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Abstract: The fourth power mean of two-term exponential sums is studied in this paper.
By elementary and algebraic methods, an explicit computation formula and a transform formula
are proposed, which extend the original research results and discover the essential relation between
fourth moment and congruence equations.
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1 Introduction

For integers m,n, q, k with ¢ > 3,k > 2, we define a two-term exponential sums

C(m,n,k;q) = Z'e(w), (1.1)

where e(y) = €™ and Z denotes the summation over all a with (a,q) = 1. The two-term

exponential sums C' (m n, k q) originally arose in connection with Waring’s problem and the

aim is to find optimal bounds. As a pioneer work, Davenport and Heilbronn [2] proved that
C(m,n, k;p®) < xp®(m,p™) (1.2)

for (p,m) = 1, where 0 = 2/3 for k = 3 and 6 = 3/4 for k > 3. Afterwards, Hua [9] showed
that 6 = 1/2 for all k¥ > 2 by using Weil’s estimate for exponential sums over finite fields.
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Till now, many improvements for (1.2) were made by Loxton, Vaughan and Smith [5, 6, 11].
Carlitz [7, 8] studied the computation problem of the two-term exponential C(m,n,k;p)
over finite fields and obtained the computational formulas for K = 3 and kK = p+1. As to the

7rmk+na)
q

q
two-term exponential sums with Dirichlet character C'(m,n,k,x,q) = >_ 'x(a)e( ,
a=1

Xu [13], Liu [3], Chen [14, 15], Ai [16] and Calderon [1] also acquired a lot of research
results. More, about the three-term exponential sums, there were also some interesting
results [17-19].

Though the single value of C(m,n, k;q) is irregular, the high power means that value
of C(m,n,k;q) owns graceful arithmetical properties and it in turn becomes an interesting
focus for many attentions. In 2010, Liu [4] acquired the computational formula of the fourth

mean value, i.e., when p is an odd prime with (n,p) = 1, then

» (p—D*+p—2, if k=1
S Cmn kip)[f =4 pP-p?—Tp—1— (D)2 9 i k=2
m=1 2p* —3p* —=3p—1, if k>0 and k= —1(modp—1).

In 2011, Wang, Zhang [12] studied the computation problem of the fourth moment of
two-term mixed exponential sums with elementary algebraic method. They proved that

when p is a prime and (n,p) = 1, then

zp:|0(m n 2‘p)|4: p(p*—p—9), if p=1(mod4);
m=1 T p(p* —p—>5), if p=3(mod4).

When p is a prime, (n,p) =1 and (3,p — 1) = 1, then

p
> IC(m,n,3;p)|" = 2p” — 3p* — 3p.

m=1

p
Unfortunately, though Liu, Wang got the explicit formulas of ) |C(m,n,k; p)|4 with
m=1
k>1,k=-1,1,2,3 (mod (p—1)), the result under the condition k > 1,k =5 (mod (p — 1))

was not solved. In this paper, this computation problem will be solved and the explicit
formulas will be given. Moreover we shall give a transform formula and a lower bound
formula for the fourth moment of two-term exponential sums. The main results are the
following two theorems.

Theorem 1.1 Let p be a prime with p > 5, (5, p — 1) = 1, n be an integer with
(n,p) =1, then for k > 1,k =5 (mod(p — 1)), we have

3p® —8p? —3p, p=5(modl2);

zp: Clmom kep)t = {37~ 10" =3p, p=1 (mod12);
= 3p° — 10p> — 3p, p=—5 (mod12);

3p® —2p? —3p, p=-—1(modl2).
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Theorem 1.2 Let p be a prime with p > 3, (k,p — 1) = 1, n be an integer with
(n,p) =1, then we have

p
> [C(mn ks p)[* = p(2p” — 3p - 3).

m=1

2 Preliminaries

To prove the main results, necessary lemmas are listed and proved as below.
Lemma 2.1 For arbitrary integers a,b, ¢, let p be an odd prime with (a,p) = 1 and

denote N as the number of the solutions of the congruence equation az*+bzr+c = 0 ( mod p),

then ,
—4
No=1+ (bac)
D

Proof From Theorem 3.5.1 in ref. [10], we immediately get the result.
Lemma 2.2 Let p be an odd prime, Ny denote the number of the solutions of the

congruence equation ¢? — ¢+ 1 = 0 (modp), then

2, p=1,-5(modl2);
N2 -
0, p=5,—1(modl2).

And if p=1,-5 (mod12), 1, p are not solutions.
Proof Since (1,p) = 1, by Lemma 2.1, we have

N2—1+(_:’>—1+(§).

If p=1,—5(mod12), then (£
If p = —1,5(mod12), then (£) = —1.

In conclusion, we have

2 =1,—- 12);
szH(p):{ . p=1,-5(mod12)

3 0, p=5,—1(modl2).

And straight forward calculation shows that 1,p are not solutions.

p
Lemma 2.3 Let p be an odd prime, a® — 4b # 0(modp), then > (%) = -1,
=1
substituting 0 for the term in the formula with p | z? + ax + b.
Proof See Theorem 7.8.2 in ref. [10].
Lemma 2.4 Let p be an odd prime, £ be an odd positive integer and N, denote the

number of the solutions of the congruence equation
(a* —1)(c—1)* = (F — 1)(a — 1)*(modp), (2.1)

where a, c are integers with 2 < a,c < p — 1, then we have N; , > 2p — 5.
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Proof It is obviously to show that a = ¢(mod p) is fit for equation (2.1), now we
consider the case ¢ = a(mod p) .

After substituting ¢ = a(mod p) into the left part of formula (2.1), we have
(a* —1)(@—1* = (a* = 1)a*(1 — a)*(mod p).

Again, ¢ = @(mod p) is substituted into the right part of (2.1). Since k is an odd

integer, then
@ — 1)(a—1)* =a*(1 - a*)(a — 1)* = (a* — 1)a*(1 — )" (mod p).

Therefore

(a* —1)(@—1)* = (@ — 1)(a — 1)*(mod p).

So ¢ = a(mod p) is also fit for equation (2.1).

Moreover a = ¢(mod p) and a = ¢(mod p) have the same solution (a,c) = (p—1,p—1).
Hence Ny, > 2p — 5.

Lemma 2.5 Let p be a prime with p > 3 and N3 denote the number of the solutions

of the congruence equation
(?—c+1)a*— (2 +1a+ (¢ —c+1) =0 (mod p), (2.2)
where a, ¢ are integers with 2 < a,c < p — 1, then we have

p—1, p=5(modl2);
p—9, p=1(modl2);
p—"T7, p=-5(modl2);
p+1, p=-—1(modl2).

N3

Proof Case 1 Forafixed ¢,2<c<p-—1,if > —c+1# 0(mod p), from Lemma 2.1,

the number of the solutions of equation (2.2) is

1+ ((02+1)2—4(02—c+ 1)2> _ <—cz—|—20—1> (302—20+3>

p p p

+
() ) () () ().

where 3 satisfies 3-3 = 1 (mod p). If a = 1 (mod p) satisfies equation (2.2), then ¢ =
1(mod p); If @ = 0 (mod p) satisfies equation (2.2), then ¢*> — ¢+ 1 = 0 (mod p), that
contradicts.

Case 2 For a fixed ¢,2 < ¢ <p—1,if ¢ — c+ 1 = 0(mod p), then equation (2.2) is

(c® + 1)a = 0(mod p), namely ca = 0(mod p), therefore congruence equation (2.2) has no
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solution. So we have

Ns = i {1+<<CZ+1>2_‘$02—C+1)2>]

c=2

¢ —c+1#0(mod p)

- iZ: [1+ ((62-4—1)2—4;(02—@4_1)2)}
§ [1+<(C2+1)24;(CQC+1)2>}

c=2
¢ —c+1=0(mod p)

[ (2 ()
S ()

—
+

By using Lemma 2.3, we have

tereae () [ () oo () 3)

Now we compute B, from Lemma 2.2, we have

S e

2 —c+1=0(mod p) 2 —c+1=0(mod p)
= 2'N27

2, p=1,-5(modl2);
0, p=5,-1(modl2).

veera () 2() 2w,
p p

Therefore

where Ny = {
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If p = 5(mod12), then ( ) ,
If p = 1(mod12), then (*7> —1,
If p = —5(mod12), then (_1

=1 (‘73) = —1, therefore N3 =p — 1.
-3
()
1, (

L,

=1, therefore N3 =p — 9.
) =1, therefore N3 =p — 7.

_ =3
p
If p= —1(mod12), then — _?3) = —1, therefore N3 = p+ 1.

In conclusion, we have

p—1, p=5(modl2);

p—9, p=1(modl2);
N3 =

p—"T7, p=-5(modl2);

p+1, p=-—1(modl2).

Lemma 2.6 Let p be a prime, p > 5 and N5, denote the number of the solutions of

the congruence equation
(a® —1)(c—=1)° = (¢® — 1)(a — 1)® (mod p), (2.3)
where a, ¢ are integers with 2 < a,c¢ < p — 1, then we have

3p—10, p=>5(modl2);
3p—18, p=1(modl2);
3p—12, p= -5 (modl12);
3p—4, p=-1(modl2).

Nsp =

Proof By using factorization method, we know that equation (2.3) equivalents to
5(c—1)(a—1)(a—c)(ac—1)[(c* —c+1)a* — (> + 1)a+ (¢ —c+1)] =0 (mod p).
Noting that p is a prime with p > 5 and 2 < a,c < p — 1, we have

(@ —c)(ac—D[( —c+1)a* - (*+1)a+ (c* —c+1)] =0 (mod p).

Let
S1 ={(a,c)la—c=0(mod p)},
Sy = {(a,c)|lac =1 (mod p)},
Sz = {(a,0)|[(* —c+1)a® = (¢ + 1)a+ (¢ —c+1) =0 (mod p)},
then

N5, = 151U Sy U S3| =|S1] + |S2| + [S3| — [S1 N S2| — [S1 N S3| — [S2N S3| +[S1 N S2N Ss,

where | | denotes the number of the elements of the set.
(a) It is obviously that S; NSy = {(p —1,p — 1)} and thus |[S; N Sy| = 1.
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(b) If (a,c) € S; NSz, then
(2 +1)(c—1)? =0 (mod p).

Since ¢ # 1 (mod p), we have

2

¢ = —1(mod p). (2.4)

If p = 1 (mod4), then (_?1)

¢=0,1,p— 1 (mod p) are not solutions. Therefore

= 1, so equation (2.4) has two solutions and obviously

|Slﬂ53| :2,|Slﬂ52ﬂ53\ :O

If p=—1 (mod4), then (%) —1, so equation (2.4) has no solution. Therefore
|Sl N 53| - 0, |Sl ﬂSg mS:;‘ - 0
(c) If (a,c) € Sy N Sz, then we substitute a = ¢ (mod p) into the equation

(> —c+1)a®> = (*+1a+ (c* —c+1) =0 (mod p),

then

(A —c+1)@)? - (+1)e+ (> —c+1) =0 (mod p).
Thus

(> —c+ 1) = (2 +1)e+ (2 —c+1) =0 (mod p),
namely,

(2 +1)(c—1)?> =0 (mod p).

Now we can see that the case is similar to case (b). Therefore we have if p = 1 (mod4), then
|SQ N 53| = 2, lfp =-1 (mod4), then |52 N 53| =0. So

Nsp :2p_5+|53| - |S1ﬂ53| — |52053|.

From Lemma 2.5, we have

p—1, p=5(modl2);

5, = p—9, p=1(modl2);
p—7, p=-5(modl2);
p+1, p=-1(modl2)

Then
3p—10, p=5(modl2);
3p—18, p=1(modl2);
N5, = B

3p—12, p=-5(modl2);
3p—4, p=-1(modl2).
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Lemma 2.7 Let p be an odd prime with (n,p) =1 and (k,p —1) =1, then we have

p
> C(m,n, k)| =2p* = 3p+p* - Nip

m=1

Proof For integer r satisfying (r,p) = 1, we have (7,p) = 1, where 77 = 1 (mod p).
Thus we have

p
N [Cmnksp) =
m=1

_ -1
1 ma® + n(ra) 1 &~ md
k|| T
= N1 —1T
Noting that (k,p — 1) = 1, then
1 &[S e ! !
L= =32 20| = Z<
p_lmzl a=1 p mlal
1 pol|ed ma !
= o1 (P—1)4+Z e(— =(-1)°+1.
p m=1 |[a=1
T - 1 && e m(ak — b*) + nr(a — b) i
PR 1) 9) ST AR E)
r=1 m=1 |a=1 b=1
2
1 & ks mbka —1)+nrbla—1)
R 3] S 9) S LA LI ESLLUE Y
r=1 m=1 a=2 b=1
2
1 K< ks mbkaflk(ak71)+nrb
B 51 IS p) LA R |
r=1 m=1 a=2 b=1
p—1 p—1 k
mb (a—1)k(a* — 1) +nrb
- TS e E S e
r=1 m=1 a=2 b=1

[ _1+ZZ —md*(c—1)* (ck—l)—nrd)]

c=2 d=1 p
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_ (p_l)p2+zz —\ — e(m(b(m)) (a 71)+m"b)

=1 p

Rk m @ —1) (@* —1) — (e =1)" (" — 1] +nr(b—d)

1 p p
e DD e( » )

Il
=
e
Il
[ V]
<o
Il
=

With the condition (n,p) = 1 and from the trigonometric identity,
Zm: 1 m, m|n,
p m 0, mtn.

We have Z m = 0, therefore T1; = 0. Similarly, 775 = 0,

r=1

p c=2a=2b=1m=1
p—1p—1
2
= » D1
a=2c=2
(a=T)*(ak—1)—(c=T)k (ck ~1)=0 ('mod p)
p—1p—1
= 7 > 1
a=2 c=2
(ak —1)(c—=1)k=(ckF—1)(a—1)k ( mod p)
= pQ'Nk,?

So

p
> 1Cm,n, ki)' =2p* = 3p+p* - Niey.
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Thus all of the lemmas are shown. Besides, the result of Lemma 2.7 shows that the dif-

P

ficulty of calculating > |C'(m,n, k;p) \4 is mainly stemmed from computing exactly number
m=1

of the solutions of high power congruence equation.

3 Proof of the Theorems

First we prove Theorem 1.1.
Proof By Lemma 2.7, we have

m=1

P P
> 1Cm,n ki p)[f =) 1C(m,n,5:p)|" = 2p* = 3p+p” - N
m=1

From Lemma 2.6, we have

3p—10, p=5(modl2);
3p—18, p=1(modl2);
3p—12, p=-5(modl12);
3p—4, p=-1(modl2).

Nsp =

Therefore

3p° —8p* —3p, p=5(modl2);
zp: Clmn kep)t = | 3P = 100" =3p, p=1 (mod12);
o 3p® —10p* = 3p, p=—5(mod12);

m=1
3p® —2p? —3p, p=-—1(modl2).

This proves Theorem 1.1.
Finally we complete the proof of Theorem 1.2.
Proof By Lemma 2.7 and Lemma 2.4, we have

p
> Cmnkip)|" = 20" =3p+p*- Ny
m=1

> 2p° =3p+p°-(2p—5) = p(2p° — 3p — 3).
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