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Abstract: In this paper, the behaviors for the Riesz potential or fractional maximal operator

in the generalized Morrey spaces on the Heisenberg group and the Lebesgue spaces on the Carnot

group are studied. According to the methods of abstract harmonic analysis in Heisenberg group

and the representation formula of solution of Dirichlet problem for subLaplacian, we mainly give

some characterizations for the boundedness of the weighted Hardy operator, fractional maximal

operator and fractional potential operator in the vanishing generalized Morrey space V Lp,ϕ(G)

on homogenous Carnot group G. Moreover, we also obtain the embedding inequality for Morrey

potentials in such these spaces without vanishing norm. All these results above generalize the

related ones in the generalized Morrey spaces on the Heisenberg group and the Lebesgue spaces on

the Carnot group.
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1 Introduction

In the paper, we are mainly concerned with some properties in the generalized Morrey
spaces on homogenous Carnot group. As is now well known to all, Morrey space is the
classical generalization for Lebesgue space in function space theories. Since the classical
Morrey spaces were introduced by Morrey in [26] (or refer to [40]), there were many vari-
ants and a great deal of progress in the aspect. The classical Morrey spaces together with
the weighted Lebesgue spaces, were applied to deal with the local regularity properties of
solutions of partial differential equations (refer to [22]). In the local Morrey (or Morrey
type) spaces and the global Morrey (or Morrey type) spaces the boundednesses of various
classical operators were largely considered, for example, maximal, potential, singular, Hardy
operators and commutators and others, here we may refer to Adams [1], Akbulut et al. [2],
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Adams and Xiao [3–6], Burenkov et al. [9, 11], Guliyev et al. [12, 15], Chiarenza and Frasca
[13], Kurata et al. [23], Komori and Shirai [24], Lukkassen et al. [25], Nakai et al. [27, 28],
Persson et al. [30], Softova [35], Sugano and Tanaka [36] and references therein. In the clas-
sical harmonic analysis, the vanishing Morrey space was firstly introduced by Vitanza [38]
to discuss the regularity results for elliptic partial differential equations, and later Ragusa
[31] and Samko et al. (see [32, 34] and references therein) together systematically studied
the boundedness of various classical operators in such these type of spaces. For the char-
acterizations for classical operator in the abstract harmonic analysis, we may refer to some
books by Folland and Stein [14], Varopoulos et al. [39] and Thangavelu [37]. Guliyev et
al. (see [17, 18]) studied Riesz potential and fractional maximal operator in the generalized
Morrey spaces on the Heisenberg group. As for the properties of Lebesgue space on Carnot
group in abstract potential theory, we may refer to Bonfiglioli et al. (see [7, 8]), Gafofalo
and Rotz [19] and Han Yazhou et al. [21]. In fact, we know little about the properties of
the generalized Morrey space on Carnot group (see only [16] and [29]). Stimulated by the
above statements, we continue to study the boundedness of some operators from Samko (see
[32–34]) in the generalized Morrey spaces on Carnot group and simultaneously develop the
results from Bonfiglioli et al. (see [8]) on Carnot group. To be exact, our aim is to character
the boundedness of the weighted Hardy operator, fractional maximal operator and fractional
potential operator in the vanishing generalized Morrey spaces on Carnot group, and simul-
taneously consider the Morrey-Sobolev type embedding theorems in the generalized Morrey
spaces on Carnot group. To establish our results on Carnot group, at first we will recall
some notations, classical operators and basic properties on Carnot group below.

A Carnot group is a simply connected nilpotent Lie group G ≡ (RN , ◦) whose Lie
algebra G admits a stratification. That is to say, there exist linear subspaces V1, · · · , Vk of
G so that the direct sum vector space decomposition below

G = V1

⊕
· · ·

⊕
Vk, [V1, Vi] = Vi+1 for i = 1, 2, · · · , k − 1 and [V1, Vk] = 0

holds, where [V1, Vi] is the subspace of G generated by the elements [X, Y ] with X ∈ V1 and
Y ∈ Vi.

The dilations δλ : RN → RN (λ > 0) is a family of automorphisms of group G satisfying

δλ(x1, · · · , xN ) = (λα1x1, · · · , λαN xN ),

here 1 = α1 = · · · = αm < αm+1 ≤ · · · ≤ αN are integers and m = dim(V1).

The subLaplacian operator L =
m∑

j=1

X2
j is the second-order partial differential operator

on G and its intrinsic gradient ∇L associated with L can be written as follows

∇L = (X1, · · · , Xm),

where {X1, · · · , Xm} is a family of vector fields to form a linear basis of the first layer of G.
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The curve γ : [a, b] → G is called horizontal if γ(a) = x, γ(b) = y ∈ G and γ′(t) ∈ V1 for
all t. Define the Carnot-Caratheodory distance between x and y by

dCC(x, y) = inf
γ

∫ b

a

〈γ′(t), γ′(t)〉 1
2 dt,

where the infimum is taken over all horizontal curves γ connecting to x and y. Accordingly,
the Carnot-Caratheodory ball is denoted by BCC(x, r) = {y ∈ G : dCC(x, y) < r}. By the
left invariant properties, we see that

dCC(zx, zy) = dCC(x, y), BCC(x, r) = xBCC(e, r), ∀x, y, z ∈ G and r > 0

and
dCC(δλ(x), δλ(y)) = λdCC(x, y), ∀x, y ∈ G and ∀λ > 0.

For x ∈ G and r > 0, we denote by B(x, r) = {y ∈ G : ρ(y−1 ◦ x) =| y−1 ◦ x |< r} the
G-ball with x and radius r, and by B(e, r) = {y ∈ G : ρ(y) < r} the open ball centered at
the identity element e of G with radius r. Here the continuous function ρ : G→ [0,∞) is a
homogenous norm on G and satisfies ρ(x−1) = ρ(x), ρ(δtx) = tρ(x) for all x ∈ G. Moreover,
there exists a constant c ≥ 1 such that ρ(xy) ≤ c(ρ(x) + ρ(y)) for all x, y ∈ G. We remark
that the pseudometric ρ(x, y) =| x−1 ◦ y | is equivalent to the metric dCC in the following
sense

C−1ρ(x, y) ≤ dCC(x, y) ≤ Cρ(x, y), ∀x, y ∈ G and ∀ C > 1,

and satisfies

ρ(zx, zy) = ρ(x, y), D(x, r) = xD(e, r), ∀x, y, z ∈ G and r > 0,

where D(x, r) = {y ∈ G : ρ(x, y) < r} is the metric ball associated with ρ. For convenience,
we will use d and B(x, r) instead of dCC and BCC(x, r), respectively.

According to the left translation and dilation, it is clearly to know that

| B(x, r) |= rQ | B(x, 1) |= rQ | B(0, 1) |,

where the homogeneous dimension Q of G is equivalent to Q =
m∑

j=1

j dim(Vj).

The classical generalized Morrey type space Lp,ϕ(G) on G is defined by the following
norm

‖ f ‖Lp,ϕ(G):= sup
x∈G,r>0

ϕ(x, r)−
1
p ‖ f ‖Lp(B(x,r))< ∞

for 0 ≤ λ ≤ Q and 1 ≤ p ≤ ∞. Here ϕ(x, r) belongs to the class i = i(G × (0,∞))
of non-negative measurable functions on G × [0,∞), which are positive on G × (0,∞). If
ϕ(x, r) = rλ, then Lp,ϕ(G) is exactly the classical Morrey space Lp,λ(G) for 0 ≤ λ ≤ Q. For
λ = 0 and λ = Q, we know that Lp,0(G) = Lp(G) and Lp,Q(G) = L∞(G), respectively. As
for λ < 0 and λ > Q, we know Lp,λ(G) = Θ, where Θ is the set of all functions equivalent
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to 0 on G. Note that this definition of generalized Morrey type space Lp,ϕ(G) is slightly
different from the Guliyev’s one (refer to [16–18]).

Denote by WLp,ϕ(G) the generalized weak Morrey space of all functions f ∈ Lp
loc(G)

via

‖ f ‖WLp,ϕ(G):= sup
x∈G,r>0

ϕ(x, r)−
1
p ‖ f ‖WLp(B(x,r))< ∞,

where WLp(B(x, r)) is the weak Lp-space of measurable functions f on B(x, r) with the
norm

‖ f ‖WLp(B(x,r)) ≡‖ fχB(x,r) ‖WLp(G):= sup
t>0

t | {y ∈ B(x, r) :| f(y) |> t} | 1p

= sup
t>0

t
1
p (fχB(x,r))∗(t) < ∞,

where g∗ denotes the non-increasing rearrangement of the function g.
The vanishing generalized Morrey space V Lp,ϕ(G) is defined as the spaces of all functions

f ∈ Lp,ϕ(G) such that

lim
r→0

sup
x∈G

ϕ(x, r)−
1
p ‖ f ‖Lp(B(x,r))= 0. (1.1)

Correspondingly, the vanishing generalized weak Morrey space V WLp,ϕ(G) is defined as the
spaces of all functions f ∈ WLp,ϕ(G) such that

lim
r→0

sup
x∈G

ϕ(x, r)−
1
p ‖ f ‖WLp(B(x,r))= 0.

Obviously, it is natural to impose on ϕ(x, r) with the following conditions

lim
r→0

sup
x∈G

rQ

ϕ(x, r)
= 0 (1.2)

and

inf
r>1

sup
x∈G

ϕ(x, r) > 0. (1.3)

From conditions (1.2) and (1.3), we easily know that the bounded functions with compact
support belong to V Lp,ϕ(G) and V WLp,ϕ(G).

In the paper, we firstly consider the multi-dimensional weighted Hardy operators as
follows

Hα
ωf(x) =| x |α−Q ω(| x |)

∫

|y|<|x|

f(y)dy

ω(| y |) , Hα
ωf(x) =| x |α ω(| x |)

∫

|y|>|x|

f(y)dy

| y |Q ω(| y |) ,

where α ≥ 0. In the sequel G with Q = 1, the Hardy operators above may be read with the
versions

Hα
ωf(x) = xα−1ω(x)

∫ x

0

f(y)dy

ω(y)
, Hα

ωf(x) = xαω(x)
∫ ∞

x

f(y)dy

yω(y)
, x > 0.
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If ω(t) = tβ, then the operators above are denoted by

Hα
βf(x) =| x |α+β−Q

∫

|y|<|x|

f(y)dy

| y |β , Hα
βf(x) =| x |α+β

∫

|y|>|x|

f(y)dy

| y |β+Q
,

and the one-dimensional by

Hα
βf(x) = xα+β−1

∫ x

0

f(y)dy

yβ
, Hα

βf(x) = xα+β

∫ ∞

x

f(y)dy

yβ+1
, x > 0.

Besides, we also consider some operators as follows.
(1) For f ∈ L1

loc(G), the fractional maximal operator Mαf with order α of the function
f is defined by

Mα
Lf = sup

r>0
| B(·, r) | α

Q−1

∫

B(·,r)
| f(y) | dy, 0 ≤ α < Q,

where the supremum is taken over all the balls B(·, r) in G. When α = 0, Mα is the centered
Hardy-Littlewood maximal operator M.

(2) The potential type operator with order α is denoted by

Iαf =
∫

G
I(·, y)f(y)dy, 0 < α < Q,

here I(·, y) = d(·, y)α−Q. Here we also call Iαf the G-fractional integral with order α of f .
Let f be a non-negative function on [0, `]. If there exists a constant C ≥ 1 such that

f(x) ≤ Cf(y) for all x ≤ y or x ≥ y, then f is named almost increasing or decreasing.
Moreover, if the two almost increasing or decreasing functions f and g satisfy c1f ≤ g ≤ c2f

for c1, c2 > 0, then they are equivalent.
Definition 1.1 Let 0 < ` ≤ ∞.

Denote by W = W ([0, `]) the class of continuous and positive functions φ(r) on (0, `]
such that the limit lim

r→0
φ(r) exists and is finite.

Denote by W0 = W0([0, `]) the class of almost increasing functions φ(r) ∈ W on (0, `).
Denote by W = W ([0, `]) the class of functions φ(r) ∈ W such that raφ(r) ∈ W0 for

some a = a(ϕ) ∈ R.
Denote by W = W ([0, `]) the class of functions φ(r) ∈ W such that r−bφ(r) is almost

decreasing for some b ∈ R.
In the rest of this paper, we will make some arrangement as follows. In Section 2, we

will introduce some necessary lemmas. In Section 3, we will discuss our main theorems and
their proofs.

2 Some Necessary Lemmas

In the section, we have something in mind to list the related lemmas. At first we provide
two results with similar ones from Persson and Samko (see [30, Proposition 3.6, 3.8]) as well
as Euclidean setting.
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Lemma 2.1 For 1 ≤ p < ∞, 0 < s ≤ p and 1 ≤ ` ≤ ∞, let ν(t) ∈ W ([0, `]),

ν(2t) ≤ Cν(t), ϕ
s
p (x,t)

ν
∈ W ([0, `]) for x ∈ G. Then

(∫

|z|<|y|

| f(z) |s
ν(| z |) dz

) 1
s

≤ CA(| y |) ‖ f ‖Lp,ϕ(G), 0 <| y |≤ `,

where C > 0 does not depend on y and f , and

A(r) =
(∫ r

0

tQ(1− s
p )−1 ϕ

s
p (x, t)
ν(t)

dt

) 1
s

for x ∈ G.

Lemma 2.2 For 1 ≤ p < ∞ and 0 ≤ s ≤ p, let ϕ(r) ≥ CrQ and ν(t) ∈ W (R+). Then

(∫

|z|>|y|
| f(z) |s ν(| z |)dz

) 1
s

≤ CB(| y |) ‖ f ‖Lp,ϕ(G), y 6= 0,

where C > 0 does not depend on y and f , and

B(r) =
(∫ ∞

r

tQ(1− s
p )−1ϕ

s
p (x, t)ν(t)dt

) 1
s

for x ∈ G.

Next we will introduce the Hardy-Littlewood-Sobolev theorem for subLaplacians, which
was proved by Bonfiglioli et al. in [8].

Lemma 2.3 (see [8], Theorem 5.9.1) Let L be a subLaplacian on the homogeneous
Carnot group G and d be an L-gauge. Suppose 0 < α < Q, 1 < p < Q

α
and 1

q
= 1

p
− α

Q
.

Then there exists a positive constant C = C(α, p,G, d,L) such that

‖ Iαf ‖Lq(G)≤ C ‖ f ‖Lp(G) for every f ∈ Lp(G),

here the notation ‖ · ‖Lr denotes the Lr norm in G = RN with respect to the Lebesghe
measure.

3 Statements of Main Results

In the section we start to sate our main theorems. Firstly we consider the boundedness
of weighted Hardy operator in the vanishing Morrey type space.

Theorem 3.1 Let 1 ≤ p, q < ∞ and ϕ satisfy conditions (1.1)–(1.3).
(I) Suppose that ω ∈ W ([0, `]), ω(2t) ≤ Cω(t), 1

ω
∈ W ([0, `]). If

sup
x∈G,r>0

1
ϕ(x, r)

∫

B(x,r)

ωq(| y |) | y |q(α−Q)

(∫ |y|

0

t
Q
p′−1ϕ

1
p (y, r)

ω(t)
dt

)q

dy < ∞, (3.1)

then the operator Hα
ω is bounded from V Lp,ϕ(G) to V Lq,ϕ(G).

(II) Suppose that ω ∈ W ([0, `]) and ω(2t) ≤ Cω(t) or 1
ω
∈ W ([0, `]). If

sup
x∈G,r>0

1
ϕ(x, r)

∫

B(x,r)

ωq(| y |) | y |qα

(∫ ∞

|y|

t−
Q
p −1ϕ

1
p (y, r)

ω(t)
dt

)q

dy < ∞, (3.2)
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then the operator Hα
ω is bounded from V Lp,ϕ(G) to V Lq,ϕ(G).

Proof Put s = 1 and ν(t) = ω(t) in Lemma 2.1. Then

| Hα
ωf(y) |≤ Cω(| y |) | y |α−Q

∫ |y|

0

t
Q
p′−1ϕ

1
p (x, t)

ω(t)
dt ‖ f ‖Lp,ϕ(G)

for y ∈ B(x, r), and we obtain

‖ Hα
ωf ‖q

Lq(B(x,r)).
∫

B(x,r)

ωq(| y |) | y |q(α−Q)

(∫ |y|

0

t
Q
p′−1ϕ

1
p (x, t)

ω(t)
dt

)q

dy. (3.3)

That is to say

‖ Hα
ωf ‖q

Lq,ϕ(G). sup
x∈G,r>0

1
ϕ(x, r)

∫

B(x,r)

ωq(| y |) | y |q(α−Q)

(∫ ∞

|y|

t
Q
p′−1ϕ

1
p (x, t)

ω(t)
dt

)q

dy.

(3.4)
Hence Hα

ωf ∈ Lq,ϕ(G).
On the other hand, by inequality (3.3) and conditions (1.1)–(1.2), we get that

lim
r→0

sup
x∈G

ϕ−
1
q (x, t) ‖ Hα

ωf ‖Lq(B(x,r))= 0,

which implies Hα
ωf ∈ V Lq,ϕ(G), i.e., the operator Hα

ω is bounded from V Lp,ϕ(G) to V Lq,ϕ(G).
Similarly, applying Lemma 2.2 into Hα

ω, we have

| Hα
ωf(y) |≤ Cω(| y |) | y |α

∫ ∞

|y|

t−
Q
p −1ϕ

1
p (x, t)

ω(t)
dt ‖ f ‖Lp,ϕ(G)

for y ∈ B(x, r), and we know that

‖ Hα
ωf ‖q

Lq(B(x,r)).
∫

B(x,r)

ωq(| y |) | y |qα

(∫ ∞

|y|

t−
Q
p −1ϕ

1
p (x, t)

ω(t)
dt

)q

dy. (3.5)

Therefore

‖ Hα
ωf ‖q

Lq,ϕ(G). sup
x∈G,r>0

1
ϕ(x, r)

∫

B(x,r)

ωq(| y |) | y |qα

(∫ ∞

|y|

t−
Q
p −1ϕ

1
p (x, t)

ω(t)
dt

)q

dy, (3.6)

and it follows Hα
ωf ∈ Lq,ϕ(G). Moreover, with inequality (3.5) and conditions (1.1)–(1.3),

we obtain that lim
r→0

sup
x∈G

ϕ−
1
q (x, t) ‖ Hα

ωf ‖Lq(B(x,r))= 0, and imply Hα
ωf ∈ V Lq,ϕ(G). Then

we conclude the operator Hα
ω is also bounded from V Lp,ϕ(G) to V Lq,ϕ(G).

Second, we will deal with the boundedness of fractional maximal operator and potential
operator in the vanishing generalized Morrey space. When ϕ(x, r) = rλ and ψ(x, r) = rµ,
we may obtain Corollary 3.1.
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Theorem 3.2 Let L be a subLaplacian on the homogeneous Carnot group G and d

be an L-gauge. Suppose 0 < α < Q, 1 < p < Q
α
, 1

q
= 1

p
− α

Q
and ϕ,ψ ∈ i. If

Cδ :=
∫ ∞

δ

supx∈G ϕ
1
p (x, t)dt

t1+
Q
q

< ∞ (3.7)

for every δ > 0 and ∫ ∞

r

ϕ
1
p (x, t)dt

t1+
Q
q

dt ≤ C0
ψ

1
q (x, r)

r
Q
q

, (3.8)

where C0 doesn’t depend on x ∈ G and r > 0, then there exists a positive constant C =
C(α, p,G, d,L) such that ‖ Mα

Lf ‖Lq,ψ(G)≤ C ‖ f ‖Lp,ϕ(G), ‖ Iαf ‖Lq,ψ(G)≤ C ‖ f ‖Lp,ϕ(G) .

Moreover, if ϕ and ψ also satisfy conditions (1.1)–(1.3), then the operators Mα
L and Iα are

bounded from V Lp,ϕ(G) to V Lq,ψ(G).
Here we firstly recall the definition of L-gauge d. If d is a homogeneous symmetric norm

being smooth out of the origin and satisfying L(d2−Q) = 0 in G\{0}, then we call d L-gauge
on G (see Section 5.4 in [8]).

Proof As is well known, Mαf ≤ CIα(| f |), and we only consider the case for Iα. At
first we divide the function f into the expression f = f1 + f2 so that Iαf = Iαf1 + Iαf2,

where f1 = fχB(x,2r) and f2 = fχG\B(x,2r). From Lemma 2.3, we see that

‖ Iαf1 ‖Lq(B(x,r))≤‖ Iαf1 ‖Lq(G)≤ C ‖ f1 ‖Lp(G)= C ‖ f ‖Lp(B(x,2r)) . (3.9)

Then

‖ Iαf1 ‖Lq(B(x,r)). r
Q
q

∫ ∞

r

ϕ
1
p (x, t)dt

t1+
Q
q

dt ‖ f ‖Lp,ϕ(G) . (3.10)

Since there exist two constants c1, c2 ≥ 1 so that the inequality d(y,z)
c1

≤ d(x, y) ≤ c2d(y, z)
holds for z ∈ B(x, r) and y ∈ G \B(x, 2r), and therefore

‖ Iαf2 ‖Lq(B(x,r))≤ C

∫

G\B(x,2r)

| f(y) | dy

d(x, y)Q−α
‖ χB(x,r) ‖Lq(G) .

Put γ > Q
q
. Since ‖ χB(x,R) ‖Lp(G)∼ R

Q
p , by the Hölder inequality and Fubini’s theorem, it

follows that
∫

G\B(x,2r)

| f(y) | dy

d(x, y)Q−α
≤ γ

∫

G\B(x,2r)

| f(y) | dy

d(x, y)Q−α−γ

∫ ∞

d(x,y)

t−γ−1dt

= γ

∫ ∞

2r

t−γ−1dt

∫

{y∈G:2r≤d(x,y)≤t}

| f(y) | dy

d(x, y)Q−α−γ

≤ C

∫ ∞

2r

t−γ−1 ‖ f ‖Lp(B(x,t))‖ d(x, ·)α−Q+γ ‖Lp′ (B(x,t)) dt

≤ C

∫ ∞

r

t−
Q
q −1 ‖ f ‖Lp(B(x,t)) dt,
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where 1
p

+ 1
p′ = 1, which implies

‖ Iαf2 ‖Lq(B(x,r))≤ Cr
Q
q

∫ ∞

r

t−
Q
q −1 ‖ f ‖Lp(B(x,t)) dt.

Hence

‖ Iαf2 ‖Lq(B(x,r)). r
Q
q

∫ ∞

r

ϕ
1
p (x, t)dt

t1+
Q
q

dt ‖ f ‖Lp,ϕ(G) . (3.11)

From inequalities (3.10) and (3.11), we see that

‖ Iαf ‖Lq(B(x,r)). r
Q
q

∫ ∞

r

ϕ
1
p (x, t)dt

t1+
Q
q

dt ‖ f ‖Lp,ϕ(G) .

By inequalities (3.7)–(3.8) and conditions (1.1)–(1.3), it follows that ‖ Iαf ‖Lq,ψ(G)≤ C ‖
f ‖Lp,ϕ(G), and the potential operator Iα is bounded in the vanishing generalized Morrey
space V Lp,ϕ(G) to another vanishing generalized Morrey space V Lp,ψ(G).

Corollary 3.1 Let L be a subLaplacian on the homogeneous Carnot group G and d

be an L-gauge. Suppose 0 < α < Q, 1 < p < Q−λ
α

and 0 < λ < Q− αp. If 1
q

= 1
p
− α

Q
, then

the operators Mα
L and Iα are bounded from V Lp,λ(G) to V Lq,µ(G), where µ

q
= λ

p
.

In Section 5.3 in [8], the function Γ is defined as the fundamental solution for subLapla-
cian L on homogeneous Carnot group. That is to say, −L(Γ(y−1 ◦ ·)) = Diracy holds in the
weak sense of distribution, where Diracy is the dirac measure supported at y. Now we intend
to study the Sobolev-Stein embedding theorem and accordingly give the the Morrey-Sobolev-
Stein embedding theorem in generalized Morrey space on homogenous Carnot group.

Theorem 3.3 Let L be a subLaplacian on the homogeneous Carnot group G of
homogenous dimension Q and d be an L-gauge. Suppose 0 < α < Q and ϕ,ψ ∈ i. If

Cδ :=
∫ ∞

δ

supx∈G ϕ
1
p (x, t)dt

t1+
Q
q

< ∞ (3.12)

for every δ > 0 and ∫ ∞

r

ϕ
1
p (x, t)dt

t1+
Q
q

dt ≤ C0
ψ

1
q (x, r)

r
Q
q

,

where C0 doesn’t depend on x ∈ G and r > 0, then there exists a positive constant C =
C(α, p,G, d,L) such that

‖ u ‖Lq,ψ(G)≤ C ‖ OLu ‖Lp,ϕ(G) for each u ∈ C∞
0 (G,R),

where 1
q

= 1
p
− α

Q
.

Proof Applying the representation formula of solution of Dirichlet problem for sub-
Laplacian to u ∈ C∞0 (G,R), by integrating by parts, we see that

u(x) =
∫

G
(∇LΓ)(x−1 ◦ y)∇Lu(y)dy.
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Since ∇L is smooth in G \ {0} and δ-homogeneous of degree zero, there exists a suitable
constant C depending only on L so that

| ∇LΓ |=| βd∇L(d2−Q) |≤ Cd1−Q,

where βd is a constant depended on d. Consequently,

| u(x) |≤ C

∫

G
| ∇Lu(y) | d1−Q(x, y)dy = CI1(| ∇Lu |)(x).

Therefore, from Theorem 3.2, we obtain that

‖ u ‖Lq,ψ(G)≤ C ‖ I1(| ∇Lu |) ‖Lq,ψ(G)≤ C ‖ OLu ‖Lp,ϕ(G),

which is exactly the desired results to prove.
Set ϕ(x, r) = rλ and ψ(x, r) = rµ in Theorem 3.3. It is known that C∞

0 (G,R) is sense in
Lp,λ

0 (G,R) but not Lp,λ(G,R). Hence by Theorem 3.3, we may easily infer the next corollary.
Corollary 3.2 Let L be a subLaplacian on the homogeneous Carnot group G and

d be an L-gauge. Suppose 0 < α, λ < Q and 1 < p < Q−λ
α

. Then there exists a positive
constant C = C(α, p,G, d,L) such that

‖ u ‖Lq,µ(G)≤ C ‖ OLu ‖Lp,λ(G) for each u ∈ Lp,λ
0 (G,R),

where
1
q

=
1
p
− α

Q
and

µ

q
=

λ

p
.
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关于齐次Carnot群上广义Morrey 空间中一些性质

龙品红,韩惠丽

(宁夏大学数学计算机学院, 宁夏银川 750021)

摘要: 本文研究了关于Heisenberg群上的广义Morrey空间和Carnot群上的Lebesgue空间中Riesz位

势算子或者分数阶极大算子的行为. 根据Heisenberg群中抽象调和分析方法以及subLaplacian算子

的Dirichlet问题解的表示公式, 本文主要给出了关于齐次Carnot群G上消失的广义Morrey空间V Lp,ϕ(G)中

的加权Hardy算子、分数阶极大算子和分数阶位势算子的有界性刻画. 进而也得到无消失模的广义Morrey空

间上Morrey位势的浸入不等式. 所有这些结果推广了关于Heisenberg群上的广义Morrey空间和Carnot群上

的Lebesgue空间中的相关结论.
关键词: Carnot群; 加权Hardy算子; 分数阶极大算子; 分数阶位势算子; 广义Morrey空间
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