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Abstract: In this paper, we discuss regression analysis of clustered current status data under

the additive hazards model. Under the situation when the correlated failure times of interest may

be related to cluster sizes, by proposing a within-cluster resampling (WCR) method, the limit

distribution theory for the corresponding estimators are derived under some regularity conditions.

Some simulation studies are conducted to assess the finite-sample behaviors of the estimators.
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1 Introduction

Case I interval-censored failure time data or current status data arise in many areas
including demographical studies, economics, medical studies, reliability studies and social
sciences, see e.g. [1–4]. By case I interval-censored data, we mean that the failure time of
interest is not exactly observed but the observation on it is either left- or right-censored. A
typical example of such data is given by a tumorigenicity study and in this case, the time
to tumor onset is often of interest. However, it is usually not observable as the presence or
absence of tumors in animals is usually known only at their death or sacrifice. In particular,
clustered current status data are commonly encountered in biomedicine.

Many procedures were developed for regression analysis of interval-censored failure time
data under various models. For example, Huang [3] developed the maximum likelihood
approach for fitting the proportional hazards model to case I interval-censored data, Chen
and Sun [5], Sun and Shen [6] discussed the same problem in the presence of clustering
and competing risks, respectively. Hu and Xiang [7] considered the efficient estimation for
semiparametric cuer models when one faces case II interval-censored data, Lin et al. [8], Chen
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and Sun [5] discussed the fitting of the additive hazards model to case I interval-censored
data. However, these methods do not take the clustered data into account or assumes that
the cluster size is completely random or noninformative, and it is well-known that this may
not be true as the outcome of interest among individuals in a cluster may be associated with
the size of the cluster. That is, we may have informative cluster sizes. In the following, we
present one approach for the problem of the regression analysis of clustered current status
data under the additive hazards model.

In the presence of informative cluster size, among others, Dunson et al. [9] proposed a
Bayesian procedure that models the relationship between the failure times of interest and
the cluster size through a latent variable. Williamson et al. [10] and Cong et al. [11] also
considered the same problem and investigated a weighted score function (WSF) approach
and a within-cluster resampling (WCR) procedure. However, it does not seem to exist an
estimation procedure for regression analysis of clustered failure time data with informative
cluster size under the additive hazards model framework and current status data.

The rest of the article is organized as follows. Section 2 proposes the model and some
notations used in this paper. Section 3 gives the WCR method by using the inference
procedure proposed by Lin et al. [8] under the additive hazards model for case I interval-
censored failure time data, and Section 4 presents some extensive simulation studies to assess
the performance of the proposed approach.

2 Notation and Model

Let i = 1, · · · , n denote the independent clusters, and j = 1, · · · , ni denote the subjects
within the i-th cluster. For subject j in the i-th cluster, for i = 1, · · · , n and j = 1, · · · , ni,

let Tij and Cij denote the failure time of interest and the censoring or observation time, and
let Zij(t) be a p-dimensional vector of covariates that may depend on time t. It is assumed
that the Tij may be dependent for the subjects within the same cluster but are independent
for subjects from different clusters. We assume that Tij is conditionally independent of Cij

given Zij(t).
We assume that the survival probabilities of individuals in a cluster depend on the size

of that cluster. However, it just as noted in Cong et al. [11], the cause for cluster sizes
being informative can be complicated and usually unknown, and some latent variables may
implicitly affect the baseline hazard for each cluster and/or covariates. If cluster sizes are
noninformative to survival, the usual marginal additive hazards model (see [12]) is

λij(t |Zij) = λ0(t) + ωiβ
′
0Zij(t), (2.1)

where β0 is the unknown vector of p-dimensional regression coefficient, ωi is the cluster-
specific random effect to account for within-cluster correlation in cluster i, and λ0(t) is the
unknown baseline hazard function. If cluster sizes are ignorable (noninformative to survival),
the usual marginal additive hazards model is applicable, given by

λij(t |Zij) = λ0(t) + β′0Zij(t). (2.2)
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For each (i, j), we define Nij(t) = I(Cij ≤ min(t, Tij)), δij = I(Cij ≤ Tij) and Yij(t) =
I(Cij ≥ t) and let λc(t) denote the hazard function of the Cij ’s. Also define

λ̃ij(t|Zij(s)) = λc(t) e−Λ0(t) e−β′0Z∗ij(t) := λc
0(t) e−β′0Z∗ij(t),

where Λ0(t) =
∫ t

0

λ0(s)ds and Z∗ij(t) =
∫ t

0

Zij(s)ds, and

Mij(t) = Nij(t)−
∫ t

0

Yij(u)λc
0(u)e−β′0Z∗ij(u)du.

Note that Mij(t) is a local square-integrable martingale with respect to the marginal
filtration

Fij(t) = σ{Nij(u), Yij(u), Zij(u), 0 ≤ u ≤ t}
(see Lin et al. [8]), and λ̃ij(t|Zij(s)) satisfies the Cox proportional hazards model. However,
due to the within-cluster dependence, Mij(t) is not a martingale with respect to the joint
filtration generated by the history of all the failure, censoring and covariate information up
to time t.

3 A Method Based on the Within-Cluster Resampling Technique

When cluster sizes are informative, the estimates and inference based on equation (2.2)
may be incorrect. To account for informative cluster sizes, this section will propose a method
based on the within-cluster resampling (WCR) technique. The basic idea behind the WCR-
based procedure is that one observation is randomly sampled with replacement from each
of the n clusters using the WCR approach (refer to Hoffman et al. [13]). For this, we
randomly sample one subject with replacement from each of the n clusters, and suppose
that the resampling process is repeated K times, where K is a large fixed number. Let τ

denote a known time for the length of study period, the k-th resampled data set denoted
by {Ci,k, δi,k, Zi,k(t); i = 1, · · · , n, 0 ≤ t ≤ τ}, consists of n independent observations, which
can be analyzed using model (2.2) for independent data set. Define Yi,k(t) = I(Ci,k ≥ t) and
Ni,k(t) = δi,kI(Ci,k ≤ t), for the k-th resampled data, the partial likelihood function is

Lk(β) =
n∏

i=1




exp(−β′Z∗i,k(Ci,k))
n∑

j=1

Yj,k(Ci,k) exp(−β′Z∗j,k(Ci,k))




δi,k

, (3.1)

and the partial likelihood score function and observed information matrix are

Uk(β) =
n∑

i=1

∫ τ

0

(
Z∗i,k(t)−

S
(1)
k (β, t)

S
(0)
k (β, t)

)
dNi,k(t), (3.2)

Σk(β) =
n∑

i=1

∫ τ

0


S

(2)
k (β, t)

S
(0)
k (β, t)

−
(

S
(1)
k (β, t)

S
(0)
k (β, t)

)⊗2

 dNi,k(t),
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where

Z∗i,k(t) =
∫ t

0

Zi,k(s)ds,

S
(b)
k (β, t) =

1
n

n∑
j=1

Yj,k(t)
(
Z∗j,k(t)

)⊗b
e−β′Z∗j,k(t),

and a⊗b = 1, a, aa′ for b = 0, 1 and 2. The maximum partial likelihood estimator (refer to
[14]) β̂k is the solution to Uk(β) = 0. Furthermore, Lin et al. [8] showed that

√
n(β̂k − β0)

converges in distribution to a zero-mean normal random vector with covariance matrix can
be consistently estimated by nΣ−1

k (β̂k), and so β̂k is consistent.
As it is known to all that sample mean can reduce the system error, after repeating this

procedure K times, the WCR estimator for β0 can be constructed as the average of the K

resample-based estimators, that is,

β̂wcr =
1
K

K∑
k=1

β̂k.

Under some regularity conditions, we can show that
√

n(β̂wcr − β0) converges in distribu-
tion to a zero-mean normal random vector, and the covariance matrix can be consistently
estimated by

Σ̂wcr =
n

K

K∑
k=1

Σ−1
k (β̂wcr)− n

K

K∑
k=1

(β̂k − β̂wcr)(β̂k − β̂wcr)′.

The proof of this result is sketched in Appendix. It does not need some special software
to implement the proposed method. One can just input the data {Ci,k, δi,k, Z

∗
i,k(·), i =

1, · · · , n} into standard software for fitting the proportional hazards model with right-
censored data.

4 Simulation Study

In this section, we conduct some simulations to assess the finite sample performance
of the methods developed in the previous section. In the study, the failure times were
generated from model (2.1) with λ0(.) = 2. The covariate process was assumed to be
time independent for simplicity and generated from the Bernoulli distribution with success
probability p = 0.5. The censoring times were generated from the exponential distribution
with mean 1/ exp(βZi). The cluster sizes were randomly generated from uniform distribution
U{2, 3, 4, 5, 6, 7} regardless of the frailty values. Here we chose β0 = ±0.5,±0.2 and 0. The
censoring times were generated from the exponential distribution to achieve approximately
30%, 40%, 50% and 60%.

The results include the estimated bias (Bias) given by the average of the proposed esti-
mates minus the true value, the sample standard deviation (SSE) of the proposed estimates,
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the average of the proposed estimates of the standard errors (SEE), and the empirical 95%
coverage probabilities (CP). All results listed in the following table are based on 500 repli-
cations with the number of clusters n = 200, 300 and K = 500. It can be seen from Table 1
that the proposed estimate seem to be unbiased, the proposed variance estimates also seem
to be reasonable, and all estimates become better when the sample size increases.

Table 1: simulation results for estimates of β0

n = 200 n = 300
cen% β0 BIAS SSE SEE CP BIAS SSE SEE CP
30 -0.5 -0.0203 0.4416 0.4502 0.956 -0.0063 0.3683 0.3658 0.946

-0.2 -0.0247 0.4265 0.4104 0.938 -0.0103 0.4165 0.4010 0.938
0 -0.0051 0.4699 0.4776 0.948 0.0046 0.4312 0.4112 0.946

0.2 0.0020 0.4718 0.4882 0.954 -0.0056 0.4423 0.4395 0.960
0.5 -0.0011 0.5043 0.5159 0.950 0.0068 0.3865 0.3827 0.948

40 -0.5 -0.0112 0.4173 0.3923 0.928 -0.0074 0.3064 0.2950 0.944
-0.2 -0.0164 0.3531 0.3573 0.952 -0.0064 0.3373 0.3349 0.946
0 0.0026 0.4141 0.4240 0.950 0.0061 0.3456 0.3482 0.958

0.2 -0.0148 0.4542 0.4358 0.928 0.0112 0.3609 0.3593 0.940
0.5 -0.0022 0.4807 0.4602 0.952 -0.0043 0.3788 0.3827 0.954

50 -0.5 -0.0102 0.3302 0.3408 0.954 -0.0110 0.2861 0.2646 0.946
-0.2 -0.0164 0.3531 0.3573 0.952 0.0047 0.2943 0.2898 0.944
0 -0.0011 0.3658 0.3709 0.952 0.0025 0.3000 0.3057 0.952

0.2 0.0114 0.3664 0.3853 0.956 0.0106 0.3186 0.3193 0.954
0.5 0.0062 0.3989 0.4046 0.946 -0.0056 0.3233 0.3399 0.950

60 -0.5 -0.0031 0.3066 0.3063 0.944 -0.0058 0.2423 0.2465 0.950
-0.2 0.0043 0.3195 0.3291 0.954 0.0036 0.2691 0.2658 0.952
0 -0.0025 0.3335 0.3441 0.954 0.0015 0.2812 0.2805 0.944

0.2 0.0085 0.3524 0.3615 0.953 0.0091 0.2882 0.2941 0.952
0.5 0.0063 0.3999 0.3908 0.938 -0.0067 0.3210 0.3196 0.950
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Appendix: proofs of asymptotic normality of β̂wcr

We first assume that 1/n
n∑

i=1

1/ni

ni∑
j=1

Yij(t)e−β′0Z∗ij(t)Z∗ij(t), 1/n
n∑

i=1

1/ni

ni∑
j=1

Yij(t)e−β′0Z∗ij(t),

1/n
n∑

i=1

Yi,k(t)e−β′0Z∗i,ktZ∗i,k(t) and 1/n
n∑

i=1

Yi,k(t)e−β′0Z∗i,k(t) uniformly converge to κ(t), π(t),

κ̃(t) and π̃(t), respectively. For i = 1, · · · , n; j = 1, · · · , ni and some constant τ , we assume

that P{Yij(t) = 1, 0 ≤ t ≤ τ} > 0,

∫ τ

0

λc(t)dt < ∞;Zij(t) is bounded and the cluster sizes

are finite.

Since β̂k is the solution of the estimating equation Uk(β) = 0, and by the Taylor’s
expansion, we have

−Uk(β0) = Uk(β̂k)− Uk(β0) =
∂Uk(βξ)

∂βξ

(β̂k − β0), (5.1)

where βξ is on the line segment between β̂k and β0. Rewriting (5.1) yields that

√
n(β̂k − β0) =

(
1
n

∂Uk(βξ)
∂βξ

)−1 (
− 1√

n
Uk(β0)

)
.

Note that

1
n

∂Uk(β)
∂β

= =
1
n

n∑
i=1

∫ τ

0

S
(2)
k (β, s)−

(
S

(1)
k (β, s)

)⊗2

(
S

(0)
k (β, s)

)2 dNi,k(s)

=
1
n

n∑
i=1

∫ τ

0

(
Z∗i,k(s)− Z̄k(β, s)

)⊗2
Yi,k(s)e−β′Z∗i,k(s) dN̄k(s)

S
(0)
k (β, s)

:= Ak(β),
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where Z̄k(β, s) = S
(1)
k (β, s)/S

(0)
k (β, s) and N̄k(s) = n−1

n∑
i=1

Ni,k(s). Note that Ak(β) is posi-

tive definite. Since the K resamples are identically distributed, it can be seen that Ak(β0)
converges in probability to a deterministic and positive definite matrix denoted by Awcr.

Averaging over k = 1, · · · ,K resamples, it yields

√
n(β̂wcr − β0) =

1
K

K∑
k=1

√
n(β̂k − β0) =

1
K

K∑
k=1

Ak(βξ)−1 −1√
n

Uk(β0)

= −Awcr
−1 1√

nK

K∑
q=1

Uk(β0) + op(1).

It is sufficient to show that 1/(K
√

n)
K∑

q=1

Uk(β0) converges to a normal distribution as

n →∞, changing the order of summation yields that

1√
nK

K∑
k=1

Uk(β0) =
1√
n

n∑
i=1

1
K

K∑
k=1

∫ τ

0

(
Z∗i,k(t)− Z̄k(t)

)
dMi,k(t)

=
1√
n

n∑
i=1

1
K

K∑
k=1

∫ τ

0

(
Z∗i,k(t)−

κ̃(t)
π̃(t)

)
dMi,k(t) + op(1)

:=
1√
n

n∑
i=1

Ui(β0) + op(1),

where Ui(β0), i = 1, · · · , n are independent with zero mean and finite variance. By the

multivariate central limit theorem, n−1/2K−1
K∑

k=1

Uk(β0) is asymptotically normal with zero

mean and some positive definite covariance matrix. Combining with Slutsky’s theorem,√
n(β̂wcr − β0) converges in distribution to a normal random vector with zero mean and

denote the consistent estimator of the covariance matrix by Σ̂wcr.
To obtain the consistent estimator of the covariance matrix, it is similar to Hoffman et

al. [13], we first write

var(β̂k) = E
(
var(β̂k|data)

)
+ var

(
E(β̂k|data)

)
,

where the expectations on the right-hand side are over the resampling distribution for β̂k

given the data. By the fact of E(β̂k|data) = β̂wcr, it yields that

var(β̂wcr) = var(β̂k)− E(var(β̂k|data)). (5.2)

For each resampled data, var(β̂k) can be consistently estimated by Σk. By averaging

over the K resamples, the resulting estimator denoted by K−1
K∑

k=1

Σ̂k is also consistent. For

the second term on the right-hand side of (5.2), since

E(var(β̂k|data)) = E

(
1
K

K∑
k=1

(β̂k − β̂wcr)(β̂k − β̂wcr)′
)

,
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it can be estimated as the covariance matrix based on the K resamples estimators β̂k, that
is

Ω =
1
K

K∑
k=1

(β̂k − β̂wcr)(β̂k − β̂wcr)′.

Thus the estimated variance-covariance matrix of β̂wcr is

Σ̃wcr =
1
K

K∑
k=1

Σ̂k − 1
K

K∑
k=1

(β̂k − β̂wcr)(β̂k − β̂wcr)′.

To show the consistency of Σ̃wcr, it suffices to show that Ω − E(Ω) → 0 in probability
as n → ∞. Actually, by applying the same arguments as those in the proof of Cong et al.
[11], it can be shown that Ω̃−E(Ω̃) → 0 in probability as n →∞. This completes the proof.
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摘要: 本文研究了加法风险率模型下聚类的当前状态数据 (I型区间删失数据)的回归分析问题. 在相

关的失效时间数据与簇类的规模有关的情形下, 本文提出了一个簇内再抽样方法, 并在一些正则条件下给出

了相应估计量的极限分布理论. 最后通过模拟实验验证了估计量的有限样本行为.
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