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Abstract: In this paper, we consider the dividend payments in the dual model with Erlang(n)
distributed observation times. We derive and solve the integral equations satisfied by the expected
discounted dividends until ruin when the Laplace transform of a general gain distribution follows
the rational case, which extends some corresponding results in [8].

Keywords: dual model; observation times; Laplace transform; discounted dividends

2010 MR Subject Classification: 60E10; 62M40; 62P05

Document code: A Article ID: 0255-7797(2017)06-1189-12

1 Introduction

The dual ruin model is defined as

N(#)

Ult)=u—ct+S{t)=u—ct+ Y Y, (1.1)

where u > 0 represents the initial surplus, c is expense rate and the the aggregate revenue
S(t) represents the compound Poisson process, given by the Poisson parameter A. The gain
amounts {Y;,7 > 1} (independent of { Ny, ¢ > 0}) is a sequence of independent and identically

distributed (i.i.d) positive random variables with common density function fy(y). The
corresponding Laplace transform of common distribution Y is fy (s) = e~ fy (y)dy.

A hot topic about risk model is the expected discounted dividends uroltil ruin, which is
studied thoroughly in many other papers. Avanzi et al. [1] studied the optimal dividends
under the barrier strategy; Ng [2] considered discounted dividends in the dual model with
a dividend threshold; Albrecher et al. [3] further discussed dividend payments with tax
payments. These papers considered the model with exponential inter-event times while
some other papers are based on Erlang(n) distributed inter-event times (see Albrecher et al.
[4], Yang and Sendova [5] and Eugenio et al. [6]).

In practice, the company’s board checks the surplus regularly and then decides whether
to pay dividends to shareholders. Thus dividends may be paid to shareholders only in
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special times. As shown in Avanzi et al. [7], the dual model with Erlang(n) distributed
observation times is provided. They assumed that the ruin happens as long as the surplus
falls below the zero level. In fact, even if the surplus is negative, the management are no
aware of bankruptcy and keep this business alive due to the continuity of business. Thus,
only with negative assets in the special times can company go bankrupt (see Albrecher et
al. [8]). Peng et al. [9] considered dividend payments in the dual model with exponentially
distributed observation times, note that ruin and dividends can only be observed at these
random observation times. In this paper, we consider the dual model based on the method

of Albrecher et al. [8] who studied the classical risk model with random observation times.

We assume the dual model can only be observed at times {Z;}7° ,, at which ruin and
dividend occur. Constant dividend barrier strategy is implemented. If the surplus exceeds
the barrier b > 0 at the times 7}, the excess is paid out immediately as a dividend. Otherwise,

there is no dividend payments.

Let Ty, = Zy— Zy—1 (Zy is not assumed to be a dividend decision time), and assume that
{Tk}32, is an i.i.d. sequence distributed as a generic r.v. T' and independent of {N(¢)}+>o
and {Y;}:2,. The common distribution 7" is Erlang(n) distributed with density

,yntn— 1 e—’yt

fr(t) = NCEDI

>0, t>0,

and corresponding Laplace transform has the form }T(s) = / e S fr(t)dt = ( 1 )n
0 TS

We denote the sequences of surplus levels at the time points {Z,  }32, and {Z;}32, by
{Up(k)}52, and {W,(k)}2,, respectively, i.e., {Uy(k)} and {W,(k)} are the surplus levels at

the k-th observation before (after, respectively) potential dividends are paid.
Surplus process

N N
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Figure 1: Typical sample path of the dual model under randomized observation

The time of ruin is defined by 7, = Zj, , where k, = inf{k > 1, W, (k) < 0} is the number
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of observation intervals before ruin. Then we have the recursive relation

Ub(k) = Wb(k — 1) — CTk + [S(Zk) — S(Zk_l)],
Wb(k)) = mln{Ub(k‘), b}, k= 1,2,3, Tty Wb(O) = U.

A sample path under the present model is depicted in Figure 1.
The total discounted dividend payments until ruin for a discount rate § > 0 are

ky
A s(u,b) = [ Y e 7 [Uy (k) — b4 [W,(0) = u], u € (—o00,00).
k=1
With time 0 an observation time, the total discounted dividend payments until ruin are
represented by
0, u <0,
As(u,b) = ¢ Aprs(u,b), 0<u<b,
u—b+ Aps(bd), b<u.

In particular, the distribution of Apss(u,b) for 0 < u < b already determines Aj(u,b) for
arbitrary wu.
We assume that time 0 is not a dividend decision time. The total expected discounted
dividends are
V(u,b) = EAps(u,b).

Depending on the value of the initial surplus, define

Vi(u,b), u <0,
V(u,b) = < Va(u,b), 0<u<b, (1.2)
Va(u,b), u>b.

The rest of this paper is organized as follows: in Section 2, we derive and solve the
integral equations satisfied by the expected discounted dividends until ruin when the Laplace
transform of a general gain distribution follows rational case. In Section 3, we obtain explicit
form of the expected discounted dividends when jump sizes and inter-observation times follow
an exponential distribution. In Section 4, we generalize the results to the case that the inter-
observation times are Erlang(2) distributed. In addition, numerical illustrations for the effect
of model parameters on the expected value of the discounted dividends are studied and image

description is given.

2 Discounted Dividends V' (u,b)

Due to the Markovian structure of {U, }+>¢, the sequence of pairs

N(T%x)

{(Th, > Vi—cTi), k> 1}

i=1
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N(T)
is 1.i.d with genetic distribution (7', Y  Y; — ¢T') and joint Laplace transform
=1

N(T)
s >y Y

N(T)
—5T—s( 1';1 Yi—cT)] _ E[ef(é—cs)TE[e_ =1

T” _ E[ef[)\Jrﬁfcsf)\}Y(s)]T] (2.1)

E [e
As in Albrecher et al. [8], we write

—6T— (Nz(jT) Y;—cT) >
B [ e, (22)

oo

E[e

N(T)
where gs5(y)(—oo < y < o00) represents the discounted density of the increment »  —cT'

i=1
between successive observation times, discounted at rate §. According to the assumption

that inter-observation T has an Erlang(n) distribution, eq.(2.1) is rewritten as

. [e—JT—s(iiTl)Yi—CT)] _ < 7 )n (2.3)
T+ AL = fy(s)] + (6 —cs)

There are zeros in the denominator above, namely, the roots of the equation

My (s) — (A+7+6)+cs=0 (2.4)

in which there is a unique positive root p, > 0. To make calculation easier, we use the

notation

95(y) = 95— (=y) L y<oy + 95+ (Y) L {y>0}, —00 <y < o0. (2.5)

N(Ty)

By conditioning on the pair (T}, Y  —cT7) and using eq.(2.5), we get
i=1
—u+b oo
V) = [ Vet pgss )i+ [ oty - b+ Vb Dgs)dy, <0, (20
—u —u+b

Va(u,b) = / “Valu— y)gs.— (y)dy + /  Va(ut )ga (v)dy

+ / [u+y—b+Va(b,0)]gs+(y)dy, 0=<u<bd, (2.7)
b

—Uu

Va(u,b) = / " Va(u - y)gs_(w)dy + / =y — b+ Voo, Blgs. (4)dy

—b

-/ Tl y b Vel Blgss ()dy. b (2.8)

with continuity condition V;(0,b) = V5(0,b) and Vs(b,b) = V3(b,b).
The quantities gs—(y) and gs+(y) will not always have a tractable form, but if fy-(y)

has a rational Laplace transform, i.e.,

_ Q2,m71(3)
M =00
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where Q1 ,,(s) is a polynomial in s of degree exactly m with leading coefficient of 1 and
Q2.m-1(s) is a polynomial in s of degree at most m — 1 (and the two polynomials have
distinct zeros). From Albrecher et al. [10], it follows that

n . yj_le_P’Yy
9s-(y) = ZBj TR (2.9)
7 G-
men yj*lewa,iy
9o4+W) =YY By (2.10)
i=1 j=1 (7 -1
where —R. 1, =R, 2, -+, — R, are the m roots of eq.(2.4) with negative real parts and the

constants B} and B;; are given by

* n—q ’Y " 1 dn_J Q ,m S " .

Bj = (_1) ! <E> (n_ ')'dsnfj m[ : ( )] o J=12,,n, (211)
7 [[(s+Ry)m ™"
=1

py= (1) L @

ij — Y i m . K

IR g T (s Ry
1=1,1i

1=12--- m, 7=1,2,--- ,n. (2.12)

In view of egs.(2.6)—(2.8), the expression for Vi(u,b) and V3(u,b) are closely associated
with Va(u,b). So we derive V;(u,b) and V3(u,b) easily by substituting back the solution for
Va(u, b) into eq.(2.6) and eq.(2.8).

Substitution of eq.(2.9) and eq.(2.10) into eq.(2.7) yields, after rearranging terms,

n

_ —— (u—y)~terv
Va(u, b) _;Bje P /0 Vz(%b)wdy

iy B, .eltv.iu bv b (y — u)j_l —Ryiy g

+ ; ; ij€ . 2y, )We Yy
iy Ao [ (y —u) e v

+3" S Bye u/ ly — b+ Va(b,b)] Ly, (2.13)
i=1 j=1 b (=1t

Applying the operator (d/du+ p,)™ [[(d/du — R, ;)™ to both sides of the above, we obtain
i=1

that V5 (u, b) satisfies a homogeneous differential equation of order n(m+1) in u with constant
coefficients. A solution of eq.(2.13) is of the form

n(m+1)

Va(u,b) = ) Ape®”, 0<u<b, (2.14)
p=1

where constants {AP}Z(:TH) and {ap};j(ﬁ*” may be associated with b, but independent of

u. When {ap}"(mH) have multiple roots, the solution of eq.(2.13) is of the form

p=1
r  kp
Vao(u,b) = Z Z Apjuj_le%“,

p=1 j=1
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where k, is the multiplicity of the root «, and satisfies the equation ) k, = n(m +1). As
p=1
for this case, the method is analogous as follows. Substituting eq.(2.14) into eq.(2.13), the

first integral on the right-hand side of eq.(2.13) is evaluated as

L (uypie
Bfe P Voly,b)————————d
Z] / 20—y W

n(m+1) U yi=le=(aptoy)y

=% Ay me [

p=1 0

n(m+1) n B n  [n(m+1) p +a )j—l
— 2l . P ujflefp,yu'
2 [Z< V) Z[Z W ey
(2.15)
Similarly, the second integral in eq.(2.13) is given by
m n b j—1 _,—R~ it
w —u J e v, Y
DI R e
i=1 j=1 u J ’
n(m+1) —u -1, —(Ryi—ap)
y] e v, )Y
= B;; Aye” / - dy
SOy =
=1
n(m-+1) m n
A, e
-3 oSt
m n n(m+1) n k i i
pr—leawd (ap — R, ;) '/t
T ANy g | e e,
_ — —1)!
i=1 j=1 [ p=1 k=j I=j Ryi—op)f o G-
(2.16)
while the third integral in eq.(2.13) is written as
— ) le—Ryiy
I I B
< (-1t
i=1 j=
bk ll+1fj) (=R, u)’~1
S [y e e
—1)!
i=1 j=1 = R ' (‘7 1)
m n n(m+1) X
bk) l apb (_R’Y _u)]—l R
5T ,—Y,i(U7b)
S S ATy | SR e
i=1 j=1 | p=1

Putting back egs.(2.15)—(2.17) into eq.(2.13), equating coefficients of e®* leads to

Z(p7+ap)] ZZ ;=L p=12-,n(m+1) (2.18)
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Substitution of eq.(2.9) and eq.(2.10) yields the requirement that

—5T—s( Z Y —cT) <o n
E [e = ] =/ e é“’ga(y)dy=< —! )

—co v+A[1—fy(S)]+(5—CS)
_Z — lezl W+S (2.19)

n(m+1)

In comparison with eq.(2.18) above, we may conclude that {a,},— are the opposite

numbers to the roots of the equation

n B* m B..
et e B
S s e

j=1 i=1 j=1

In other words {ap}”(mH) are also the opposite numbers to the roots of the equation

( 7 > =1 (2.20)
Y+ AL = fy(s)]+ (0 —cs)

Equating coefficients of u/~ef(*=%) leads to

n(m+1)

pk—leapd -
_ Ni—
Z ZszZ ’Yi —Oép)l(k'—l)!(ap R’Y,Z)
n(erl
pk—lgapb bkll+1—j) ,
E ' J 1 E ' )i—1
Z BZ G- Blz R (k= 1) Rl
121,2,'-',m, ji=12,---,n. (2.21)

Finally, equating coefficients of u/~le=?+" yields

n(m+1)

Z Z +a kﬂ g =0 J= L2 (2.22)

m+1). Moreover, notice that there is a

m+)

Consequently, we have eq.(2.20) to solve for {a,},

system of m x n 4 n = n(m + 1) equations for the constants {4}~ given by eq.(2.21)

and eq.(2.22). Hence, the expression for V5 (u,b) is obtained easily.

3 The Case That Jump Sizes and Inter-Observation Times are Expo-
nential

In the case that fy(y) = Be %Y, and fr(t) = ve= 7, eq.(2.4) reduces to

s> —A+y+d—cB)s—(y+9)B =
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in which there is a positive root p, and a negative root —R, (R, > 0). Then we may simplify
eq.(2.20) to
cs> —(A+8—cB)s—66=0 (3.1)

with a positive root pg and a negative root —Ry.
From eq.(2.9) and eq.(2.10), it follows that

o * =P~y E 7(/84— p"/)
g67_(y) - B € I B - C(p—y + Ry)? (32)
- R
95,4 (y) = Be"™Y, B = M (3.3)

Putting back gs —(y) and g¢s 4 (y) above into the original integral egs. (2.6)—(2.8) yields

(oo}

b
et _eRw/ Va(y,b)Be™ " vdy + e / [y — b+ Va(b,b)] Be "vdy, w<0, (3.4)
0 b

u b

0 u
* GRW/ [y — b+ Va(b,0)] Be™™¥dy, 0 <u<b, (3.5)

b
b u
b =e / Va(y,b)B" e Vdy + ¢ / [y = b+ Va(b,b)] B* eV dy
0 b

+ eRw“/ [y — b+ Va(b,b)] Be ®vdy, u>b. (3.6)

Furthermore, on combining with the conclusion mentioned at the end of Section 2 and the
simplified eq.(3.1), the solution for V5(u,b) can be expressed as

Va(u,b) = CrePo% + Cyelior, (3.7)
Substituting V,(u, b) above into eq.(3.5) and comparing the coefficients of e=#7* and e’ (4—t)
leads to
G, & _, (3.8)
Py —po Pyt Ro
and
Cipoe=?  CoRyefo? B _i. (3.9)

po+R, Ry—-R, R,
Therefore, we have two linear equations satisfied by C; and C5. After some calculations, we

have

_ (po + Ry)(py — po)(Ro — R,)

RoR,(py + Ro)(po + Ry)ef — po Ry (py — po)(Ro — Ry )erob”
_ (9o + Ry)(py + Ro) (R, — Ro)

RoR,(py + Ro)(po + Ry)efo? — po R, (py — po)(Ro — Rv)e_pﬂb‘

Gy

Cs
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Hence we get

(Po + R’Y><p"{ - pO)(RO - R"/)eipgu + (pO + Rv)(pv + R0)<R7 - RO)eRou.

Vo(u,b) = 3.10
200 = R Ry + Ro)(po + )R — po Bty (py — po) (Bo — BoJemt (310)
Putting V5(u, b) above into egs.(3.4) and (3.6), we obtain
Y(po + Ro)(B — R,)e"
Vi(u,b) = : 3.11
) = R R (o Bo)(po + By )R — cpuR (py — po) (Ro — Bojev 311
- 4 V(A —¢p) gl
Vs(u,b) =P O | — V5, (b, b) — +
N P A N O 2 R
)\ _
Vil b) — b —— 4 LA D) (3.12)

v+ (A+0)26
It should be mentioned that using different method we derive the same results as that given

by Peng et al. [9].

4 The Case That Jump Sizes are Exponential and Inter-Observation
Times are Erlang(2) Distributed

In the case that fy(y) = Be %Y and fr(t) = y*te™ 7, eq.(2.4) is equivalent to
s = A+v+0—cB)s—(y+0)f=
with two roots p, and —R, (the same as above). Then eq.(2.20) may be rewritten as
[cs> = (A +0—cB)s —68] [es” = (A+ 0+ 2y —cB)s — (2y+6)B] =0 (4.1)

in which there are four roots py, —Ry, p} and —Ry.
By egs.(2.9) and (2.10), we immediately obtain

95~ (y) = Bie™ ™Y + Byye 7Y, (4.2)
95.+(y) = Bre” ™Y + Byye MY, (4.3)

where the constants Bf, B;, By, By are given by

* v 22(ﬁ+p7)(ﬂ_R7) * Y 2 (p7+ﬁ)2
b= <E> (py + Ry)? B = <Z> (py + Ry)*
226+ p)(B - Ry) _ (1 B-Ry)?
b= (7) (py + Ry)?  B= (E> (py + R7)2'
Substituting back egs.(4. d (4.3) into eq.(2.7) produces

2) an
_6 —pyU / ‘/2 B*eﬂ’yy + B ( )ep’yy] dy

b

+ eftru V2 Ble By 4 By(y — )e_R”y] dy

o
+ eR«,u

—_—

— b+ Va(b,b)] [Ble_R”y + Ba(y — u)e_R”y] dy. (4.4)
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Applying the operator (- + p,)?(-= — R,)? on both sides, it implies that
Va(u,b) = Cre®™ + Cae®?™ + C3e™™ + Cye™™.

Furthermore, the expression combined with the conclusion discussed before and eq.(4.1)

indicates
@y = —py, ag=—(=Ry) =Ry, az=—p}, ay=—(-R))=R.
Hence, the solution of eq.(4.4) has the explicit form
Va(u, b) = Cre™"% 4 Chellot 4 Cye™ P30 4 Cyelt, (4.5)

Putting V2(u, b) above into eq.(4.4) and equating coefficients of ue™?v* leads to

C C C C
L 2 3 4 4 _—0 (4.6)
py—pPo  py+Ro  py—ph  pyt+ RS
Equating coefficients of e™”7* leads to
Cl CQ 03 C4
+ + + =0. (4.7)
(py — po)? (/07 + Ro)?  (py — P:)Q (py + R:)Q
Equating coefficients of uef®(“=? leads to
Clpoeipob 02(_R0>6R0b + C?)p:/eip:;b 04(_R’>;)6Rj;b _ 7i (4 8)
R, + po R, — Ry R, + p2 R, — R: R, '
Equating coefficients of e+(“~?) leads to
Cy(p% +2poR,)e ™ Co(R2 — 2RoR,)efob  Cs(pi? +2p3 Ry )e "
(R + po)? (R, — Ro)? (R, + pﬁy)Q
Cy(R? — 2R'R,)e"™® 2
4(RY i ;) _ 2 (4.9)
(R’Y - R'y) R"/

Therefore, we have a system of linear eqs. (4.6)—(4.9) for the four remaining constants Cf,
Csy, C3, Cy (only with given b).

Example 1 Let T ~ Erlang(2,2), A =1, ¢= 0.8, § = 0.05 and 3 = 1. The solution of
eq.(4.1) are

po = 0.4511, —Ry = —0.1386, pi = 6.1374, —Ri = —0.8249,
and we have

va(u,b) — 61670'4511u + 0260.1386u + C3€76'1374u + 6460'8249u.

The coefficients {c;}}_; can easily be determined by egs.(4.6)—(4.9) and is a function of b.
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Figure 2: V5(u,b) as a function of b for u =0, 1,2, 3,4, 5(from bottom to top)

At the end of this section, we use the following numerical examples to discuss the
impact of the model parameters on the expected total dividend payments. Table 1 gives
some numerical values of V5(u, b) and Figure 2 depicts the behavior of V5(u,b) as a function
of b for some given values of initial capital u. The top curve corresponds to u = 5, and the
next one corresponds to u = 4 and so on. Combining both together, we find that dividends
increase as u increases for each fixed b. Observing carefully, V(u,b) appears to increase
with b initially and decrease afterwards if u is small. Further, with initial capital v bigger,
Va(u,b) is a monotonically decreasing function of b.

Table 1: Exact values for the expectation Va(u,b) of the discounted dividend payment

b\ u 0 1 2 3 4 5 6 7 8 9

0 0.7774

1 0.8209 1.9576

2 0.8662 2.0654 3.1732

3 0.8548 2.0384 3.1317 4.1000

4 0.8038 1.9167 2.9450 3.8559 4.7292

5 0.7323 1.7463 2.6832 3.5134 4.3098 5.1235

6 0.6544 1.5606 2.3979 3.1400 3.8520 4.5801 5.3584

7 0.5782 1.3789 2.1188 2.7745 3.4038 4.0476 4.7363 5.4941

8 0.5076 1.2105 1.8600 2.4357 2.9882 3.5535 4.1586 4.8249 5.5711

9 0.4440 1.0587 1.6268 2.1304 2.6137 3.1082 3.6376 4.2209 4.8747 5.6143
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