Vol. 38 ( 2018)
No. 1 J. of Math. (PRC)

SOME PROPERTIES IN THE GENERALIZED
MORREY SPACES ON HOMOGENOUS CARNOT
GROUPS

LONG Pin-hong, HAN Hui-li
(School of Mathematics and Computer Science, Ningzria University, Yinchuan 750021, Chz'na)

Abstract: In this paper, the behaviors for the Riesz potential or fractional maximal operator
in the generalized Morrey spaces on the Heisenberg group and the Lebesgue spaces on the Carnot
group are studied. According to the methods of abstract harmonic analysis in Heisenberg group
and the representation formula of solution of Dirichlet problem for subLaplacian, we mainly give
some characterizations for the boundedness of the weighted Hardy operator, fractional maximal
operator and fractional potential operator in the vanishing generalized Morrey space VLP¥(G)
on homogenous Carnot group G. Moreover, we also obtain the embedding inequality for Morrey
potentials in such these spaces without vanishing norm. All these results above generalize the
related ones in the generalized Morrey spaces on the Heisenberg group and the Lebesgue spaces on
the Carnot group.
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1 Introduction

In the paper, we are mainly concerned with some properties in the generalized Morrey
spaces on homogenous Carnot group. As is now well known to all, Morrey space is the
classical generalization for Lebesgue space in function space theories. Since the classical
Morrey spaces were introduced by Morrey in [26] (or refer to [40]), there were many vari-
ants and a great deal of progress in the aspect. The classical Morrey spaces together with
the weighted Lebesgue spaces, were applied to deal with the local regularity properties of
solutions of partial differential equations (refer to [22]). In the local Morrey (or Morrey
type) spaces and the global Morrey (or Morrey type) spaces the boundednesses of various
classical operators were largely considered, for example, maximal, potential, singular, Hardy

operators and commutators and others, here we may refer to Adams [1], Akbulut et al. [2],
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Adams and Xiao [3-6], Burenkov et al. [9, 11], Guliyev et al. [12, 15], Chiarenza and Frasca
[13], Kurata et al. [23], Komori and Shirai [24], Lukkassen et al. [25], Nakai et al. [27, 28],
Persson et al. [30], Softova [35], Sugano and Tanaka [36] and references therein. In the clas-
sical harmonic analysis, the vanishing Morrey space was firstly introduced by Vitanza [38]
to discuss the regularity results for elliptic partial differential equations, and later Ragusa
[31] and Samko et al. (see [32, 34] and references therein) together systematically studied
the boundedness of various classical operators in such these type of spaces. For the char-
acterizations for classical operator in the abstract harmonic analysis, we may refer to some
books by Folland and Stein [14], Varopoulos et al. [39] and Thangavelu [37]. Guliyev et
al. (see [17, 18]) studied Riesz potential and fractional maximal operator in the generalized
Morrey spaces on the Heisenberg group. As for the properties of Lebesgue space on Carnot
group in abstract potential theory, we may refer to Bonfiglioli et al. (see [7, 8]), Gafofalo
and Rotz [19] and Han Yazhou et al. [21]. In fact, we know little about the properties of
the generalized Morrey space on Carnot group (see only [16] and [29]). Stimulated by the
above statements, we continue to study the boundedness of some operators from Samko (see
[32-34]) in the generalized Morrey spaces on Carnot group and simultaneously develop the
results from Bonfiglioli et al. (see [8]) on Carnot group. To be exact, our aim is to character
the boundedness of the weighted Hardy operator, fractional maximal operator and fractional
potential operator in the vanishing generalized Morrey spaces on Carnot group, and simul-
taneously consider the Morrey-Sobolev type embedding theorems in the generalized Morrey
spaces on Carnot group. To establish our results on Carnot group, at first we will recall
some notations, classical operators and basic properties on Carnot group below.

A Carnot group is a simply connected nilpotent Lie group G = (RY,0) whose Lie
algebra G admits a stratification. That is to say, there exist linear subspaces Vi,--- ,V} of

G so that the direct sum vector space decomposition below
G=ViED PV Vi Vil = Vi fori =12,k ~Land [Vi, Vi] =0

holds, where [V7, V;] is the subspace of G generated by the elements [X,Y] with X € V] and
Y eV,
The dilations dy : RY — RN (X > 0) is a family of automorphisms of group G satisfying

5)\(3:17” : 7xN) = ()\alxlv‘ te 7/\aNxN>7

here l=a; = = apmy < apme1 < -+ < ay are integers and m = dim(1}).

The subLaplacian operator £ = ) X; is the second-order partial differential operator

j=1
on G and its intrinsic gradient V. associated with £ can be written as follows

vl) = (Xla"' 7Xm)7

where { X1, -+, X,,} is a family of vector fields to form a linear basis of the first layer of G.
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The curve v : [a,b] — G is called horizontal if y(a) = z,v(b) =y € G and 7/(¢) € V] for
all . Define the Carnot-Caratheodory distance between x and y by

b
decte,p) =t [ (0.7 (0} de,
where the infimum is taken over all horizontal curves v connecting to x and y. Accordingly,
the Carnot-Caratheodory ball is denoted by Boc(z,7) = {y € G : dec(z,y) < r}. By the
left invariant properties, we see that

dec(zx, 2y) = doc(x,y), Bec(x,r) = xBcc(e,r), Vo,y,z € Gandr >0

and
dec(0x(2),6x(y)) = Adcc(z,y), Y,y € Gand VA > 0.

For x € G and r > 0, we denote by B(z,r) ={y € G: p(y *oz)=|y ' oz |<r} the
G-ball with z and radius r, and by B(e,7) = {y € G : p(y) < r} the open ball centered at
the identity element e of G with radius r. Here the continuous function p : G — [0,00) is a
homogenous norm on G and satisfies p(x~1) = p(x), p(d;z) = tp(x) for all z € G. Moreover,
there exists a constant ¢ > 1 such that p(xy) < c¢(p(z) + p(y)) for all z,y € G. We remark
that the pseudometric p(z,y) =| 27! oy | is equivalent to the metric doe in the following
sense

C™'p(z,y) < doc(x,y) < Cp(x,y), Yo,y € GandV C > 1,

and satisfies
p(zz,2y) = ple.y), D(e,r) = aD(e,r), Ya,y,z € Gandr >0,

where D(z,r) = {y € G : p(x,y) < r} is the metric ball associated with p. For convenience,
we will use d and B(z,r) instead of dcc and Bee(x, ), respectively.

According to the left translation and dilation, it is clearly to know that
| B(z,r) |[= 9| B(z,1) |= 79| B(0,1) |,

where the homogeneous dimension @ of G is equivalent to Q@ = > j dim(V}).
j=1
The classical generalized Morrey type space LP¢(G) on G is defined by the following

norm

_1
| fllerey:= sup @(@,7)"7 || fllzeBar)< o0

zeG,r>0

for 0 < A < Qand 1 < p < oo. Here p(z,7) belongs to the class 3 = J(G x (0,00))
of non-negative measurable functions on G x [0, 00), which are positive on G x (0,00). If
o(z,7) = r*, then LP¥(G) is exactly the classical Morrey space £P*(G) for 0 < A < Q. For
A =0and A = Q, we know that LP°(G) = L?(G) and LP?(G) = L>=(G), respectively. As
for A < 0 and XA > @, we know LP*(G) = O, where O is the set of all functions equivalent
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to 0 on G. Note that this definition of generalized Morrey type space LP¥(G) is slightly
different from the Guliyev’s one (refer to [16-18]).

Denote by WLP#(G) the generalized weak Morrey space of all functions f € LY (G)
via

_1
| fllwere@i= sup o(z,7)" 7 || fllwreB@r)< oo,

zeG,r>

where WLP(B(x,r)) is the weak LP-space of measurable functions f on B(z,r) with the
norm

1
I f llweese.ry) =l Fxpen lweee:=supt | {y € Blz,r) | f(y) >} |
>

i *
= Suptp (fXB(x,T)) (t) < 09,
t>0

where ¢g* denotes the non-increasing rearrangement of the function g.

The vanishing generalized Morrey space V LP¥(G) is defined as the spaces of all functions
f € LP?(G) such that

. _1
lim sugcp(:c,r) v || fllerB @)= 0. (1.1)
€

r—0 ,

Correspondingly, the vanishing generalized weak Morrey space VW LP#(G) is defined as the
spaces of all functions f € W.LP¥(G) such that

lim sup o(z,7)" 7 || f [lwrrB@r)= 0.
r—0 2cG

Obviously, it is natural to impose on ¢(z,r) with the following conditions

I "y (1.2)
im sup —— = .
r—04¢cG SO(I) T)
and
inf sup ¢(z,r) > 0. (1.3)
r>1 4G

From conditions (1.2) and (1.3), we easily know that the bounded functions with compact
support belong to VLP#(G) and VW LP#(G).

In the paper, we firstly consider the multi-dimensional weighted Hardy operators as
follows

HLf@) =l [ ulle)) [ L0

cfle)=|z|*w( f(y)dy
i<tz @ ¥ 1) HEf () =l 2 [* w(] I)/

ly|> || ly[Qw(lyl)

where a > 0. In the sequel G with @ = 1, the Hardy operators above may be read with the

versions

f(y)dy
)

w(y

HEf () = o uto) [ )

, Hof(x) = xaw(a))/ f(j}/()ji/, x> 0.
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If w(t) = tP, then the operators above are denoted by

d d
(o) |00 [ IO gy e [ T0
wi<lal 1Y wislzl | V|

and the one-dimensional by

15 ) oot [ LU

o arp [ fy)dy
, Haf(r) == +ﬁ/m M x> 0.
Besides, we also consider some operators as follows.
1) For f € L (G), the fractional maximal operator M@ f with order « of the function
( loc
f is defined by

2 =sup | B0 157 [ ) [y 0<a<Q
r>0 B(-r)
where the supremum is taken over all the balls B(-,7) in G. When o« = 0, M* is the centered
Hardy-Littlewood maximal operator M.
(2) The potential type operator with order « is denoted by

of = / Iy f()dy, 0<a<Q,
G

here I(-,y) = d(-,y)*~“. Here we also call I*f the G-fractional integral with order « of f.

Let f be a non-negative function on [0, ¢]. If there exists a constant C' > 1 such that
flx) < Cf(y) for all z < y or x > y, then f is named almost increasing or decreasing.
Moreover, if the two almost increasing or decreasing functions f and g satisfy c1f < g < cof
for c1,co > 0, then they are equivalent.

Definition 1.1 Let 0 < £ < cc.

Denote by W = W ([0, ¢]) the class of continuous and positive functions ¢(r) on (0, ¢]
such that the limit 71}2% ¢(r) exists and is finite.

Denote by Wy = Wy([0,£]) the class of almost increasing functions ¢(r) € W on (0, ¢).

Denote by W = W ([0,/]) the class of functions ¢(r) € W such that r%¢(r) € W, for
some a = a(p) € R.

Denote by W = W ([0, £]) the class of functions ¢(r) € W such that r~°¢(r) is almost
decreasing for some b € R.

In the rest of this paper, we will make some arrangement as follows. In Section 2, we
will introduce some necessary lemmas. In Section 3, we will discuss our main theorems and

their proofs.

2 Some Necessary Lemmas

In the section, we have something in mind to list the related lemmas. At first we provide
two results with similar ones from Persson and Samko (see [30, Proposition 3.6, 3.8]) as well

as Euclidean setting.
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Lemma 2.1 For1 < p < o0, 0< s <pand1l </ < oo, let v(t) € W([0,4]),
v(2t) < Cu(t), 22D € W([0,4)) for € G. Then

(/ | 7(2) |st>5 <CA(y NI £ lemeey 0<lyl< b,

2|<|yl v(l 2 )

where C' > 0 does not depend on y and f, and

T e % t) %
A(r) = / t@=3) 190($’dt> for z € G.
n=(/ 0

Lemma 2.2 For 1 <p<ooand0<s<p,let o(r) > Cr% and v(t) € W(R,). Then

1

</|| | ‘|f(z) N I/(Izl)dz>s <CBUy DIl f lleree), y#0,

where C' > 0 does not depend on y and f, and

B(r) = (/ tQ(l—f»)—lcpZ(x,t)y(t)dt> for z € G.

Next we will introduce the Hardy-Littlewood-Sobolev theorem for subLaplacians, which
was proved by Bonfiglioli et al. in [8].
Lemma 2.3 (see [8], Theorem 5.9.1) Let £ be a subLaplacian on the homogeneous

Carnot group G and d be an L-gauge. Suppose 0 < a < @, 1 < p < € and % =1_2o

@ pQ
Then there exists a positive constant C' = C'(a, p, G, d, L) such that
11 f llea@ < CHl fller) for every f € LP(G),
here the notation || - ||z~ denotes the L™ norm in G = RY with respect to the Lebesghe

measure.

3 Statements of Main Results

In the section we start to sate our main theorems. Firstly we consider the boundedness
of weighted Hardy operator in the vanishing Morrey type space.

Theorem 3.1 Let 1 < p,q < co and ¢ satisfy conditions (1.1)—(1.3).

(I) Suppose that w € W([0,4]), w(2t) < Cw(t), 2 € W([0,4]). If

1 o [ " b (y,r) )
sup wi(ly ) [y ["* / 2Tt | dy < oo, (3.1)
2€G.r>0 P, 7) /B(zﬂ’) 0 w(t)

then the operator H, is bounded from VL??(G) to VLY?(G).
(II) Suppose that w € W([0,4]) and w(2t) < Cw(t) or = € W ([0, 4]). If

Q 1 a
1 / Tt (y.r)
sup Wiy ) |y ™ / ————2dt | dy < o0, (3.2)
z€G,r>0 ()O(ZU, T) B(z,r) | | | | lyl w(t>
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then the operator HZ is bounded from VLP?(G) to VLY?(G).
Proof Put s =1 and v(f) = w(t) in Lemma 2.1. Then

[yl t%—l i
@ a— P SDP .’E,t
|HSf(w) IS Cw(ly ) |y @ / #dt | f llzee@)
0 w(t)

for y € B(xz,r), and we obtain

o [ [ e\
HEf e B / Wiy ) |y |1 / ———="2dt | dy. 3.3
LTy B T111 - (33)

That is to say

0,91 1
1 _ tr o (x,t)
| HS f 112 S sup / wi(|y )|y |1e@ / T2 dt | dy.
£22(6) veGr>0 (T,7) B(a,r) Iyl w(t)

Hence HJ f € L2%(G).
On the other hand, by inequality (3.3) and conditions (1.1)—(1.2), we get that

limsup ™ (z,) | Hof ||Lo(Be.r)= 0,

r=YzeG

which implies H., f € VL2#(G), i.e., the operator HY, is bounded from V LP¢(G) to VLT (G).
Similarly, applying Lemma 2.2 into H2, we have

REAENICY)

W(t) dt || f ||L‘”’W(G)

) 1< Cwlly ) |y |a/

[yl

for y € B(x,r), and we know that

8=

0o ,—2_q q
()
I HEf N e (Bar N/ Wiy l) |y ™ / dt | dy. (3.5)
La(B( ) B(z,r) [y w(t

Therefore

~—

[at

Q 1 q
1 it o (a,t)
oS su / wa i / — T 7 dt | dy, (3.6
cre@~ SIP O e (lyDlyl <y 0 y, (3.6)

and it follows HZ f € L9%(G). Moreover, with inequality (3.5) and conditions (1.1)—(1.3),
we obtain that lin% sup 7 (z,t) | HOf llLa(B(zry)= 0, and imply H2f € VLL?(G). Then
r=YzeG
we conclude the operator H is also bounded from VLP#(G) to VLY (G).
Second, we will deal with the boundedness of fractional maximal operator and potential

operator in the vanishing generalized Morrey space. When ¢(z,7) = r* and ¥(x,7) = r*,
we may obtain Corollary 3.1.
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Theorem 3.2 Let £ be a subLaplacian on the homogeneous Carnot group G and d

be an L-gauge. Suppose 0 < a < Q,1<p< g, 2=%f%andg0,¢€3. It
o ¥ (x, t)dt
Cs ;:/ S“pweqzicf‘”” ) (3.7)
5 q
for every 6 > 0 and
% o (z,t)dt a(z,r
/ %dt <@ (3.8)
t a T 4a

where Cj doesn’t depend on x € G and r > 0, then there exists a positive constant C' =
O(0,p.G.d, £) such that | M2 [cow@ C | £ lere@y | 19 lens@ C Il £ llenee
Moreover, if ¢ and 1) also satisfy conditions (1.1)—(1.3), then the operators M% and I are
bounded from V LP#(G) to VLY (G).

Here we firstly recall the definition of £-gauge d. If d is a homogeneous symmetric norm
being smooth out of the origin and satisfying £(d?>~?) = 0 in G\ {0}, then we call d L-gauge
on G (see Section 5.4 in [8]).

Proof As is well known, M f < CI®(| f |), and we only consider the case for I*. At
first we divide the function f into the expression f = f; + fy so that I¢f = I¢f; + [%fs,
where fi = fXB(z,2r) and fo = fXG\B(z,2r)- From Lemma 2.3, we see that

| I%fi laB@ ) SI I fi lLae) S C || fi llee@= C || f llr(B@2r)) - (3.9)
Then
o = v (z, t)dt
17 lascoar s [ 2Rt 1 fenwio (3.10)

Since there exist two constants cj,ca > 1 so that the inequality d(y 2 < d(z,y) < cad(y, 2)
holds for z € B(x,r) and y € G\ B(z,2r), and therefore

| f(y) | dy
| 1% f2 |La(Bar) < C/ | XxB(.r L@
(B G\B(x,2r) d(z,y)@— () L)

Put v > <. Since || XB(,R) ||Lr (@)~ R%, by the Holder inequality and Fubini’s theorem, it
follows that

d )
[ Ll / Ll [~y
G\ B(z,2r) d(.fl') y G\ B(z,2r) d .’E y) K d(z,y)

{yeG:2r<d(z,y)<t} d(ﬂl‘, y)Qiaify

T f @y ll dz, )27 2o (Bt dt

IN

C

IN

C | t7 7| f B dt,

/QT
[
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where % + 1% = 1, which implies

« Q > _Q_
1% f2 La(B(ery < Cr / 7 e sy dt.

T

Hence

o 1
@P(x,t)

o Q dt
17 s s [ 22 Rat ) 1 fenwio (3.11)

T

From inequalities (3.10) and (3.11), we see that

[e’s) 1
o Q or (z,t)dt

1T llze(B@m ST / tlet I f llzree) -

T q

By inequalities (3.7)-(3.8) and conditions (1.1)—(1.3), it follows that || I*f | zew@< C |
f |lzr#(c), and the potential operator I is bounded in the vanishing generalized Morrey
space V LP¥(G) to another vanishing generalized Morrey space VLP¥(G).

Corollary 3.1 Let £ be a subLaplacian on the homogeneous Carnot group G and d
be an L-gauge. Suppose 0 < a < @, 1 <p < % and 0 < A < @ — ap. If%:%—%,then
the operators M2 and I* are bounded from V £P*(G) to VL¥*(G), where &= %.

In Section 5.3 in [8], the function I is defined as the fundamental solution for subLapla-
cian £ on homogeneous Carnot group. That is to say, —L(I'(y~* o -)) = Dirac, holds in the
weak sense of distribution, where Dirac, is the dirac measure supported at y. Now we intend
to study the Sobolev-Stein embedding theorem and accordingly give the the Morrey-Sobolev-
Stein embedding theorem in generalized Morrey space on homogenous Carnot group.

Theorem 3.3 Let £ be a subLaplacian on the homogeneous Carnot group G of

homogenous dimension @ and d be an L-gauge. Suppose 0 < a < Q and ¢, € 3. If

g b (2, t)dt
Cs ;—/ SWseg 97 (2, )t (3.12)
)

Q
tia

for every 6 > 0 and
/ @p(m7t)dtdt§00wq(x7r)

o8 =
where Cy doesn’t depend on x € G and r > 0, then there exists a positive constant C' =
C(a,p,G,d, L) such that

| ullzow@< C |l Veu || zree) for eachu € Cg° (G, R),

where % =

Qle

1
p

Proof Applying the representation formula of solution of Dirichlet problem for sub-
Laplacian to u € C3°(G,R), by integrating by parts, we see that

ulz) = /G (VD) 0 y)V culy)dy.
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Since V. is smooth in G \ {0} and d-homogeneous of degree zero, there exists a suitable

constant C' depending only on L so that
| VD |=| BaVe(d®™9) |< Cd' ™9,
where (4 is a constant depended on d. Consequently,
@) <€ [ |Veuty) | 4 e.g)dy = I Teu (o),
Therefore, from Theorem 3.2, we obtain that
| w | zaw@< C I M| Veul) |av@)< C |l Veu |l zee @),

which is exactly the desired results to prove.
Set p(x,r) = r* and ¢ (z,r) = r* in Theorem 3.3. It is known that C§°(G, R) is sense in
LG, R) but not £/*(G, R). Hence by Theorem 3.3, we may easily infer the next corollary.
Corollary 3.2 Let £ be a subLaplacian on the homogeneous Carnot group G and
d be an L-gauge. Suppose 0 < a, A < @ and 1 < p < % Then there exists a positive
constant C' = C(a, p, G, d, L) such that

| w || can(e)< C || Veu || gor for eachu € L5 (G, R),

where

References

[1] Adams D R. A note on Riesz potentials[J]. Duke Math. J., 1975, 42(4): 765-778.

[2] Akbulut A, Guliyev V S, Mustafayev R Ch. On the boundedness of the maximal operators and
singular integral operators in generalized Morrey spaces[J]. Math. Bohem., 2012, 137(1): 27-43.

[3] Adams D R, Xiao J. Nonlinear potential analysis on Morrey spaces and their capacities[J]. Indiana
Univ. Math. J., 2004, 53(6): 1629-1663.

[4] Adams D R, Xiao J. Morrey potentials and harmonic maps[J]. Comm. Math. Phys., 2011, 308:
439-456.

[6] Adams D R, Xiao J. Regularity of Morrey commutators[J]. Trans. Amer. Math. Soc., 2012, 364:
4801-4818.

[6] Adams D R, Xiao J. Morrey spaces in harmonic analysis[J]. Ark. Mat., 2012, 50: 201-230.

[7] Bonfiglioli A, Lanconelli E. Subharmonic functions on Carnot groups[J]. Math. Ann., 2003, 325:
97-122.

[8] Bonfiglioli A, Lanconelli E; Uguzzoni F. Stratifield Lie groups and potential theory for their sub-
Laplacian[M]. Berlin, Heidelberg: Springer-Verlag, 2007.

[9] Burenkov V I, Guliyev V S. Necessary and sufficient conditions for the boundedness of the Riesz
potential in local Morrey type spaces[J]. Potential Anal., 2009, 30(3): 211-249.



No.

1 Some properties in the generalized Morrey spaces on homogenous Carnot groups 55

(10]
(1]

(12]

(13]
(14]
(15]

(16]

Burenkov V, Gogatishvili A, Guliyev V S, Mustafayev R Ch. Boundedness of the fractional maximal
operator in local Morrey type spaces[J]. Compl. Var. Ell. Equ., 2010, 55(8-10): 739-758.

Burenkov V, Gogatishvili A, Guliyev V S, Mustafayev R Ch. Boundedness of the fractional maximal
operator in local Morrey type spaces[J]. Potential Anal., 2011, 35(1): 67-87.

Burenkov V I, Guliyev V S, Serbetci A, Tararykova T V. Necessary and sufficient conditions for the
boundedness of genuine singular integral operators in local Morrey type spaces[J]. Eurasian Math.
J., 2010, 1: 32-53.

Chiarenza F, Frasca M. Morrey spaces and Hardy-Littlewood maximal function[J]. Rend. Math.,
1987, 7(7): 273-279.

Folland G B, Stein E M. Hardy spaces on homogeneous groups, mathematical notes, 28[M]. New
York: Princeton University Press, 1982.

Guliyev V S, Aliyev S S, Karaman T, Shukurov P S. Boundedness of sublinear operators and
commutators on generalized Morrey spaces[J]. Integ. Equ. Oper. The., 2011, 71(3): 327-355.
Guliyev V S, Akbulut A, Mammadov Y Y. Boundedness of fractional maximal operators and their
higher order commutators in generalized Morrey spaces on Carnot groups[J]. Acta Math. Sci., 2013,
33B(5): 1329-1346.

Guliyev V S, Eroglu A, Mammadov Y Y. Riesz potential in generalized Morrey spaces on the
Heisenberg group[J]. J. Math. Sci., 2013, 189(3): 365-382.

Guliyev V S, Mammadov Y Y. Boundedness of fractional maximal operators in generalized Morrey
spaces on the Heisenberg group[J]. Indian J. Pure Appl. Math., 2013, 44(2): 185-202.

Garofalo N, Rotz K. Properties of a frequency of Almgren type for harmonic functions in Carnot
groups[J]. Calc. Var., 2015, 54: 2197-2238.

Heinonen J, Kilpeldinen T, Martio O. Nonlinear potential theory of degenerate elliptic equations,
Oxford mathematical monographs[M]. Oxford: Oxford University Press, 1993.

Han Yazhou, Luo Xuebo, Niu Pengcheng. A Liouville type theorem of semilinear equations on the
Carnot group[J]. J. of Math.(PRC), 2007, 27(6): 149-153.

Kufner A O, John O, Fucik S. Function spaces[M]. Leyden: Noordhoff International Publishing,
Prague: Publishing House Czechoslovak Academy of Sciences, 1977.

Kurata K, Nishigaki S, Sugano S. Boundedness of integral operators on generalized Morrey spaces
and its application to Schrodinger operators[J]. Proc. Am. Math. Soc., 2000, 128(4): 1125-1134.
Komori Y, Shirai S. Weighted Morrey spaces and a singular integral operator[J]. Math. Nachr.,
2009, 282(2): 219-231.

Lukkassen D, Meidell A, Persson L E, Samko N. Hardy and singular operators in weighted gen-
eralized Morrey spaces with applications to singular integral equations[J]. Math. Meth. Appl. Sci.,
2012, 35(11): 1300-1311.

Morrey C B. on the solutions of quasi-linear elliptic partial differential equations[J]. Trans. Amer.
Math. Soc., 1938, 43: 126-166.

Nakai E. Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials
on generalized Morrey spaces[J]. Math. Nachr., 1994, 166: 95-103.

Nakai E. Generalized fractional integrals on generalized Morrey spaces[J]. Math. Nachr., 2014, 287(2-
3): 339-351.

Nakai E. The Campanato, Morrey and Holder spaces on spaces of homogeneous type[J]. Studia
Math., 2006, 176(1): 1-19.

Persson L E, Samko N. Weighted Hardy and potential operators in the generalized Morrey spaces[J].
J. Math. Anal. Appl., 2011, 377(2): 792-806.



56 Journal of Mathematics Vol. 38

[31] Ragusa M A. Commutators of fractional integral operators on Vanishing Morrey spaces[J]. J. Glob.
Optim., 2008, 40(1-3): 361-368.

[32] Samko N. Weighted Hardy and singular operators in Morrey spaces[J]. J. Math. Anal. Appl., 2009,
350(1): 56-72.

[33] Samko N. Weighted Hardy operators in the local generalized vanishing Morrey spaces[J]. Positivity,
2013, 17(3): 683-706.

[34] Samko N. On Maximal, potential and singular operators in vanishing generalized Morrey spaces[J].
J. Glob. Optim., 2013, 57(4): 1385-1399.

[35] Softova L. Singular integrals and commutators in generalized Morrey spaces[J]. Acta Math. Sin.,
Engl. Ser., 2006, 22(3): 757-766.

[36] Sugano S, Tanaka H. Boundedness of fractional integral operators on generalized Morrey spaces[J].
Sci. Math. Jpn., 2003, 58(3): 531-540.

[37] Thangavelu S. Harmonic analysis on the Heisenberg group, vol. 159 of progress in mathematics[M].
Boston: Birkhauser, 1998.

[38] Vitanza C. Functions with vanishing Morrey norm and elliptic partial differential equations[A].
Proceedings of methods of real analysis and partial differential equations[C]. Capri: Springer, 1990.

[39] Varopoulos N, Saloff-Coste L, Coulhon T. Analysis and geometry on groups|M]. New York: Cam-
bridge Univ Press, 1992.

[40] Zorko C T. Morrey space[J]. Proc. Amer. Math. Soc., 1986, 98(4): 586-592.

K T35 RCarnotdf £~ X Morrey Z[8]-h—LE 4 5

Jeah L, N
(TERFHCA SR, TE )1 750021)

WE: AKRHFR T 5% T Heisenberghf b #) X Morrey#* [i] #lCarnot# _I i) Lebesgue® [f] F Riesz{ir
BT BE BN K F AT 8. R #EHeisenberg# 7 3 5 98 F1 4 #7777 LA KsubLaplacian®
) Dirichlet 7| @RI E R AN, ALFBELEH T KT FIRCarnot BEG L KT X Morrey 2[RIV LP#(G) H
WA Hardy 5T 70 0¥ RO ST F0 20 S A 3487 108 PRz . 3 it 75 2007 R B U Morrey &
] _EMorrey fi AR AARSE N, AT XL ™ 7 X T Heisenberghf [ X MorreyZs [f] Fl Carnot #f -
[ LebesgueZs [H] H FRIAH 45 16

X B8 Carnot#f; MM Hardy 5T 8K E T BN AL AHE T | U Morrey %= [d]

MR(2010)E 88 43 2£ 5:  42B20; 42B25; 42B35; 43A15; 43A80 FESES: 0174.2; O177.5;
0152.8



