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GUO Jing!, LI Xiao-xue?
(I.School of Mathematics and Computer Science, Jiangzi Science & Technology Normal University,
Nanchang 330038, C’hina)
(Q.School of Mathematics, Northwest University, Xi’an 710127, Chma)

Abstract: In this paper, we introduce a new polynomial called Bell polynomials. By using
the elementary and combinational methods, we prove some identities for this polynomials. As an
application of these identities, we give an interesting congruence for Bell numbers.

Keywords: Bell numbers; Bell polynomials; identity; combinational method

2010 MR Subject Classification: 11B37; 11B83

Document code: A Article ID: 0255-7797(2017)06-1201-06

1 Introduction

For any integers n > k > 0, let S(n, k) denote the number of partitions of a set with
n elements into & nonempty blocks. It is clear that S(n,k) > 0 for all 1 < k < n, and
S(n,k)=0for 1 <n < k. Put S(0,0) =1 and S(0,k) =0 for £ > 1, S(n,0) =0 for n > 1.
These numbers were introduced by Stirling in his book “Methodus Differentialis” (see [3-5]).
Now they are called as the Stirling numbers of the second kind. These numbers satisfy the

recurrence relation
S(n,k)y=Sn—-1,k—1)+kS(n—1,k) (n,k >1).

The number of all partitions of a set with n elements is
B(n) =7 S(n.k),
k=1

called also a Bell number (or exponential number), related contents can be found in many
papers or books. For example, see [6-8].
These numbers satisfy the recurrence formula

B(n+1) :Zn: (Z)B(k), (1.1)

k=0
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where B(0) = 1 by definition.
The generating function of B(n) is given by

Z B(n) -t" = exp (et — 1) , (1.2)

n!

n=0

where exp(y) = ev.
The numbers B(n) can be represented also as the sum of a convergent series (Dobinski’s

formula)

1 0 n 1 1" on 3n
B(n):e§mze<1!+2!+3!+m)’ (1.3)

see Pélya and Szegé [9] for these basic properties.
In this paper, we introduce a new polynomials B(z,n) (called Bell polynomials) as

follows

exp (z(e' — 1)) = Z B, z) St (1.4)

It is clear that B(0,z) = 1, B(1,z) = =, B(2,z) = x + 2%, B(3,x) = v +3z®> + 23,---. If
x =1, then B(n,1) = B(n), the well known Bell numbers. About the properties of B(n,x),
it seems that none had studied it yet, at least we have not seen any related papers before.
The problem is interesting, because it can help us to further understand the properties of
Bell numbers.

The main purpose of this paper is using the elementary and combinational methods to

study the computational problem of the sums

Z B(ay,x) _ B(ag, x) '”B(ak,x) (15)
| | | ’ ’
a1 banbdap=n aq- ag- [
where Z denotes the summation over all k-tuples with non-negative integer co-
ai+az+--+ag=n
ordinates (ai,as,- - ,a) such that a; +as + - -+ + ax = n, and give an exact computational

formula for (1.5). That is, we shall prove the following.
Theorem 1 Let k& be a positive integer with k& > 1. Then for any positive integer
n > 1, we have the identity

B(ai,xz) Bl(ay,x B(ay,x B(n, kx)
3 (a1, x) Blaz,z)  Blay,z)  B(

- )
CL1! ag! ak! n!

ajtaz+--tar=n
where the polynomials B(n,z) satisfy the recurrence formula B(0,2) = 1, B(1,z) = =,
B(2,7) =z + 2% B(3,7) =z + 32% + 2*, and

n

B(n+1,x) :x-z <7:> - B(i,z) for all n > 1.

=0
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For the polynomials B(n, ), we also have a similar Dobinski’s formula.

Theorem 2 For any positive integer n > 1, we have the identities

1 © ™ . mn 1 zl.n 2. 9n 23 . 3n
B(n,x):exzm!:ex< T + o + 2 4o ).

m=0

From Theorem 1 and the recurrence formula of B(n,z), we may immediately deduce
the following congruence.

Corollary 1 Let p be an odd prime. Then for any positive integer k£ > 1 with
(k,p) = 1, we have the congruence

k- B(p,x) = B(p,kz) mod p and B’(p,z) =1 mod p.

Corollary 2 For any positive integer n, we have the identity

B(n+1,z) =z (B'(n,z) + B(n,z)) or B'(n,x)= Z (n) - B(i, ),

- 1
=0

where B'(n,z) = 6BéZ’m).

2 Proof of the Theorems

In this section, we shall complete the proofs of our theorems. First we give a sample
lemma, which are necessary in the proof of our theorems. Hereinafter, we shall use some
elementary number theory contents and properties of power series, all of these can be found
in references [1] and [2], so they will not be repeated here.

Lemma For any real number z, let function f(t) = exp (z(e’ — 1)), then we have
f(0) = B(n,z) for all integers n > 0, where f(™(t) denotes the n'" derivative of f(t) for
variable ¢.

Proof We prove this lemma by complete induction. It is clear that f(0) =1 = B(0, x),
f(t) = xe' - exp (z(e' — 1)) = xe' - f(t), and f'(0) = 2 = B(1,z). So the lemma is true for
n =0,1. Assume that (" (0) = B(n,z) for all 0 < n < r. Then note that f'(t) = ze’ - f(t),

so from the properties of derivative (Newton-Leibnitz formula), we have

fr) = (xet-f(w)*—fﬂ'Z(?f)'(et)(’"‘”-f“)(t)

= z- =O (’”) et (). (2.1)

1

Applying (2.1) and inductive hypothesis, we have

FOH(0) = 2 - ET: <:) D0 =2 - ET: <:> -B(i,z) = B(r+ 1, ).

i=0 =0

That is, fC*Y(0) = B(r + 1, 2).
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Now the lemma follows from the complete induction.
Proof of Theorem 1 For any positive integer & > 2, it is clear that f*(¢t) =
exp (kz(e! — 1)), then from (1.4), we have

- k
ff e = (exp (a:(et - 1)))k = (Z % . t”)
S ( > Bow) Bes) B<z:;x>> )
n=0 a1+as+--+ar=n

On the other hand, let g(t) = f*(t) = exp(kz(e’ — 1)), then from the definition of the
power series and lemma, we also have

< g™ s n. kr
) = g =Y 0 S BOED (23)

Combining (2.2) and (2.3) we may immediately deduce the identity

B(ai,z) Bl(ay,x B(ay,x B(n, kx)
S Blown) Blass) | Blowr) |

| | | |
a1 tastodap=n Qq: Q9. Q.. n.
This proves Theorem 1.
Proof of Theorem 2 Applying the power series eV = > % -y", we have
n=0
ft) = iexp(xet):i.iﬁ.emt:i.iﬂ. im” S
er et = ml et L=ml | £ nl
I =1 [=z™-m" n
- efDZrL'(Z — ST (2.4)
n=0 m=0
Comparing the coefficients of t™ in (1.4) and (2.4), we may immediately deduce the identity
1 = 2™ -m" 1 [zt-1m 2.2 3.37
B —— —— )
(n,2) emzo ml er< TR TR TR
m=

This proves Theorem 2.
Proof of Corollary 1 Let p be an odd prime, take n = p + 1 in Theorem 1, then
from the properties of B(n,x) and Theorem 1, we have

Z B(ai,x) B(az,x) Blay,z) B(p+1 k)
! ! T !
ai+az+--Fap=p+1 ar: az: Ak (p+ 1)
or
B(ai,z) B(ag,x) Blag,z) " /p .
(p+1)! > T T kxz o) Blikx). (25)
ai+az+-+ar=p+1 i=0
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It is clear that (f) =0mod p for all 1 <7 < p. So we have

p
kx - Z <€)> - B(i, kx) = kxB(0, kx) + kxB(p, kx) = kx + kxB(p, kxz) mod p. (2.6)
=0

Note that £ > 2 and a1 + as + --- + a,, = p+ 1, so if there are three of ay, as, - -+, a, are
positive integers, then
+1)!
% = 0 mod p. (2.7)
ail-agl---ag.
If there are only two of aq, as, - -+, a; are positive integers, and both of them are greater
than one, then we also have
1)!
_ Dt = 0 mod p. (2.8)
CL1! . a2! . '&k!
If there are only two of ay, as, - -, a, are positive integers, and one is p, another is 1, then
we also have
+ 1)!
_ Dt = 1 mod p. (2.9)
CL1! . (12! .. -ak!
If only one of a1, as, ---, ay are positive integers, then it must be p + 1. This time we have
1)!
_ Dt = 1 mod p. (2.10)
ay! - as!---ag!

Combining (2.5)—(2.10) and note that identity

B(n+1,z) =x~z (n) - B(i,z) for all n > 1,

} )
=0
we have

k !
k~B(p+1,x)+2<2> (p—l-' ) -B(1,z) - B(p,x) = kx + kxB(p, kx) mod p
p:

or
k- B(p,z) = B(p, kxz) mod p.

This proves the first congruence of Corollary 1. The second congruence follows from the
second identity of Corollary 2 with n = p.
Proof of Corollary 2 Let f(t,2) = exp (z(e' — 1)), then from (1.4), we have

oft.x) _N~B'(n2) .,
(¢" =)t x) = =2 = Z:O et (2.11)
On the other hand, from the definition of f(¢,z), we also have
10f(t,
(e = Df(t2) = e (k) — f(t,2) = + LTy

o

1<~ B(n+1,z) B(n,z) ,
— Z.Zom't _Zom't. (2.12)
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Comparing the coefficients of t™ in (2.11) and (2.12), we may immediately deduce the identity

B(n+1,z) =z - (B'(n,z) + B(n,x)). (2.13)

Note that the recurrence formula B(n + 1,2) = x - Z (n) - B(i,z), from (2.13) we
i

i=0
n—1
may immediately deduce the identity B'(n,z) = (?) - B(i, ). This completes the proofs
i=0
of our all results.
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