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Abstract: The main results of this paper are Theorems 1.1 and 1.2 in Section 1. Theorem

1.1 may be regarded as the basic tool in the theory of F -spaces, for it implies fundamental princi-

ples such as the uniform boundedness theorem, the open mapping theorem, and the closed graph

theorem. Theorem 1.2 can be viewed as an application of Theorem 1.1 in numerical analysis, which

shows that an abstract approximation scheme (consisting of a sequence of closed operators with

closed ranges in F -space setting) is convergent if and only if it is stable.
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1 Introduction and Main Results

The uniform boundedness theorem, the closed graph theorem and the open mapping
theorem are usually referred to as fundamental principles in functional analysis (see e.g. [5]).
In this paper, based upon the Baire-Hausdorff theorem, we prove a theorem which contains
the above principal theorems as its simple corollaries (see Theorem 1.1). As a more profound
application of the theorem, a useful result in numerical analysis is established, which may be
viewed as an abstract generalization of the well-known Lax-Richtmyer equivalene theorem
[3] (see Theorem 1.2).

We need to recall the definition of F -spaces and to illustrate the notation used in the
paper. A linear space X is called a quasi-normed linear space, if for every x ∈ X there is
associated a real number ‖x‖, the quasi-norm of the vector x, which satisfies

‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0,

‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality),
‖−x‖ = ‖x‖ , lim

αn→0
‖αnx‖ = 0 and lim

‖xn‖→0
‖αxn‖ = 0.

A quasi-normed linear space X is called an F -space if it is complete. Next, let X be an
F -space. For a point x ∈ X and a real number r > 0, by BX (x, r) we denote the open ball
in X with the center at x and the radius r, namely,

BX (x, r) := {y ∈ X | ‖y − x‖ < r} .
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For a subset A of X, let the symbols A◦ and A denote the interior and the closure of A

respectively. The set A is said to be bounded if it is absorbed by any open ball BX (0, ε)
with center at 0, i.e., if there exists a positive constant α such that α−1A ⊆ BX (0, ε), where

α−1A :=
{
x ∈ X | x = α−1a, a ∈ A

}
.

For a sequence of nonempty subsets {An} of X, we set

s- lim An
n→∞

:=
{

x ∈ X | lim
n→∞

dist (x,An) = 0
}

,

where

dist (x,An) := inf {‖y − x‖ | y ∈ An} .

Now, let Y be an F -space on the same scalar field as the F -space X, T : D ⊂ X → Y a
linear mapping from the subspace D of X into Y . By D (T ), R (T ), N (T ) and G (T ), we
denote the domain, the range, the null space, and the graph of T , respectively, i.e.,

D (T ) := D, R (T ) := {Tx | x ∈ D} ,

N (T ) := {x ∈ D | Tx = 0} , G (T ) := {(x, Tx) | x ∈ D} .

For an y ∈ Y, the preimage of the point y is denoted by T−1(y), namely,

T−1(y) := {x ∈ D (T ) | Tx = y} .

In addition, X × Y is also an F -space by the algebraic operations

(x1, y1) + (x2, y2) := (x1, y1) + (x2, y2), α(x, y) := (αx, αy),

and the quasi-norm

‖(x, y)‖ :=
(
‖x‖2 + ‖y‖2

)1/2

.

The main results in this paper are the two following theorems.
Theorem 1.1 Let X be an F -space. Let p : X → R be a real-valued function on X

with the following properties:
a) p (x) ≥ 0 for all x ∈ X (nonnegativity);
b) p (−x) = p (x) for every x ∈ X (symmetry);
c) lim

n∈N→∞
p (n−1x) = 0 for each x ∈ X (absorbability);

d) p

(∞∑
1

xn

)
≤

∞∑
1

p (xn) if
∞∑
1

‖xn‖ < ∞ (countable subadditivity).

Then p is continuous on X.
Theorem 1.2 Let X and Y be F -spaces. Let {Tn : D (Tn) ⊂ X → Y } be a sequence

of closed operators with closed ranges. Then the following three properties of {Tn} are
equivalent:
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A) if xn ∈ D (Tn) (n ∈ N) with lim
n→∞

‖Tnxn‖ = 0,

lim
k∈N→∞

sup
n∈N

dist
(
k−1xn,N (Tn)

)
= 0;

B) for every ε > 0 there exists a δ > 0 such that

BY (0, δ) ∩R (Tn) ⊆ Tn (BX (0, ε) ∩ D (Tn)) for all n ∈ N;

C) if yn ∈ R (Tn) (n ∈ N) with lim
n→∞

yn = y,

s- lim
n→∞

T−1
n (yn) =

{
x ∈ X | (x, y) ∈ s- lim

n→∞
G (Tn)

}
.

Theorem 1.1 may be regarded as the basic tool in the theory of F -spaces, for it implies
some fundamental principles as simple corollaries, such as the uniform boundedness theorem,
the open mapping theorem, and the closed graph theorem. It must be noted that Theorem
1.1 contains Theorem 1.2 as a more profound application.

Theorem 1.2 can be interpreted as a generalization of the well-known Lax-Richtmyer
equivalence theorem [3] (which states that, for linear well-posed initial value problems, a
consistent difference scheme is convergent if and only if it is stable): for an oprater equation
of the first kind Tx = y, where T : D (T ) ⊂ X → Y is a closed linear operator, we assume
that the equation is with a consistent approximation scheme {Tn} as given in Theorem 1.2,
here“consistent”means

G (T ) = s- lim
n→∞

G (Tn) .

Then condition A or B stands for stability of the scheme {Tn}, condition C stands for
convergence of {Tn}, and the conclusion is

convergence C (s- lim
n→∞

T−1
n (yn) = T−1(y)) ⇐⇒ stability A ⇐⇒ stability B.

This is also a generalization of [1, Theorem 2.1] and [2, Theorem 1].
The paper is organized as follows: in Section 2, we present the proof of Theorem 1.1,

and in Section 3, we show that some fundamental principles as simple corollaries of the
theorem. In Section 4, we present the proof of Theorem 1.2 with remarks and examples of
application.

2 The Proof of Theorem 1.1

We recall the Baire-Hausdorff theorem before proving Theorem 1.1: A non-void com-
plete metric space is of the second category (see, e.g., [5]). As is well known, the completeness
of an F -space enables us to apply the Baire-Hausdorff theorem and to obtain such fundamen-
tal principles in functional analysis as the uniform boundedness theorem, the closed graph
theorem and open mapping theorem. Here, we are to apply the Baire-Hausdorff theorem to
establish a more general principle, Theorem 1.1.
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Proof of Theorem 1.1 The proof is to be carried out in three steps.
Step 1 Prove that for any ε > 0 there exists a sequence {δn} of positive real numbers

such that
BX (0, δn) ⊂ p−1 ([0, ε/2n]) for each n ∈ N (2.1)

and ∞∑
n=1

δn < +∞. (2.2)

It is obvious by properties a) and c) of p that

X =
∞∪

n=1
np−1 ([0, ε/2]) for every ε > 0.

Since X is a non-void complete metric space, X is of the second category by the Baire-
Hausdorff theorem, so that there must be a natural number k such that kp−1 ([0, ε/2])

◦ 6= ∅.

Hence, there exist x0 ∈ X and r > 0 such thatBX (x0, r) ⊂ kp−1 ([0, ε/2]), that is,

k−1BX (x0, r) ⊂ p−1 ([0, ε/2]). (2.3)

Note that, by properties b) and d) of p, the set p−1 ([0, ε/2]) is with the following two
properties

x ∈ p−1 ([0, ε/2]) =⇒ −x ∈ p−1 ([0, ε/2]);
{x, y} ⊂ p−1 ([0, ε/2]) =⇒ x + y ∈ p−1 ([0, ε]).

}
(2.4)

Therefore from (2.3) and (2.4), we obtain BX (0, r/k) ⊂ p−1 ([0, ε]). Thus for every ε > 0,
there exists δ > 0 such that

BX (0, δ) ⊂ p−1 ([0, ε]). (2.5)

From (2.5), we obtain that for any ε > 0 there exists a sequence {δn} of positive real numbers
such that (2.1) and (2.2) hold.

Step 2 Prove that for any ε > 0 there exists δ > 0 such that

BX (0, δ) ⊂ p−1 ([0, ε]) . (2.6)

By the conclusion of Step 1, for any ε > 0 there exists a sequence {δn} of positive real
numbers such that (2.1) and (2.2) hold. Let δ = δ1 and x ∈ BX (0, δ). Then we have that
x ∈ p−1 ([0, ε/2]) from (2.1), and hence there exists x1 ∈ p−1 ([0, ε/2]) such that‖x− x1‖ <

δ2, i.e., x− x1 ∈ B (0, δ2) . Assume n ≥ 1 and xk ∈ p−1
([

0, ε/2k
])

(k = 1, · · · , n) are chosen
to satisfy ∥∥∥∥∥x−

k∑
j=1

xj

∥∥∥∥∥ < δk+1, i.e., x−
k∑

j=1

xj ∈ BX (0, δk+1) .

Then by (2.1), there exists xn+1 ∈ p−1 ([0, ε/2n+1]) such that
∥∥∥∥∥x−

n+1∑
j=1

xj

∥∥∥∥∥ < δn+2, i.e., x−
n+1∑
j=1

xj ∈ B (0, δn+2) .
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Thus we obtain a sequence {xn} of X such that

xn ∈ p−1 ([0, ε/2n]) (2.7)

and ∥∥∥∥∥x−
n∑

k=1

xk

∥∥∥∥∥ < δn+1 and ‖x‖ < δ1. (2.8)

Note that (2.8) with (2.2) implies that

∞∑
n=1

‖xn‖ ≤ 2
∞∑

n=1

δn < +∞ (2.9)

and

x =
∞∑

n=1

xn. (2.10)

Therefore, from (2.7), (2.9), (2.10), and the property d) of p, we conclude that

p (x) ≤
∞∑

n=1

p (xn) ≤
∞∑

n=1

ε

2n
= ε.

Thus (2.6) follows.
Step 3 Prove that p is continuous on X, we need only to show that p is continuous at

0. This is obviously true by the conclusion of Step 2.

3 Simple Corollaries of Theorem 1.1

In this section, we will see that the uniform boundedness theorem, the closed graph
theorem, and the open mapping theorem can be proved as simple corollaries of Theorem 1.1.
In order to emphasize the role of Theorem 1.1, the above three theorems are stated in a little
more generality than is usually needed. By doing that, we get more interesting versions.

Corollary 3.1 (The Uniform Boundedness Theorem) Let X be an F -space, Y a quasi-
normed linear space and {Tλ}λ∈Λ a family of continuous mappings defined on X into Y .
Assume that

1) ‖Tλ (x + y)‖ ≤ ‖Tλ (x)‖+ ‖Tλ (y)‖ for any λ ∈ Λ and x, y ∈ X, and
2) lim

n∈N→∞
sup
λ∈Λ

‖Tλ (n−1x)‖ = 0 for any x ∈ X.

Then lim
x→0

sup
λ∈Λ

‖Tλ (x)‖ = 0.

Proof By Assumption 1), we have

1
n
‖Tλ (x)‖ ≤

∥∥∥∥Tλ

(
1
n

x

)∥∥∥∥ for each n ∈ N.

Therefore, by Assumption 2), we obtain

lim
n→∞

{
1
n

sup
λ∈Λ

‖Tλ (x)‖
}

= 0 for any x ∈ X. (3.1)
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It follows from (3.1) that

sup
λ∈Λ

‖Tλ (x)‖ < ∞ for any x ∈ X. (3.2)

Now, define p : X → R as follows

p (x) := max
{

sup
λ∈Λ

‖Tλ (x)‖ , sup
λ∈Λ

‖Tλ (−x)‖
}

.

It is clear that p is well-defined (by (3.2)) and is with nonnegativity, symmetry, absorbability
and countable subadditivity. Hence, by Theorem 1.1, p is continuous on X, which implies

lim
x→0

sup
λ∈Λ

‖Tλ (x)‖ = 0.

Corollary 3.2 (The Generalized Closed Graph Theorem) Let X and Y be F -spaces.
Let T : D (T ) ⊂ X → Y be a mapping which satisfies the following conditions

1) D (T ) is a closed subspace of X;
2) ‖T (−x)‖ = ‖T (x)‖ for every x ∈ D (T ) ;
3) lim

n→∞
‖T (n−1x)‖ = 0 for every x ∈ D (T ) ; and

4)
∥∥∥∥T

(∞∑
1

xn

)∥∥∥∥ ≤
∞∑
1

‖T (xn)‖ for any sequence {xn} of D (T ) with

∞∑
1

‖xn‖ < ∞ and
∞∑
1

‖T (xn)‖ < ∞.

Then
(a) lim

x→0
T (x) = 0;

(b) ‖T (x)‖ is continuous on D (T ) .

Proof Define p : D (T ) → R as follows p (x) := ‖T (x)‖ . It is not difficult to see that
p satisfies all the conditions in Theorem 1.1. Hence, by Theorem 1.1, p is continuous on
D (T ) , which implies (a) and (b).

Corollary 3.3 (The Open Mapping Theorem) Let X and Y be F -spaces. Let T :
D (T ) ⊂ X → Y be a closed linear operator with R (T ) = Y. Then T is an open mapping,
i.e., T (U) is open in Y whenever U is open in D (T ).

Proof Define p : Y → R as follows

p (y) := inf
x∈T−1(y)

‖x‖ . (3.3)

Then p is obviously with nonnegativity, symmetry, and absorbability on Y . We now verify

that p is with countable subadditivity. Let a sequence {yn} of Y satisfy
∞∑
1

‖yn‖ < +∞.

Then, by the completeness of Y , there exists a vector y∞ ∈ Y such that y∞ =
∞∑
1

yn in Y .

We need to show that

p (y∞) ≤
∞∑
1

p (yn) . (3.4)
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If
∞∑
1

p (yn) = +∞, (3.4) is automatically satisfied. Assume
∞∑
1

p (yn) < +∞. For every ε > 0

and every n ∈ N, by (3.3), there exists a vector xn ∈ T−1 (yn) such that ‖xn‖ < p (yn) + ε
2n ,

and therefore
∞∑
1

‖xn‖ <

∞∑
1

p (yn) + ε. (3.5)

Since X is an F -space,
∞∑
1

xn is convergent to a vector x∞ of X. By the closedness of T , we

have that x∞ ∈ D (T ) and Tx∞ = y∞. Hence, by (3.5),

p (y∞) ≤ ‖x∞‖ ≤
∞∑
1

‖xn‖ <

∞∑
1

p (yn) + ε. (3.6)

Note that the ε is arbitrary, so (3.6) implies (3.4). Now, by Theorem 1.1, p is continuous on
Y .

To prove that T is an open mapping, we have only to show that for every ε > 0, there
exists a δ > 0 such that

BY (0, δ) ⊂ T (D (T ) ∩BX (0, ε)) . (3.7)

By the continuity of p, for any ε > 0, there is a δ > 0 such that

p (y) < ε for all y ∈ BY (0, δ) .

Hence, for every y ∈ BY (0, δ) , there exists a vector x ∈ T−1 (y)∩BX (0, ε) by the definition
of p, and therefore (3.7) is true.

4 The Proof of Theorem 1.2

To prove Theorem 1.2, we prepare the following lemma.
Lemma 4.1 Let Y be an F -space, {Yn} a sequence of closed subspaces of Y . Let Y

be the set of all vectors ξ = {yn} with yn ∈ Yn (for every n ∈ N) and lim
n→∞

yn = 0, i.e.,

Y =
{

ξ | ξ = {yn} , yn ∈ Yn (∀n ∈ N) , lim
n→∞

yn = 0
}

.

Then Y is an F -space by the algebrac operations {y′n}+{y′′n} := {y′n + y′′n} , α {yn} := {αyn}
and the quasi-norm ‖{yn}‖ := sup

n∈N
‖yn‖ .

Proof It is easy to show that Y is a linear space and

‖ξ‖ ≥ 0 and ‖ξ‖ = 0 ⇐⇒ ξ = 0, ‖ξ + η‖ ≤ ‖ξ‖+ ‖η‖ , ‖−ξ‖ = ‖ξ‖ .

To prove that ‖·‖ is a quasi-norm on Y, we need only to show that

lim
αk→0

‖αkξ‖ = 0 (4.1)
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and
lim

‖ξ(k)‖→0

∥∥αξ(k)
∥∥ = 0. (4.2)

Noting that ξ = {yn} , as a subset of Y, is bounded and that αk → 0, we obtain (4.1). Put

ξ(k) :=
{

y
(k)
n

}∞
n=1

(k ∈ N). Then
∥∥ξ(k)

∥∥ → 0 implies lim
k→∞

sup
n∈N

∥∥∥y
(k)
n

∥∥∥ = 0 and therefore

lim
k→∞

sup
n∈N

∥∥αy(k)
n

∥∥ = 0,

since lim
‖y‖→0

‖αy‖ = 0. Thus, (4.2) holds.

Next, we show that Y is complete. Let lim
k,l→∞

∥∥ξ(k) − ξ(l)
∥∥ = 0 in Y. Put ξ(k) :=

{
y

(k)
n

}

(k ∈ N). Then lim
k,l→∞

sup
n∈N

∥∥∥y
(k)
n − y

(l)
n

∥∥∥ = 0. Hence there exists a sequence
{

y
(∞)
n

}
of Y such

that
lim

k→∞
sup
n∈N

∥∥y(k)
n − y(∞)

n

∥∥ = 0 (4.3)

by the completeness of Y . Note that (4.3) implies that lim
n→∞

∥∥∥y
(∞)
n

∥∥∥ = 0. Put ξ(∞) :=
{

y
(∞)
n

}
,

then ξ(∞) ∈ Y and ξ(k) → ξ(∞) as k →∞ in Y.

Proof of Theorem 1.2 The proof will be carried out in three steps.
Step 1 A) ⇒ B): Assume A) and put

Y =
{

ξ | ξ = {yn} , yn ∈ R (Tn) (∀n ∈ N) , lim
n→∞

yn = 0
}

.

Then
lim

k→∞
sup
n∈N

dist
(
k−1xn,N (Tn)

)
= 0

for any ξ = {yn} ∈ Y and {xn} with xn ∈ T−1
n (yn) (n ∈ N). Since

dist
(
k−1xn,N (Tn)

)
= inf

x∈T−1
n (yn)

∥∥k−1x
∥∥ , where yn = Tn (xn) ,

and since
inf

x∈T−1
n (yn)

‖x‖ ≤ k inf
x∈T−1

n (yn)

∥∥k−1x
∥∥ (n, k ∈ N) ,

we have that
sup
n∈N

inf
x∈T−1

n (yn)
‖x‖ < +∞ for any ξ = {yn} ∈ Y (4.4)

and that
lim

k→∞
sup
n∈N

inf
x∈T−1

n (yn)

∥∥k−1x
∥∥ = 0 for any ξ = {yn} ∈ Y. (4.5)

Noting that R (Tn)(n ∈ N) are all closed, by Lemma 4.1, Y is an F -space by the algebrac op-
erations {y′n}+{y′′n} := {y′n + y′′n} , α {yn} := {αyn} and the quasi-norm‖{yn}‖ := sup

n∈N
‖yn‖ .

Define p : Y → R as follows

p (ξ) := sup
n∈N

inf
x∈T−1

n (yn)
‖x‖ for any ξ = {yn} ∈ Y. (4.6)
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By (4.4), (4.6) and (4.5), p is well-defined on Y, and is with nonnegativity, symmetry and
absorbability. Next we verify that p is with countable subadditivity.

Let
{
ξ(k)

}∞
k=1

be a sequence of Y with
∞∑

k=1

∥∥ξ(k)
∥∥ < +∞. Then, by the completeness of

Y, there exists a vector ξ(∞) ∈ Y such that

ξ(∞) =
∞∑

k=1

ξ(k) in Y. (4.7)

We have to show that

p
(
ξ(∞)

) ≤
∞∑

k=1

p
(
ξ(k)

)
. (4.8)

If
∞∑

k=1

p
(
ξ(k)

)
= +∞, (4.8) holds automatically. Now, assume

∞∑
k=1

p
(
ξ(k)

)
< +∞ and put

ξ(k) =
{
y(k)

n

}
, ξ(∞) =

{
y(∞)

n

}
. (4.9)

By the definition of p (see (4.6)),

inf
x∈T−1

n (y
(k)
n )

‖x‖ ≤ p
(
ξ(k)

)
for any k ∈ N and n ∈ N.

Therefore, for every ε > 0, every k ∈ N and every n ∈ N, there exists a point x
(k)
n (ε) ∈

T−1
n

(
y

(k)
n

)
such that

∥∥x(k)
n (ε)

∥∥ < p
(
ξ(k)

)
+

ε

2k
.

Hence, for every ε > 0 and every n ∈ N, there is a sequence
{

x
(k)
n (ε)

}∞
k=1

of D (Tn) such
that

Tn

(
x(k)

n (ε)
)

= y(k)
n for every k ∈ N (4.10)

and
∞∑

k=1

∥∥x(k)
n (ε)

∥∥ <

∞∑
k=1

p
(
ξ(k)

)
+ ε. (4.11)

By (4.11) and the completeness of X, there exists a point x
(∞)
n (ε) ∈ X such that

x(∞)
n (ε) =

∞∑
k=1

x(k)
n (ε) in X. (4.12)

On the other hand, (4.10) with (4.7) and (4.9) implies that for every n ∈ N, there holds

y(∞)
n =

∞∑
k=1

y(k)
n =

∞∑
k=1

Tn

(
x(k)

n (ε)
)

in Y. (4.13)
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Since, for every n ∈ N, Tn is closed, it follows from (4.12) and (4.13) that x
(∞)
n (ε) ∈ D (Tn)

and x
(∞)
n (ε) ∈ T−1

n

(
y

(∞)
n

)
. Hence, by (4.12) and (4.11), for every ε > 0 and every n ∈ N,

we have that

inf
x∈T−1

n (y
(∞)
n )

‖x‖ ≤
∥∥∥x

(∞)
n (ε)

∥∥∥ ≤
∞∑

k=1

∥∥∥x
(k)
n (ε)

∥∥∥ <
∞∑

k=1

p
(
ξ(k)

)
+ ε.

So for every ε > 0, we have

p
(
ξ(∞)

) ≤
∞∑

k=1

p
(
ξ(k)

)
+ ε.

Thus (4.8) is true.
We have proved that p satisfies all the conditions of Theorem 1.1. Hence, p is continuous

on Y, and is continuous at 0. This implies that for every ε > 0, there exists a δ > 0 such
that

inf
x∈T−1

n (y)
‖x‖ < ε for every n ∈ N and every y ∈ R (Tn) with ‖y‖ < δ.

Therefore we obtain that for every ε > 0 there exists a δ > 0 such that

BY (0, δ) ∩R (Tn) ⊆ Tn (BX (0, ε) ∩ D (Tn)) for all n ∈ N.

That shows that A) implies B).
Step 2 B) ⇒ C) Assume that {Tn} satisfies B) and that yn ∈ R (Tn) (n ∈ N) and

lim
n→∞

yn = y. We have to show that

s- lim
n→∞

T−1
n (yn) =

{
x ∈ X | (x, y) ∈ s- lim

n→∞
G (Tn)

}
. (4.14)

If x ∈ s- lim
n→∞

T−1
n (yn), there exists a sequence {xn} with xn ∈ T−1

n (yn) (n ∈ N) such that

xn → x, Tnxn → y, as n →∞. This implies that (x, y) ∈ s- lim
n→∞

G (Tn). Hence we obtain

s- lim
n→∞

T−1
n (yn) ⊆

{
x ∈ X | (x, y) ∈ s- lim

n→∞
G (Tn)

}
. (4.15)

On the other hand, if x ∈ X such that (x, y) ∈ s- lim
n→∞

G (Tn), then there exists a sequence

{xn} of X with xn ∈ D (Tn) (n ∈ N) such that lim
n→∞

xn = x, lim
n→∞

Tnxn = y, and therefore

lim
n→∞

(yn − Tnxn) = 0. (4.16)

Since {Tn} satisfies B), i.e., for every ε > 0, there exists a δ > 0 such that

BY (0, δ) ∩R (Tn) ⊆ Tn (BX (0, ε) ∩ D (Tn)) for all n ∈ N,

it follows from (4.16) that for every ε > 0, there exists a natural number N such that

yn − Tnxn ∈ Tn (BX (0, ε) ∩ D (Tn)) for all n > N.
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This implies that lim
n→∞

inf
v∈T−1

n (yn−Tnxn)
‖v‖ = 0. So we obtain that

dist (x, T−1
n (yn)) = inf

v∈T−1
n (yn−Tnxn)

‖v + xn − x‖

≤ ‖xn − x‖+ inf
v∈T−1

n (yn−Tnxn)
‖v‖ → 0, as n →∞.

Thus x ∈ s- lim
n→∞

T−1
n (yn). Hence we have that

{
x ∈ X | (x, y) ∈ s- lim

n→∞
G (Tn)

}
⊆ s- lim

n→∞
T−1

n (yn). (4.17)

(4.14) follows from (4.15) and (4.17).
Step 3 C) ⇒ A) Assume C) and let {xn} be a sequence of X with xn ∈ D (Tn) (n ∈ N)

and lim
n→∞

Tnxn = 0. Then

s- lim
n→∞

T−1
n (Tnxn) =

{
x ∈ X | (x, 0Y ) ∈ s- lim

n→∞
G (Tn)

}
3 0X .

That implies that lim
n→∞

inf
x∈T−1

n (Tnxn)
‖x‖ = 0. Hence, there exists a sequence {x′n} of X with

x′n ∈ T−1
n (Tnxn) (n ∈ N) such that lim

n→∞
x′n = 0 ; therefore, {x′n} is a bounded subset of X

and this impies that lim
k→∞

sup
n∈N

‖k−1x′n‖ = 0. Noting that

dist (k−1xn,N (Tn)) = dist (k−1x′n,N (Tn)) ≤ ‖k−1x′n‖ for all n ∈ N,

we obtain that lim
k→∞

sup
n∈N

dist (k−1xn,N (Tn)) = 0, that is, A) holds.

Remark 4.1 In Theorem 1.2, if X and Y are Banach spaces, then the following three
properties of {Tn} are equivalent:

A) For any xn ∈ D (Tn) (n ∈ N) with lim
n→∞

‖Tnxn‖ = 0, there holds

sup
n∈N

dist (xn,N (Tn)) < +∞.

B) There exists a δ > 0 such that

BY (0, δ) ∩R (Tn) ⊆ Tn (BX (0, 1) ∩ D (Tn)) for all n ∈ N.

C) If yn ∈ R (Tn) (n ∈ N) with lim
n→∞

yn = y,

s- lim
n→∞

T−1
n (yn) =

{
x ∈ X | (x, y) ∈ s- lim

n→∞
G (Tn)

}
.

Remark 4.2 The following case is of practical interest for the applications of Theorem
1.2: There exists a closed linear operator T : D (T ) ⊂ X → Y such that {Tn} is its consistent
approximation scheme, that is, G (T ) = s- lim

n→∞
G (Tn) . Here we provide two examples with

the above case.
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Example 4.1 Let T , Tn be all self-adjoint operators in a Hilbert space H, and let

s- lim
n→∞

Rλ (Tn) = Rλ (T ) (∀λ ∈ C\R) ,

where Rλ (T ) and Rλ (Tn) denote the resolvent operator of T and Tn, respectively. Then
{Tn} is a consistent approximation scheme of T . See [6, pp.152–153] or [4, pp. 148–149] for
the proof of the statement. Now, by Theorem 1.2 we conclude that: if R (Tn) (n ∈ N) are
closed, and if

sup
n∈N

∥∥T †n
∥∥ < ∞ (where T †n is the Moore-Penrose inverse of Tn),

then for any yn ∈ R (Tn) (n ∈ N) with lim
n→∞

yn = y, there holds s- lim
n→∞

T−1
n (yn) = T−1 (y) ;

especially, there holds s- lim
n→∞

N (Tn) = N (T ) .

Example 4.2 Let A,An ∈ B (X, Y ), where X and Y be Banach spaces, and let
s- lim
n→∞

An = A. Then {An} is a consistent approximation scheme of A. By Theorem 1.2,

we conclude that: If R (An) (n ∈ N) are closed, and if for any xn ∈ D (An) (n ∈ N) with
lim

n→∞
‖Anxn‖ = 0, there holds sup

n∈N
dist (xn,N (An)) < +∞, then the conclusion of Example

4.1 holds.
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F -空间中的一个基本定理及其在数值分析中的应用

杜乃林,夏 炜

(武汉大学数学与统计学院, 湖北武汉 430072)

摘要: 本文针对F -空间中闭算子方程的一般逼近格式, 研究其相容性、收敛性和稳定性之间的关系.

所得的主要结果是: 这种一般逼近格式在相容性条件下, 其收敛性与稳定性是等价的. 此定理可以看作是

对Lax等价原理的推广, 是求解第一类闭算子方程的一般逼近格式的基本定理. 为得到这一主要结果, 本文

还给出了F -空间中的一条基本定理, 众所周知的一致有界原理, 闭图像定理和开映像定理是其简单推论.
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