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1 Introduction

The dual ruin model is defined as

U(t) = u− ct + S(t) = u− ct +
N(t)∑
i=1

Yi, (1.1)

where u ≥ 0 represents the initial surplus, c is expense rate and the the aggregate revenue
S(t) represents the compound Poisson process, given by the Poisson parameter λ. The gain
amounts {Yi, i ≥ 1} (independent of {Nt, t ≥ 0}) is a sequence of independent and identically
distributed (i.i.d) positive random variables with common density function fY (y). The

corresponding Laplace transform of common distribution Y is
∼
fY (s) =

∫ ∞

0

e−syfY (y)dy.

A hot topic about risk model is the expected discounted dividends until ruin, which is
studied thoroughly in many other papers. Avanzi et al. [1] studied the optimal dividends
under the barrier strategy; Ng [2] considered discounted dividends in the dual model with
a dividend threshold; Albrecher et al. [3] further discussed dividend payments with tax
payments. These papers considered the model with exponential inter-event times while
some other papers are based on Erlang(n) distributed inter-event times (see Albrecher et al.
[4], Yang and Sendova [5] and Eugenio et al. [6]).

In practice, the company’s board checks the surplus regularly and then decides whether
to pay dividends to shareholders. Thus dividends may be paid to shareholders only in
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special times. As shown in Avanzi et al. [7], the dual model with Erlang(n) distributed
observation times is provided. They assumed that the ruin happens as long as the surplus
falls below the zero level. In fact, even if the surplus is negative, the management are no
aware of bankruptcy and keep this business alive due to the continuity of business. Thus,
only with negative assets in the special times can company go bankrupt (see Albrecher et
al. [8]). Peng et al. [9] considered dividend payments in the dual model with exponentially
distributed observation times, note that ruin and dividends can only be observed at these
random observation times. In this paper, we consider the dual model based on the method
of Albrecher et al. [8] who studied the classical risk model with random observation times.

We assume the dual model can only be observed at times {Zk}∞k=1, at which ruin and
dividend occur. Constant dividend barrier strategy is implemented. If the surplus exceeds
the barrier b > 0 at the times Zk, the excess is paid out immediately as a dividend. Otherwise,
there is no dividend payments.

Let Tk = Zk−Zk−1 (Z0 is not assumed to be a dividend decision time), and assume that
{Tk}∞k=1 is an i.i.d. sequence distributed as a generic r.v. T and independent of {N(t)}t≥0

and {Yi}∞i=1. The common distribution T is Erlang(n) distributed with density

fT (t) =
γntn−1e−γt

(n− 1)!
, γ > 0, t > 0,

and corresponding Laplace transform has the form
∼
fT (s) =

∫ ∞

0

e−stfT (t)dt =
( γ

γ + s

)n
.

We denote the sequences of surplus levels at the time points {Z−k }∞k=1 and {Zk}∞k=1 by
{Ub(k)}∞k=1 and {Wb(k)}∞k=1, respectively, i.e., {Ub(k)} and {Wb(k)} are the surplus levels at
the k-th observation before (after, respectively) potential dividends are paid.
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Figure 1: Typical sample path of the dual model under randomized observation

The time of ruin is defined by τb = Zkb
, where kb = inf{k ≥ 1,Wb(k) ≤ 0} is the number



No. 6 Dividend payments in the dual model with Erlang(n) distributed observation times 1191

of observation intervals before ruin. Then we have the recursive relation

Ub(k) = Wb(k − 1)− cTk + [S(Zk)− S(Zk−1)],

Wb(k) = min{Ub(k), b}, k = 1, 2, 3, · · · , Wb(0) = u.

A sample path under the present model is depicted in Figure 1.
The total discounted dividend payments until ruin for a discount rate δ ≥ 0 are

∆M,δ(u, b) =
[ kb∑

k=1

e−δZk [Ub(k)− b]+|Wb(0) = u
]
, u ∈ (−∞,∞).

With time 0 an observation time, the total discounted dividend payments until ruin are
represented by

∆δ(u, b) =





0, u < 0,

∆M,δ(u, b), 0 ≤ u < b,

u− b + ∆M,δ(b, b), b ≤ u.

In particular, the distribution of ∆M,δ(u, b) for 0 ≤ u < b already determines ∆δ(u, b) for
arbitrary u.

We assume that time 0 is not a dividend decision time. The total expected discounted
dividends are

V (u, b) = E∆M,δ(u, b).

Depending on the value of the initial surplus, define

V (u, b) =





V1(u, b), u < 0,

V2(u, b), 0 ≤ u < b,

V3(u, b), u ≥ b.

(1.2)

The rest of this paper is organized as follows: in Section 2, we derive and solve the
integral equations satisfied by the expected discounted dividends until ruin when the Laplace
transform of a general gain distribution follows rational case. In Section 3, we obtain explicit
form of the expected discounted dividends when jump sizes and inter-observation times follow
an exponential distribution. In Section 4, we generalize the results to the case that the inter-
observation times are Erlang(2) distributed. In addition, numerical illustrations for the effect
of model parameters on the expected value of the discounted dividends are studied and image
description is given.

2 Discounted Dividends V (u, b)

Due to the Markovian structure of {Ut}t≥0, the sequence of pairs

{(Tk,

N(Tk)∑
i=1

Yi − cTk), k ≥ 1}
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is i.i.d with genetic distribution (T,
N(T )∑
i=1

Yi − cT ) and joint Laplace transform

E
[
e
−δT−s(

N(T )∑
i=1

Yi−cT )]
= E

[
e−(δ−cs)T E

[
e
−s

N(T )∑
i=1

Yi |T ]]
= E

[
e−[λ+δ−cs−λ

∼
f Y (s)]T

]
. (2.1)

As in Albrecher et al. [8], we write

E
[
e
−δT−s(

N(T )∑
i=1

Yi−cT )]
=

∫ ∞

−∞
e−sygδ(y)dy, (2.2)

where gδ(y)(−∞ < y < ∞) represents the discounted density of the increment
N(T )∑
i=1

−cT

between successive observation times, discounted at rate δ. According to the assumption
that inter-observation T has an Erlang(n) distribution, eq.(2.1) is rewritten as

E

[
e
−δT−s(

N(T )∑
i=1

Yi−cT )

]
=

(
γ

γ + λ[1−
∼
fY (s)] + (δ − cs)

)n

. (2.3)

There are zeros in the denominator above, namely, the roots of the equation

λ
∼
fY (s)− (λ + γ + δ) + cs = 0 (2.4)

in which there is a unique positive root ργ > 0. To make calculation easier, we use the
notation

gδ(y) = gδ,−(−y)I{y<0} + gδ,+(y)I{y≥0}, −∞ < y < ∞. (2.5)

By conditioning on the pair (T1,
N(T1)∑
i=1

−cT1) and using eq.(2.5), we get

V1(u, b) =
∫ −u+b

−u

V2(u + y)gδ,+(y)dy +
∫ ∞

−u+b

[u + y − b + V2(b, b)]gδ,+(y)dy, u < 0, (2.6)

V2(u, b) =
∫ u

0

V2(u− y)gδ,−(y)dy +
∫ b−u

0

V2(u + y)gδ,+(y)dy

+
∫ ∞

b−u

[u + y − b + V2(b, b)]gδ,+(y)dy, 0 ≤ u < b, (2.7)

V3(u, b) =
∫ u

u−b

V2(u− y)gδ,−(y)dy +
∫ u−b

0

[u− y − b + V2(b, b)]gδ,−(y)dy

+
∫ ∞

0

[u + y − b + V2(b, b)]gδ,+(y)dy, u ≥ b (2.8)

with continuity condition V1(0, b) = V2(0, b) and V2(b, b) = V3(b, b).
The quantities gδ,−(y) and gδ,+(y) will not always have a tractable form, but if fY (y)

has a rational Laplace transform, i.e.,

fY (s) =
Q2,m−1(s)
Q1,m(s)

,
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where Q1,m(s) is a polynomial in s of degree exactly m with leading coefficient of 1 and
Q2,m−1(s) is a polynomial in s of degree at most m − 1 (and the two polynomials have
distinct zeros). From Albrecher et al. [10], it follows that

gδ,−(y) =
n∑

j=1

B∗
j

yj−1e−ργy

(j − 1)!
, (2.9)

gδ,+(y) =
m∑

i=1

n∑
j=1

Bij
yj−1e−Rγ,iy

(j − 1)!
, (2.10)

where −Rγ,1, −Rγ,2, · · · ,−Rγ,m are the m roots of eq.(2.4) with negative real parts and the
constants B∗

j and Bij are given by

B∗
j = (−1)n−j

(γ

c

)n 1
(n− j)!

dn−j

dsn−j

[Q1,m(s)]n
m∏

l=1

(s + Rγ,l)n

∣∣∣
s=ργ

, j = 1, 2, · · · , n, (2.11)

Bij =
(γ

c

)n 1
(n− j)!

dn−j

dsn−j

[Q1,m(s)]n

(ργ − s)n
m∏

l=1,l 6=i

(s + Rγ,l)n

∣∣∣
s=−Rγ,i

,

i = 1, 2, · · · ,m, j = 1, 2, · · · , n. (2.12)

In view of eqs.(2.6)–(2.8), the expression for V1(u, b) and V3(u, b) are closely associated
with V2(u, b). So we derive V1(u, b) and V3(u, b) easily by substituting back the solution for
V2(u, b) into eq.(2.6) and eq.(2.8).

Substitution of eq.(2.9) and eq.(2.10) into eq.(2.7) yields, after rearranging terms,

V2(u, b) =
n∑

j=1

B∗
j e−ργu

∫ u

0

V2(y, b)
(u− y)j−1eργy

(j − 1)!
dy

+
m∑

i=1

n∑
j=1

Bije
Rγ,iu

∫ b

u

V2(y, b)
(y − u)j−1

(j − 1)!
e−Rγ,iydy

+
m∑

i=1

n∑
j=1

Bije
Rγ,iu

∫ ∞

b

[y − b + V2(b, b)]
(y − u)j−1e−Rγ,iy

(j − 1)!
dy. (2.13)

Applying the operator (d/du + ργ)n
m∏

i=1

(d/du−Rγ,i)n to both sides of the above, we obtain

that V2(u, b) satisfies a homogeneous differential equation of order n(m+1) in u with constant
coefficients. A solution of eq.(2.13) is of the form

V2(u, b) =
n(m+1)∑

p=1

Ape
αpu, 0 ≤ u < b, (2.14)

where constants {Ap}n(m+1)
p=1 and {αp}n(m+1)

p=1 may be associated with b, but independent of
u. When {αp}n(m+1)

p=1 have multiple roots, the solution of eq.(2.13) is of the form

V2(u, b) =
r∑

p=1

kp∑
j=1

Apju
j−1eαpu,
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where kp is the multiplicity of the root αp and satisfies the equation
r∑

p=1

kp = n(m + 1). As

for this case, the method is analogous as follows. Substituting eq.(2.14) into eq.(2.13), the
first integral on the right-hand side of eq.(2.13) is evaluated as

n∑
j=1

B∗
j e−ργu

∫ u

0

V2(y, b)
(u− y)j−1eργy

(j − 1)!
dy

=
n(m+1)∑

p=1

Ap

n∑
j=1

B∗
j eαpu

∫ u

0

yj−1e−(αp+ργ)y

(j − 1)!
dy

=
n(m+1)∑

p=1

Ap

[
n∑

j=1

B∗
j

(ργ + αp)j

]
eαpu −

n∑
j=1

[
n(m+1)∑

p=1

Ap

n∑
i=j

B∗
i

(ργ + αp)i

]
(ργ + αp)j−1

(j − 1)!
uj−1e−ργu.

(2.15)

Similarly, the second integral in eq.(2.13) is given by

m∑
i=1

n∑
j=1

Bije
Rγ,iu

∫ b

u

V2(y, b)
(y − u)j−1e−Rγ,iy

(j − 1)!
dy

=
m∑

i=1

n∑
j=1

Bij

n(m+1)∑
p=1

Ape
αpu

∫ b−u

0

yj−1e−(Rγ,i−αp)y

(j − 1)!
dy

=
n(m+1)∑

p=1

Ap

[
m∑

i=1

n∑
j=1

Bij

(Rγ,i − αp)j

]
eαpu

−
m∑

i=1

n∑
j=1

[
n(m+1)∑

p=1

Ap

n∑
k=j

Bik

k∑
l=j

bk−leαpb

(Rγ,i − αp)l(k − l)!

]
(αp −Rγ,i)j−1uj−1

(j − 1)!
eRγ,i(u−b),

(2.16)

while the third integral in eq.(2.13) is written as

m∑
i=1

n∑
j=1

Bije
Rγ,iu

∫ ∞

b

[y − b + V2(b, b)]
(y − u)j−1e−Rγ,iy

(j − 1)!
dy

=
m∑

i=1

n∑
j=1

[
n∑

k=j

Bik

k∑
l=j

bk−l(l + 1− j)
Rl+1

γ,i (k − l)!

]
(−Rγ,iu)j−1

(j − 1)!
eRγ,i(u−b)

+
m∑

i=1

n∑
j=1

[
n(m+1)∑

p=1

Ap

n∑
k=j

Bik

k∑
l=j

bk−leαpb

Rl
γ,i(k − l)!

]
(−Rγ,iu)j−1

(j − 1)!
eRγ,i(u−b). (2.17)

Putting back eqs.(2.15)–(2.17) into eq.(2.13), equating coefficients of eαpu leads to

n∑
j=1

B∗
j

(ργ + αp)j
+

m∑
i=1

n∑
j=1

Bij

(Rγ,i − αp)j
= 1, p = 1, 2, · · · , n(m + 1). (2.18)
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Substitution of eq.(2.9) and eq.(2.10) yields the requirement that

E

[
e
−δT−s(

N(T )∑
i=1

Yi−cT )

]
=

∫ ∞

−∞
e−sygδ(y)dy =

( γ

γ + λ[1−
∼
fY (s)] + (δ − cs)

)n

=
n∑

j=1

B∗
j

(ργ − s)j
+

m∑
i=1

n∑
j=1

Bij

(Rγ,i + s)j
. (2.19)

In comparison with eq.(2.18) above, we may conclude that {αp}n(m+1)
p=1 are the opposite

numbers to the roots of the equation

n∑
j=1

B∗
j

(ργ − s)j
+

m∑
i=1

n∑
j=1

Bij

(Rγ,i + s)j
= 1.

In other words {αp}n(m+1)
p=1 are also the opposite numbers to the roots of the equation

(
γ

γ + λ[1−
∼
fY (s)] + (δ − cs)

)n

= 1. (2.20)

Equating coefficients of uj−1eRγ,i(u−b) leads to

n(m+1)∑
p=1

Ap

n∑
k=j

Bik

k∑
l=j

bk−leαpb

(Rγ,i − αp)l(k − l)!
(αp −Rγ,i)j−1

=
n(m+1)∑

p=1

Ap

n∑
k=j

Bik

k∑
l=j

bk−leαpb

Rl
γ,i(k − l)!

(−Rγ,i)j−1 +
n∑

k=j

Bik

k∑
l=j

bk−l(l + 1− j)
Rl+1

γ,i (k − l)!
(−Rγ,i)j−1,

i = 1, 2, · · · ,m, j = 1, 2, · · · , n. (2.21)

Finally, equating coefficients of uj−1e−ργu yields

n(m+1)∑
p=1

Ap

n∑
k=j

B∗
k

(ργ + αp)k+1−j
= 0, j = 1, 2, · · · , n. (2.22)

Consequently, we have eq.(2.20) to solve for {αp}n(m+1)
p=1 . Moreover, notice that there is a

system of m× n + n = n(m + 1) equations for the constants {Ap}n(m+1)
p=1 given by eq.(2.21)

and eq.(2.22). Hence, the expression for V2(u, b) is obtained easily.

3 The Case That Jump Sizes and Inter-Observation Times are Expo-

nential

In the case that fY (y) = βe−βy, and fT (t) = γe−γt, eq.(2.4) reduces to

cs2 − (λ + γ + δ − cβ)s− (γ + δ)β = 0



1196 Journal of Mathematics Vol. 37

in which there is a positive root ργ and a negative root −Rγ(Rγ > 0). Then we may simplify
eq.(2.20) to

cs2 − (λ + δ − cβ)s− δβ = 0 (3.1)

with a positive root ρ0 and a negative root −R0.
From eq.(2.9) and eq.(2.10), it follows that

gδ,−(y) = B∗e−ργy, B∗ =
γ(β + ργ)
c(ργ + Rγ)

, (3.2)

gδ,+(y) = Be−Rγy, B =
γ(β −Rγ)
c(ργ + Rγ)

. (3.3)

Putting back gδ,−(y) and gδ,+(y) above into the original integral eqs. (2.6)–(2.8) yields

V1(u, b) =eRγu

∫ b

0

V2(y, b)Be−Rγydy + eRγu

∫ ∞

b

[y − b + V2(b, b)]Be−Rγydy, u < 0, (3.4)

V2(u, b) =e−ργu

∫ u

0

V2(y, b)B∗eργydy + eRγu

∫ b

u

V2(y, b)Be−Rγydy

+ eRγu

∫ ∞

b

[y − b + V2(b, b)]Be−Rγydy, 0 ≤ u < b, (3.5)

V3(u, b) = e−ργu

∫ b

0

V2(y, b)B∗eργydy + e−ργu

∫ u

b

[y − b + V2(b, b)]B∗eργydy

+ eRγu

∫ ∞

u

[y − b + V2(b, b)]Be−Rγydy, u ≥ b. (3.6)

Furthermore, on combining with the conclusion mentioned at the end of Section 2 and the
simplified eq.(3.1), the solution for V2(u, b) can be expressed as

V2(u, b) = C1e
−ρ0u + C2e

R0u. (3.7)

Substituting V2(u, b) above into eq.(3.5) and comparing the coefficients of e−ργu and eRγ(u−b)

leads to
C1

ργ − ρ0

+
C2

ργ + R0

= 0 (3.8)

and
C1ρ0e

−ρ0b

ρ0 + Rγ

+
C2R0e

R0b

R0 −Rγ

= − 1
Rγ

. (3.9)

Therefore, we have two linear equations satisfied by C1 and C2. After some calculations, we
have

C1 =
(ρ0 + Rγ)(ργ − ρ0)(R0 −Rγ)

R0Rγ(ργ + R0)(ρ0 + Rγ)eR0b − ρ0Rγ(ργ − ρ0)(R0 −Rγ)e−ρ0b
,

C2 =
(ρ0 + Rγ)(ργ + R0)(Rγ −R0)

R0Rγ(ργ + R0)(ρ0 + Rγ)eR0b − ρ0Rγ(ργ − ρ0)(R0 −Rγ)e−ρ0b
.
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Hence we get

V2(u, b) =
(ρ0 + Rγ)(ργ − ρ0)(R0 −Rγ)e−ρ0u + (ρ0 + Rγ)(ργ + R0)(Rγ −R0)eR0u

R0Rγ(ργ + R0)(ρ0 + Rγ)eR0b − ρ0Rγ(ργ − ρ0)(R0 −Rγ)e−ρ0b
. (3.10)

Putting V2(u, b) above into eqs.(3.4) and (3.6), we obtain

V1(u, b) =
γ(ρ0 + R0)(β −Rγ)eRγu

cR0Rγ(ργ + R0)(ρ0 + Rγ)eR0b − cρ0Rγ(ργ − ρ0)(R0 −Rγ)e−ρ0b
, (3.11)

V3(u, b) =eργ(b−u)

[
δ

γ + δ
V2(b, b)− γ(λ− cβ)

(γ + δ)2β

]
+

γ

γ + δ
u

+ [V2(b, b)− b]
γ

γ + δ
+

γ(λ− cβ)
(λ + δ)2β

. (3.12)

It should be mentioned that using different method we derive the same results as that given
by Peng et al. [9].

4 The Case That Jump Sizes are Exponential and Inter-Observation

Times are Erlang(2) Distributed

In the case that fY (y) = βe−βy and fT (t) = γ2te−γt, eq.(2.4) is equivalent to

cs2 − (λ + γ + δ − cβ)s− (γ + δ)β = 0

with two roots ρr and −Rγ (the same as above). Then eq.(2.20) may be rewritten as
[
cs2 − (λ + δ − cβ)s− δβ

] [
cs2 − (λ + δ + 2γ − cβ)s− (2γ + δ)β

]
= 0 (4.1)

in which there are four roots ρ0, −R0, ρ∗γ and −R∗
γ .

By eqs.(2.9) and (2.10), we immediately obtain

gδ,−(y) = B∗
1e−ργy + B∗

2ye−ργy, (4.2)

gδ,+(y) = B1e
−Rγy + B2ye−Rγy, (4.3)

where the constants B∗
1 , B∗

2 , B1, B2 are given by

B∗
1 =

(γ

c

)2 2(β + ργ)(β −Rγ)
(ργ + Rγ)3

, B∗
2 =

(γ

c

)2 (ργ + β)2

(ργ + Rγ)2
,

B1 =
(γ

c

)2 2(β + ργ)(β −Rγ)
(ργ + Rγ)3

, B2 =
(γ

c

)2 (β −Rγ)2

(ργ + Rγ)2
.

Substituting back eqs.(4.2) and (4.3) into eq.(2.7) produces

V2(u, b) =e−ργu

∫ u

0

V2(y) [B∗
1eργy + B∗

2(u− y)eργy] dy

+ eRγu

∫ b

u

V2(y)
[
B1e

−Rγy + B2(y − u)e−Rγy
]
dy

+ eRγu

∫ ∞

b

[y − b + V2(b, b)]
[
B1e

−Rγy + B2(y − u)e−Rγy
]
dy. (4.4)
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Applying the operator ( d
du

+ ργ)2( d
du
−Rγ)2 on both sides, it implies that

V2(u, b) = C1e
α1u + C2e

α2u + C3e
α3u + C4e

α4u.

Furthermore, the expression combined with the conclusion discussed before and eq.(4.1)
indicates

α1 = −ρ0, α2 = −(−R0) = R0, α3 = −ρ∗γ , α4 = −(−R∗
γ) = R∗

γ .

Hence, the solution of eq.(4.4) has the explicit form

V2(u, b) = C1e
−ρ0u + C2e

R0u + C3e
−ρ∗γu + C4e

R∗γu. (4.5)

Putting V2(u, b) above into eq.(4.4) and equating coefficients of ue−ργu leads to

C1

ργ − ρ0

+
C2

ργ + R0

+
C3

ργ − ρ∗γ
+

C4

ργ + R∗
γ

= 0. (4.6)

Equating coefficients of e−ργu leads to

C1

(ργ − ρ0)2
+

C2

(ργ + R0)2
+

C3

(ργ − ρ∗γ)2
+

C4

(ργ + R∗
γ)2

= 0. (4.7)

Equating coefficients of ueRγ(u−b) leads to

C1ρ0e
−ρ0b

Rγ + ρ0

+
C2(−R0)eR0b

Rγ −R0

+
C3ρ

∗
γe−ρ∗γb

Rγ + ρ∗γ
+

C4(−R∗
γ)eR∗γb

Rγ −R∗
γ

= − 1
Rγ

. (4.8)

Equating coefficients of eRγ(u−b) leads to

C1(ρ2
0 + 2ρ0Rγ)e−ρ0b

(Rγ + ρ0)2
+

C2(R2
0 − 2R0Rγ)eR0b

(Rγ −R0)2
+

C3(ρ∗2γ + 2ρ∗γRγ)e−ρ∗γb

(Rγ + ρ∗γ)2

+
C4(R∗2

γ − 2R∗
γRγ)eR∗γb

(Rγ −R∗
γ)2

= − 2
Rγ

. (4.9)

Therefore, we have a system of linear eqs. (4.6)–(4.9) for the four remaining constants C1,
C2, C3, C4 (only with given b).

Example 1 Let T ∼ Erlang(2, 2), λ = 1, c = 0.8, δ = 0.05 and β = 1. The solution of
eq.(4.1) are

ρ0 = 0.4511, −R0 = −0.1386, ρ∗γ = 6.1374, −R∗
γ = −0.8249,

and we have

V2(u, b) = c1e
−0.4511u + c2e

0.1386u + c3e
−6.1374u + c4e

0.8249u.

The coefficients {ci}4
i=1 can easily be determined by eqs.(4.6)–(4.9) and is a function of b.
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Figure 2: V2(u, b) as a function of b for u = 0, 1, 2, 3, 4, 5(from bottom to top)

At the end of this section, we use the following numerical examples to discuss the
impact of the model parameters on the expected total dividend payments. Table 1 gives
some numerical values of V2(u, b) and Figure 2 depicts the behavior of V2(u, b) as a function
of b for some given values of initial capital u. The top curve corresponds to u = 5, and the
next one corresponds to u = 4 and so on. Combining both together, we find that dividends
increase as u increases for each fixed b. Observing carefully, V2(u, b) appears to increase
with b initially and decrease afterwards if u is small. Further, with initial capital u bigger,
V2(u, b) is a monotonically decreasing function of b.

Table 1: Exact values for the expectation V2(u, b) of the discounted dividend payment

b \ u 0 1 2 3 4 5 6 7 8 9

0 0.7774

1 0.8209 1.9576

2 0.8662 2.0654 3.1732

3 0.8548 2.0384 3.1317 4.1000

4 0.8038 1.9167 2.9450 3.8559 4.7292

5 0.7323 1.7463 2.6832 3.5134 4.3098 5.1235

6 0.6544 1.5606 2.3979 3.1400 3.8520 4.5801 5.3584

7 0.5782 1.3789 2.1188 2.7745 3.4038 4.0476 4.7363 5.4941

8 0.5076 1.2105 1.8600 2.4357 2.9882 3.5535 4.1586 4.8249 5.5711

9 0.4440 1.0587 1.6268 2.1304 2.6137 3.1082 3.6376 4.2209 4.8747 5.6143
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观察时间服从Erlang(n) 分布的对偶模型红利支付

刘 艳1, 戚 虎1, 戚攀攀2

(1.武汉大学数学与统计学院, 湖北武汉 430072)

(2.郑州大学数学与统计学院, 河南郑州 450001)

摘要: 本文研究了观察时间服从Erlang(n) 分布的对偶模型红利支付问题. 在收益额的拉普拉斯变换

是有理拉普拉斯变换的情况下, 获得了破产之前总贴现红利V (u; b) 的求解方法. 该结果推广了文献[8] 的相

应结论.
关键词: 对偶模型; 观察时间; 拉普拉斯变换; 贴现红利
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