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Abstract: In this paper, we focus on the affine sphere theorem related to homogeneous
function. Based on Hopf maximum principle, we obtain that the affine sphere theorem does hold
for given elementary symmetric curvature problems under concavity conditions. In particular, it
gives a new proof of Deicke’s theorem on homogeneous functions.
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1 Main theorems

Let L be a positive function of class C*(R"/{0}) with homogeneous of degree one.

Introducing a matrix g of elements

Deicke [4] showed that the matrix g is positive and the following theorem, a short and elegant
proof was presented in Brickell [1].

Theorem 1.1 Let detg be a constant on R"/{0}. Then g is a constant matrix on
R™/{0}.

Theorem 1.1 is very important in affine geometry [10, 11, 13] and Finsler geometry [4].
There are lots of papers introducing the history and progress of these problems, for example
[7]. A laplacian operator and Hopf maximum principle is the key point of Deicke [4] ’s proof.
However, our method depends on the concavity of the fully nonlinear operator, we give a
new method to prove more generalized operator than Theorem 1.1, for considering operator
F(g), which including the operator of determinant.

Theorem 1.2 Let F(g) be a constant on R"/{0}, F(g) be concave with respect to
matrix g, and the matrix [F"] <; j<, = [6871;]19,]-3” be positive semi-definite. Then g is a

constant matrix on R"/{0}.

* Received date: 2017-01-08 Accepted date: 2017-04-25
Foundation item: Supported by the Science and Technology Research program of Chongqging
Municipal Education Commission (KJ1705136).
Biography: Zhao Leina (1981-), female, born at Qingdao, Shandong, lecture, major in partial

differential and its applications.



1174 Journal of Mathematics Vol. 37

In fact

(1) If F(g) = logdet g, Theorem 1.2 is just Theorem 1.1.

(2) An interesting example of Theorem 1.2 is F(g) = (Sk(g))*, where Si(g) is the ele-
mentary symmetric polynomial of eigenvalues of g. The concavity of F(g) was from Caffarelli-
Nirenberg-Spruck [3]. A similar Liouville problem for the Sy equation was obtained in [2].

It is easy to see that the method of Brickell [1] does not apply to our Theorem 1.2.

On the other hand, there are some remarkable results for homogeneous solution to
partial differential equations. Han-Nadirashvili-Yuan [6] proved that any homogeneous order
1 solution to nondivergence linear elliptic equations in R® must be linear, and Nadirashvili-
Yuan [8] proved that any homogeneous degree other than 2 solution to fully nonlinear elliptic
equations must be “harmonic” . In fact, our methods can also be used to deal with the

following hessian type equations
F(D?u) = constant. (1.2)

More recently, Nadirashvili-Vladut, [9] obtained the following theorem.

Theorem 1.3 Let u be a homogeneous order 2 real analytic function in R*/{0}. If u
is a solution of the uniformly elliptic equation F(D?*u) = 0 in R*/{0}, then u is a quadratic
polynomial.

However, our theorem say that above theorem holds provided F with some concav-
ity /convexity property. Pingali [12] can show for 3-dimension, there is concave operator G

form F' without some concavity /convexity property, for example
F(D?u) = det D*u + Au

for Ay < Ay < A3 are eigenvalues of hessian matrix D?u. Then

A1+A2+A3+A1 A2 A3 t2

G()\l,)\g,)\g) = / eXp(—E)dt

36
has a uniformly positive gradient and is concave if A; > 3. That is to say, using our methods,
there is a simple proof of Theorem 1.3 if one can construct a concave operator with respect
to F in Theorem 1.3.

2 Proof of Theorem 1.2

Here we firstly list the Hopf maximum principle to be used in our proof, see for example

[5].
Lemma 2.1 Let u be a C? function which satisfies the differential inequality
0% - Ou
Lu = a" b’ > 2.1
Y “ (990189[:] + 8.%'1 - 0 ( )

in an open domain 2, where the symmetric matrix a* is locally uniformly positive definite
in © and the coefficients a®/, b’ are locally bounded. If u takes a maximum value M in Q
then u = M.
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Proof of Theorem 1.2 Differentiating this equation twice with respect to x
F(g) = constant,

one has
Fijgijkl + Fijmqgijkgpql =0,

2
ij — OF pijpq — _0°F . _ 09i o %95
where F% = 99, F = 09:;00pq’ gzjk = Bz and gwkl = Dandu

The concavity of F'(g) with respect to g says that the matrix Jy; = FY g, is positive
semi-definite. In particular,
F g1, > 0. (2.2)

We firstly consider (2.2) as an inequality in unit sphere S™7!,
FYgij0 >0, 8", (2.3)

that is to say using Hopf maximum principle of Lemma 2.1 and taking Q = S™~!, it shows
that gy is constant on S"~!, and it is so on R"/{0} because gy is positively homogeneous

of degree zero. Then, owing to the matrix Fg;;,, be positive semi-definite
F9g,0 =0.

Using Hopf maximum principle again and gy; is positively homogeneous of degree zero, then

the matrix g is constant matrix. We complete the proof of Theorem 1.2.
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