ2k

p ≥ NA > 0. That means c and k are not necessary to be all
vanished. From (3.4)–(3.6), we get





c

(NA1)
1− 2

N
+ k

(NA1)
1− 2

N
≤ d0 + g0,

µ1

[
c

(NA1)
1− 2

N

]p−1
+ β

[
c

(NA1)
1− 2

N

] p
2−1[ k

(NA1)
1− 2

N

] p
2 ≥ 1,

µ2

[
k

(NA1)
1− 2

N

]p−1
+ β

[
c

(NA1)
1− 2

N

] p
2
[

k

(NA1)
1− 2

N

] p
2−1 ≥ 1.

(3.7)

Applying Lemma 2.4, we have

d0 =
c

(NA1)1−
2
N

, g0 =
k

(NA1)1−
2
N

,

here we get cn → d0(NA1)1−
2
N and kn → g0(NA1)1−

2
N as n →∞, and moreover,

NA = lim
n→∞

NJ(un, vn) ≥ lim
n→∞

(NA1)
2
N (cn + kn) = N(d0 + g0)A1.

That is, A ≥ (d0 +g0)A1 = J(
√

d0ϕ,
√

g0ϕ), and so A = J(
√

d0ϕ,
√

g0ϕ) = (d0 +g0)A1. This
tells us that (

√
d0ϕ,

√
g0ϕ) is a positive least energy solution of (1.1).

Next we start to prove Theorem 1.2.
Lemma 3.1 For −∞ < β < 0, if B is attained by a couple (u, v) ∈ M, then this

couple is a critical point of E(u, v) in (1.7). The proof is analogous to that in [1, Lemma
2.5]. So we omit it here.

By Lemma 2.1, let S be the sharp constant of D
1, N

2
2 (RN

+ ) ↪→ L
N
2∗
2∗ (RN

+ ),
∫

RN
+

|∇Bu|2 dx1

x1

dx
′ ≥ S(

∫

RN
+

|u|2∗ dx1

x1

dx
′
)

2
2∗ . (3.8)

For ε > 0, let

Uε(x1, x
′
) =

[N(N − 2)ε2]
N−2

4

(ε2 + |lnx1|2 + |x′ |2)N−2
2

. (3.9)

Then Uε satisfies −∆Bu = |u|2∗−2u in RN
+ (see [2, 5]). Moreover,

∫

RN
+

|∇BUε|2 dx1

x1

dx
′
=

∫

RN
+

|Uε|2∗ dx1

x1

dx
′
= S

N
2 . (3.10)

Now we give the proof of first part of Theorem 1.2.
Proof of (1) in Theorem 1.2 Let ϕµi

:= µ
2−N

4
i U1 with U1 being as in (3.9). Then

ϕµi
satisfies the equation −∆Bu = µi|u|2∗−2u in RN

+ . We set e2 = (0, 1, 0, · · · , 0) ∈ RN
+ and

(ur(x), vr(x)) = (ϕµ1(x), ϕµ2(x+re2)). Then vr ⇀ 0 weakly in D
1, N

2
2 (RN

+ ) and vp
r ⇀ 0 weakly

in L
N
2
2 (RN

+ ) as r →∞. That is,

lim
r→∞

∫

RN
+

up
rv

p
r

dx1

x1

dx
′
= 0.
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To complete this proof, we claim that: for r > 0 sufficiently large and β < 0, there
exists (trur, srvr) ∈M with tr > 1, sr > 1.

In fact, note that ur and vr satisfy the equation −∆Bu = µi|u|2∗−2u. If (tur, svr) ∈M,
then we have

t2
∫

BN
+

µ1u
2p
r

dx1

x1

dx
′
= t2

∫

BN
+

|∇Bur|2 dx1

x1

dx
′

= t2p

∫

BN
+

µ1u
2p
r

dx1

x1

dx
′
+ tpsp

∫

BN
+

β|ur|p|vr|p dx1

x1

dx
′

and

s2

∫

BN
+

µ2v
2p
r

dx1

x1

dx
′
= s2

∫

BN
+

|∇Bvr|2 dx1

x1

dx
′

= s2p

∫

BN
+

µ2v
2p
r

dx1

x1

dx
′
+ tpsp

∫

BN
+

β|ur|p|vr|p dx1

x1

dx
′
.

Since vr(x) → 0 (r → ∞), there exists δr > 0 for r sufficiently large such that vr(x) ≤ δr

and lim
r→∞

δr = 0. By cone Sobolev inequality, we obtain that for some C > 0,

( ∫

RN
+

βup
rv

p
r

dx1

x1

dx
′)2 ≤ β2δ2p−2

r

( ∫

RN
+

up
rv

dx1

x1

dx
′)2

≤ β2δ2p−2
r

∫

RN
+

u2p
r

dx1

x1

dx
′
∫

RN
+

v2
r

dx1

x1

dx
′

≤ Cβ2δ2p−2
r

∫

RN
+

µ1u
2p
r

dx1

x1

dx
′
∫

RN
+

µ2v
2p
r

dx1

x1

dx
′

<

∫

RN
+

µ1u
2p
r

dx1

x1

dx
′
∫

RN
+

µ2v
2p
r

dx1

x1

dx
′
.

For simplicity, we denote

D1 := µ1

∫

RN
+

u2p
r

dx1

x1

dx
′
= µ1

∫

RN
+

ϕ2p
µ1

dx1

x1

dx
′
> 0,

D2 := µ2

∫

RN
+

v2p
r

dx1

x1

dx
′
= µ2

∫

RN
+

ϕ2p
µ2

dx1

x1

dx
′
> 0,

Fr := |β|
∫

RN
+

up
rv

p
r

dx1

x1

dx
′ → 0, as r →∞.

So D1D2 − F 2
r > 0. Recall that (tur, svr) ∈M, and thus we get

{
t2−pD1 = tpD1 + spFr,

s2−pD2 = spD2 + tpFr, t, s > 0.
(3.11)

From the first equality of (3.11), we obtain sp = (t2−p − tp)D1
Fr

> 0, and therefore t > 1.
Similarly, we have s > 1. Note that (3.11) is equivalent to w(t) = 0, where

w(t) = D2[
D1

Fr

(t2−2p − 1)]
2−p

p +
D1D2 − F 2

r

Fr

t2p−2 − D1D1

Fr

.
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For 1 < p < 2, we get w(1) = −Fr > 0, and lim
t→∞

w(t) < 0. So there exists tr > 1 such that

w(t) = 0.
Note that (trur, srvr) ∈M, and then we have

t2rD1 = t2p
r D1 − tp

rs
p
rFr, s

2
rD2 = s2p

r D2 − tp
rs

p
rFr. (3.12)

Up to a subsequence, if tr →∞ as r →∞, then by the fact

t2p
r D1 − t2rD1 = s2p

r D2 − s2
rD2,

we also get t →∞ (r →∞). As 2− p < p, for r large enough, we have

tp
rD1 − t2−p

r D1 ≥ 1
2
tp
rD1, s

p
rD2 − s2−p

r D2 ≥ 1
2
sp

rD2.

Therefore, we obtain

Fr =
tp
r − t2−p

r

sp
r

D1 ≥ tp
r

2sp
r
D1, Fr =

sp
r − s2−p

r

sp
r

D2 ≥ sp
r

2tp
r
D2.

This means that 0 < 1
4
D1D2 ≤ F 2

r → 0, as r →∞, which is a contradiction. Hence tr and
sr are uniformly bounded. By (3.12) and Fr → 0 (r →∞), we have lim

r→∞
tr = lim

r→∞
sr = 1.

For (trur, srvr) ∈M, from (3.10) we have

B ≤ E(trur, srvr)

=
1
N

(t2r

∫

RN
+

|∇Bur|2 dx1

x1

dx
′
+ s2

r

∫

RN
+

|∇Bvr|2 dx1

x1

dx
′
)

=
1
N

(t2rµ
−N−2

2
1 + s2

rµ
−N−2

2
2 )S

N
2 .

Let r →∞, we get that B ≤ 1
N

(µ−
N−2

2
1 + µ

−N−2
2

2 )S
N
2 .

On the other hand, for any (u, v) ∈M , by the fact β < 0 and (3.8), we get that
∫

RN
+

|∇Bu|2 dx1

x1

dx
′ ≤ µ1

∫

RN
+

|u|2p dx1

x1

dx
′ ≤ µ1S

−p(
∫

RN
+

|∇Bu|2 dx1

x1

dx
′
)p.

Therefore
∫

RN
+

|∇Bu|2 dx1

x1

dx
′ ≥ µ

−N−2
2

1 S
N
2 , and similarly,

∫

RN
+

|∇Bv|2 dx1

x1

dx
′ ≥ µ

−N−2
2

2 S
N
2 .

Note that B = inf
(u,ν)∈M

{ 1
N

∫

RN
+

(|∇Bu|2 + |∇Bv|2)dx1

x1

dx
′}, and then we obtain that B ≥

1
N

(µ−
N−2

2
1 + µ

−N−2
2

2 )S
N
2 . Hence B = 1

N
(µ−

N−2
2

1 + µ
−N−2

2
2 )S

N
2 .

Now if B is attained by some (u, v) ∈ M, then (|u|, |v|) ∈ M and E(|u|, |v|) = B.
From Lemma 3.1, we know that (|u|, |v|) is a nontrivial solution of (1.6). By the maximum

principle, we may assume that u > 0, v > 0, and so
∫

RN
+

upvp dx1

x1

dx
′
> 0. Moreover, we get

∫

RN
+

|∇Bu|2 dx1

x1

dx
′
< µ1

∫

RN
+

|u|2p dx1

x1

dx
′ ≤ µ1S

−p(
∫

RN
+

|∇Bu|2 dx1

x1

dx
′
)p.
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It is easy to see that

B = E(u, v) =
1
N

∫

RN
+

(|∇Bu|2 + |∇Bv|2)dx1

x1
dx

′
>

1
N

(µ−
N−2

2
1 + µ

−N−2
2

2 )S
N
2 ,

that is a contradiction. We complete the proof.
Now we begin to prove (2-1) in Theorem 1.2.
Proof of (2-1) in Theorem 1.2 For β > 0, (

√
d0Uε,

√
g0Uε) is a nontrivial solution

of (1.6) and B ≤ E(
√

d0Uε,
√

g0Uε) = 1
N

(d0 + g0)S
N
2 .

We let β ≥ (p − 1)max{µ1, µ2} and {(un, vn)}n∈N ⊂ M be a minimizing sequence for

B, that is, E(un, vn) → B. Define cn = (
∫

RN
+

|un|2p dx1

x1

dx
′
)

1
p , kn = (

∫

RN
+

|vn|2p dx1

x1

dx
′
)

1
p , and

we have

Scn ≤
∫

RN
+

|∇Bun|2p dx1

x1

dx
′
=

∫

RN
+

(µ1|un|2p + β|un|p|vn|p)dx1

x1

dx
′ ≤ µ1c

p
n + βc

p
2
n d

p
2
n ,

Sdn ≤
∫

RN
+

|∇Bvn|2p dx1

x1

dx
′
=

∫

RN
+

(µ2|vn|2p + β|un|p|vn|p)dx1

x1

dx
′ ≤ µ2d

p
n + βc

p
2
n d

p
2
n ,

which imply

S(cn + dn) ≤ NE(un, vn) ≤ (d0 + g0)S
N
2 + o(1),

µ1c
p−1
n + βc

p
2−1
n k

p
2
n ≥ S, µ2k

p−1
n + βk

p
2−1
n c

p
2
n ≥ S.

Similarly as in the proof of Theorem 1.1, we have cn → d0S
N
2 −1, dn → g0S

N
2 −1 (n → ∞).

Moreover, we obtain

NB = lim
n→∞

NE(un, νn) ≥ lim
n→∞

S(cn + kn) = (d0 + g0)S
N
2 .

Since B ≤ 1
N

(d0 + g0)S
N
2 , we obtain that

B =
1
N

(d0 + g0)S
N
2 = E(

√
d0Uε,

√
g0Uε).

Therefore (
√

d0Uε,
√

g0Uε) is a positive least energy solution of (1.6).
Next we continue the proof of (2-2) in Theorem 1.2 . For this purpose we need to show

that (1.6) has a positive least energy solution for any 0 < β < (p−1)max{µ1, µ2}. Therefore,
we assume β > 0, and define B

′
:= inf

(u,v)∈M′
E(u, v), where

M′
:= {(u, v) ∈ D\{(0, 0)}, E′(u, v)(u, v) = 0}.

It is easy to see that M⊂M′
, and so B

′ ≤ B. By cone Sobolev inequality, we have B
′
> 0.

We set ΩR(1, 0) := {(x1, x
′
) ∈ RN

+ ; (lnx1)2 + |x′ |2 < R2},H(x0, R) := H1, N
2

2,0 (ΩR(x0)) ×
H1, N

2
2,0 (ΩR(x0)) for x0 = (1, 0, · · · , 0) ∈ RN

+ . Consider the system




−∆Bu = µ1|u|2p−2u + β|u|p−2u|v|p, x ∈ ΩR(x0),

−∆Bv = µ2|v|2p−2v + β|v|p−2v|u|p, x ∈ ΩR(x0),

u, v ∈ H1, N
2

2,0 (ΩR(x0)),

(3.13)
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and define B
′
(R) := inf

(u,v)∈M′ (R)
E(u, v), where

M′
(R) := {(u, v) ∈ H(x0, R) \ {(0, 0)},

∫

ΩR(x0)

(|∇Bu|2 + |∇Bv|2)dx1

x1

dx
′

−
∫

ΩR(x0)

(µ1|u|2p + 2β|u|p|v|p + µ2|v|2p)
dx1

x1

dx
′
= 0}.

Lemma 3.2 For all R > 0, we have B
′
(R) ≡ B

′
.

Proof Let R1 > R2, since M′
(R2) ⊂ M′

(R1), we get B(R1) ≤ B
′
(R2). For any

(u, v) ∈M′
(R1), we define

(u1(x), v1(x)) =
(

(
R1

R2

)
N−2

2 u(x
R1
R2
1 ,

R1

R2

x
′
), (

R1

R2

)
N−2

2 v(x
R1
R2
1 ,

R1

R2

x
′
)
)

.

It is easy to see that (u1, v1) ∈M′
(R2), and so

B
′
(R2) ≤ E(u1, v1) = E(u, v) for(u, v) ∈M′

(R1).

That is, B
′
(R2) ≤ B

′
(R1). Hence we have B

′
(R1) = B

′
(R2).

Let {(un, vn)}n∈N ⊂ M′
be a minimizing sequence of B

′
. Moreover, we may assume

that un, vn ∈ H1, N
2

2,0 (ΩRn
(x0)) for some Rn > 0. Then (un, vn) ∈M′

(Rn) and

B
′
= lim

n→∞
E(un, vn) ≥ lim

n→∞
B
′
(Rn) ≡ B

′
(R).

Note that B
′ ≤ B

′
(R) and consequently we have B

′
(R) ≡ B

′
for any R > 0.

Let 0 ≤ ε < p− 1. Consider




−∆Bu = µ1|u|2p−2−εu + β|u|p−2−εu|v|p−ε, x ∈ Ω1(x0),

−∆Bv = µ2|v|2p−2−εv + β|v|p−2−εv|u|p−ε, x ∈ Ω1(x0),

u, v ∈ H1, N
2

2,0 (Ω1(x0)),

(3.14)

and define Bε = inf
(u,v)∈M′

Eε(u, v), where

Eε(u, v) =
1
2

∫

Ω1(x0)

(|∇Bu|2 + |∇Bv|2)dx1

x1

dx
′

− 1
2p− 2ε

∫

Ω1(x0)

(µ1|u|2p−2ε + 2β|u|p−ε|v|p−ε + µ2|v|2p−2ε)
dx1

x1

dx
′
.

Set M′
ε := {(u, v) ∈ H(x0, R) \ (0, 0),Hε(u, v) := E

′
ε(u, v)(u, v) = 0}.

Lemma 3.3 For 0 < ε < p− 1, there holds

Bε < min{ inf
(u,0)∈M′

ε

Eε(u, 0), inf
(0,v)∈M′

ε

Eε(0, v)}.

The proof is analogous to that in [1, Lemma 2.7]. So we omit it here.
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Similarly as in Lemma 3.3, we have

B
′
< min

{
inf

(u,0)∈M′
E(u, 0), inf

(0,v)∈M′
E(0, v)

}

= min
{
E(ϕµ1 , 0), E(0, ϕµ2)

}
= min

{ 1
N

µ
−N−2

2
1 S

N
2 ,

1
N

µ
−N−2

2
2 S

N
2
}
,

where ϕµi
is the same as in the proof of (1) in Theorem 1.2.

Now we introduce the “Cone Schwartz symmetrization”. Assume that Ω is a bounded
domain of RN

+ and u is a real measurable function defined on Ω. We define the distribution
function of u as follows u](t) = meas{x ∈ Ω : |u(x)| > t} for t ∈ R, where “meas”
denotes the corresponding measure in cone Sobolev space. Then we can define the decreasing
rearrangement of u in the form ũ(s) = inf{t ∈ R : u](t) ≤ s} for s ∈ [0, |Ω|]. We call u∗(x)
the cone Schwarz symmetrization of u if u∗(x) = ũ(on|x|NB ) for x ∈ Ω̃, where Ω̃ is the sphere
centred at x0 with the same measure of Ω, and |x−z|B = (| ln x1

z1
|2+|x′−z

′ |2) 1
2 for x = (x1, x

′
),

z = (z1, z
′
), here on is the measure of the unit ball in RN

+ . Since ũ is decreasing, u∗ is partly
radially symmetric decreasing in relation to |x|B.

Lemma 3.4 For any 0 < ε < p− 1, (3.14) has a classical least energy solution (uε, vε),
and uε, vε are both partly radially symmetric decreasing.

Proof Fix any 0 < ε < p− 1, and then it is easy to see that Bε > 0. Let (u, v) ∈M′
ε

with u ≥ 0, v ≥ 0, and (u∗, v∗) be its cone Schwartz symmetrization. Then we have
∫

Ω1(x0)

(|∇Bu∗|2 + |∇Bv∗|2)dx1

x1

dx
′

≤
∫

Ω1(x0)

(µ1|u∗|2p−2ε + 2β|u∗|p−ε|v∗|p−ε + µ2|v|2p−2ε)
dx1

x1

dx
′
.

Similarly as in Lemma 3.3, there exists 0 < t∗ ≤ 1 such that (t∗u∗, t∗v∗) ∈ M′
ε, and

then we get

Eε(t∗u∗, t∗v∗) = (
1
2
− 1

2p− 2ε
)(t∗)2

∫

Ω1(x0)

(|∇Bu∗|2 + |∇Bv∗|2)dx1

x1

dx
′

≤ (
1
2
− 1

2p− 2ε
)
∫

Ω1(x0)

(|∇Bu|2 + |∇Bv|2)dx1

x1

dx
′
= Eε(u, v). (3.15)

We take a minimizing sequence {(un, vn)}n∈N ⊂ M′
ε with un ≥ 0, vn ≥ 0 such that

Eε(un, vn) → Bε. Let (u∗n, v∗n) be its “cone Schwartz symmetrization”. Then there ex-
ists 0 < t∗n ≤ 1 such that (t∗nu∗n, t∗nv∗n) ∈M′

ε. By (3.15), we get

Bε ≤ Eε(t∗nu∗n, t∗nv∗n) ≤ (t∗n)2Eε(un, vn) ≤ Eε(un, vn).

Therefore, we obtain t∗n → 1, Eε(u∗n, v∗n) → Bε, as n → ∞, and u∗n, v∗n are bounded in
H1, N

2
2,0 (Ω1(x0)). Passing to a subsequence, we may assume that u∗n ⇀ uε, v

∗
n ⇀ vε weakly in

H1, N
2

2,0 (Ω1(x0)). By the compactness of the embedding H1, N
2

2,0 (Ω1(x0)) ↪→ L
N

2p−2ε

2p−2ε(Ω1(x0) and
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H1, N
2

2,0 (Ω1(x0)) ↪→ L
N

p−ε

p−ε (Ω1(x0), we have
∫

Ω1(x0)

(µ1|uε|2p−2ε + 2β|uε|p−ε|vε|p−ε + µ2|vε|2p−2ε)
dx1

x1

dx
′

=
2p− 2ε

p− 1− ε
lim

n→∞
Eε(u∗n, v∗n) =

2p− 2ε

p− 1− ε
Bε > 0,

which means (uε, vε) 6= (0, 0). Moreover, uε ≥ 0, vε ≥ 0 are partly radially symmetric.
Meanwhile, since

∫

Ω1(x0)

(|∇Buε|2 + |∇Bvε|2)dx1

x1

dx
′ ≤ lim

n→∞

∫

Ω1(x0)

(|∇Bu∗n|2 + |∇Bv∗n|2)
dx1

x1

dx
′
,

we get
∫

Ω1(x0)

(|∇Buε|2 + |∇Bvε|2)dx1

x1

dx
′

≤
∫

Ω1(x0)

(µ1|uε|2p−2ε + 2β|uε|p−ε|vε|p−ε + µ2|vε|2p−2ε)
dx1

x1

dx
′
.

Therefore, there exists 0 < tε ≤ 1 such that (tεuε, tεvε) ∈M′
ε, and then

Bε ≤ Eε(tεuε, tεvε) = (tε)2(
1
2
− 1

2p− 2ε
)
∫

Ω1(x0)

(|∇Buε|2 + |∇Bvε|2)dx1

x1

dx
′

= (tε)2 lim
n→∞

Eε(u∗n, v∗n) = (tε)2Bε ≤ Bε.

That is tε = 1 and (uε, vε) ∈M′
ε with Eε(uε, vε) = Bε. Therefore, u∗n → uε, v

∗
n → vε strongly

in H1, N
2

2,0 (Ω1(x0)) as n →∞.
By Lagrange multiplier theorem, we get that there exists a Lagrange multiplier τ ∈ R

such that E
′
ε(uε, vε)− τH

′
ε(uε, vε) = 0. Note that E

′
ε(uε, vε)(uε, vε) = Hε(uε, vε) = 0 and

H
′
ε(uε, vε)(uε, vε)

=(2 + 2ε− 2p)
∫

Ω1(x0)

(µ1|uε|2p−2ε + 2β|uε|p−ε|vε|p−ε + µ2|vε|2p−2ε)
dx1

x1

dx
′
.

We get that τ = 0 and E
′
ε(uε, νε) = 0. By Lemma 3.3, we see that uε 6≡ 0, vε 6≡ 0. This means

that (uε, vε) is a least energy solution of (3.14). By regularity theory and the maximum
principle, we see that uε > 0, vε > 0 in Ω1(x0), uε, vε ∈ C2(Ω1(x0)). This completes the
proof.

Completion of the Proof of (2-2) in Theorem 1.2 For any (u, v) ∈M′
(1), it is

easy to see that there exists tε > 0 such that (tεu, tεv) ∈M′
ε with tε → 1 (ε → 0), then

lim sup
ε→0

Bε ≤ lim sup
ε→0

Eε(tεu, tεv) = E(u, v) for (u, v) ∈M′
(1).

By Lemma 3.2, we have
lim sup

ε→0
Bε ≤ B

′
(1) = B

′
. (3.16)
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By Lemma 3.4, we know that there exists a positive least energy solution (uε, vε) of (3.14),
which is partly radically symmetric decreasing. Recall that E

′
ε(uε, vε)(uε, vε) = 0. By cone

Sobolev inequality, we have

2p− 2ε

p− ε− 1
Bε =

∫

Ω1(x0)

(|∇Buε|2 + |∇Bvε|2)dx1

x1

dx
′ ≥ W0 for 0 < ε <

p− 1
2

, (3.17)

where W0 is a positive constant independent of ε. Then uε, νε are uniformly bounded in
H1, N

2
2,0 (Ω1(x0)). Passing to a subsequence, we may assume that uε ⇀ u0, vε ⇀ v0 weakly in

H1, N
2

2,0 (Ω1(x0)) as ε → 0. Then (u0, v0) is a solution of the following problem





−∆Bu = µ1|u|2p−2u + β|u|p−2u|v|p, x ∈ Ω1(x0),

−∆Bv = µ2|v|2p−2v + β|v|p−2v|u|p, x ∈ Ω1(x0),

u, v ∈ H1, N
2

2,0 (Ω1(x0)).

Note that uε(x0) = max
Ω1(x0)

uε(x), vε(x0) = max
Ω1(x0)

vε(x) and define Kε = max{uε(x0), vε(x0)}.
We claim that Kε → ∞ as ε → 0. Suppose the contrary. If Kε is uniformly bounded, then
by the dominated convergent theorem, we have that

lim
ε→0

∫

Ω1(x0)

u2p−2ε
ε

dx1

x1

dx
′
=

∫

Ω1(x0)

u2p
0

dx1

x1

dx
′
,

lim
ε→0

∫

Ω1(x0)

v2p−2ε
ε

dx1

x1

dx
′
=

∫

Ω1(x0)

v2p
0

dx1

x1

dx
′
,

lim
ε→0

∫

Ω1(x0)

up−ε
ε vp−ε

ε

dx1

x1

dx
′
=

∫

Ω1(x0)

up
0v

p
0

dx1

x1

dx
′
.

Note that E
′
ε(uε, vε) = E

′
(u0, v0) = 0. It is standard to show that u∗ε → u0, v

∗
ε → v0 strongly

in H1, N
2

2,0 (Ω1(x0)) as ε → 0. By (3.17), we get that (u0, v0) 6= (0, 0). Moreover, u0 ≥ 0, v0 ≥ 0.
By the strong maximum principle, u0 > 0, v0 > 0 in Ω1(x0). Combining this with Pohozaev
identity (see [11]), we get

0 <

∫

∂Ω1(x0)

(|∇Bu0|2 + |∇Bv0|2)
[
(lnx1, x

′
) · υ]

dS = 0,

which is a contradiction, here υ denotes the outward unit normal vector on ∂Ω1(x0). So
Kε → +∞ as ε → 0. Define

Uε(x1, x
′
) = K−1

ε uε(x
K−αε

ε

1 ,K−αε
ε x

′
), Vε(x1, x

′
) = K−1

ε vε(x
K−αε

ε

1 ,K−αε
ε x

′
), αε = p− 1− ε.

Then we have

1 = max{Uε(x0), Vε(x0)} = max{ max
x∈Ω

K
−αε
ε

(x0)
Uε(x), max

x∈Ω
K
−αε
ε

(x0)
Vε(x)}, (3.18)
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and Uε, Vε satisfy




−∆BUε = µ1U
2p−2ε−1
ε + βUp−1−ε

ε V p−ε
ε , x ∈ ΩKαε

ε
(x0),

−∆BVε = µ2V
2p−2ε−1

ε + βV p−1−ε
ε Up−ε

ε , x ∈ ΩKαε
ε

(x0),

Uε, Vε ∈ H1, N
2

2,0 (ΩKαε
ε

(x0)).

Since
∫

RN
+

|∇BUε|2 dx1

x1

dx
′
= K−(N−2)ε

ε

∫

RN
+

|∇Buε|2 dx1

x1

dx
′ ≤

∫

RN
+

|∇Buε|2 dx1

x1

dx
′
,

we get that {(Uε, Vε)} is bounded in D
1, N

2
2 (RN

+ )×D
1, N

2
2 (RN

+ ) = D. By elliptic estimates, up
to a subsequence, we have (Uε, Vε) → (U, V ) ∈ D uniformly in every compact subset of RN

+

as ε → 0, and (U, V ) satisfies (1.6), that is E
′
(U, V ) = 0. Moreover, U, V ≥ 0 are partly

radially symmetric decreasing. Note that (3.18) we get (U, V ) 6= (0, 0), and so (U, V ) ∈M′
.

Then we deduce from (3.16) that

B
′ ≤ E(U, V ) = (

1
2
− 1

2p
)
∫

RN
+

(|∇BU |2 + |∇BV |2)dx1

x1

dx
′

≤ lim inf
ε→0

(
1
2
− 1

2p− 2ε
)
∫

ΩK
αε
ε

(x0)

(|∇BUε|2 + |∇BVε|2)dx1

x1

dx
′

≤ lim inf
ε→0

(
1
2
− 1

2p− 2ε
)
∫

Ω1(x0)

(|∇Buε|2 + |∇Bvε|2)dx1

x1

dx
′

= lim inf
ε→0

Bε ≤ B
′
.

So E(U, V ) = B
′
. Note that B

′
< min{ inf

(u,0)∈M′
E(u, 0), inf

(0,v)∈M′
E(0, v)} and we have U 6≡

0, V 6≡ 0. By the strong maximum principle, U > 0, V > 0 are partly radially symmetric
decreasing. We also have (U, V ) ∈M, and so E(U, V ) ≥ B ≥ B

′
, that is, E(U, V ) = B = B

′
.

Moreover (U, V ) is positive least energy solution of (1.6), which is partly radially symmetric
decreasing.

Finally, with the help of (2.1) and [1, (2-2) in Theorem 1.6 ], we get that there exists
d(β) and g(β) on (−β2, β2) for some β2 > 0, and li(d(β), g(β)) ≡ 0 for i = 1, 2. This implies
that (

√
d(β)Uε,

√
g(β)Uε) is a positive solution of (1.6). Therefore we have

lim
β→0

(d(β) + g(β)) = d(0) + g(0) = µ
−N−2

2
1 + µ

−N−2
2

2 ,

that is, there exists 0 < −β1 ≤ −β2 such that

d(β) + g(β) > min{µ−
N−2

2
1 , µ

−N−2
2

2 } for any β ∈ (0, β1).

Recall that

B ≤ E(
√

d0Uε,
√

g0Uε) =
1
N

(d0 + g0)S
N
2 , B

′
< min{ 1

N
µ
−N−2

2
1 S

N
2 ,

1
N

µ
−N−2

2
2 S

N
2 },
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and we have

E(U, V ) = B
′
= B < E(

√
d(β)Uε,

√
g(β)Uε) for β ∈ (0, β1),

that is, (
√

d(β)Uε,
√

g(β)Uε) is a different positive solution of (1.6) with respect to (U, V ).
We complete the proof of (2-2) in Theorem 1.2.
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带临界锥Sobolev指数项方程组的最小正能量解

王 浩, 刘晓春

(武汉大学数学与统计学院, 湖北武汉 430072)

摘要: 借助Nehari流形, 本文证明了一类带临界增长项的非线性系统存在最小正能量解, 其中有一组

解部分径向对称. 推广了在经典Sobolev空间中的结果.
关键词: Nehari流形; 临界增长项; 最小正能量解; 部分径向对称

MR(2010)主题分类号: 35J20; 35J50; 35J61 中图分类号: O175.2


