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1 Introduction

It is an important problem in Finsler geometry to study and characterize projectively
flat Finsler metrics on an open domain in Rm. Hilbert’s 4th problem is to characterize
the distance functions on an open subset in Rm such that straight lines are geodesics [5].
Regular distance functions with straight geodesics are projectively flat Finsler metrics. A
Finsler metric F = F (x, y) on an open subset U ⊂ Rm is projectively flat if and only if it
satisfies the following equation

Fxiyj yi = Fxj . (1.1)

In Finsler geometry, the flag curvature K(P, y) is an analogue of the sectional curva-
ture in Riemannian geometry. It is known that every projective Finsler metric is of scalar
curvature, namely, the flag curvature K(P, y) = K(y) is a scalar function of tangent vectors
y. Shen discussed the classification problem on projective Finsler metrics of constant flag
curvature [14]. The second author provided the projective factor of a class of projectively
flat general (α, β)-metrics [12] and studied a necessary and sufficient condition for a class
of Finsler metric to be projectively flat [13]. Li proved the locally projectively flat Finsler
metrics with constant flag curvature K are totally determined by their behaviors at the
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origin by solving some nonlinear PDEs. The classifications when K = 0, K = −1, K = 1
are given in an algebraic way [15].

For a Finsler metric F = F (x, y) on a manifold M , the geodesics c = c(t) of F in local
coordinates (xi) are characterized by

d2xi

dt2
+ 2Gi(x,

dx

dt
) = 0,

where (xi(t)) are the coordinates of c(t) and Gi = Gi(x, y) are defined by

Gi =
gil

4
{[F 2]xkylyk − [F 2]xl},

where gij = 1
2
[F 2]yiyi and (gij) = (gij)−1. Gi are called the spray coefficients. The Riemann

curvature is a family of linear maps

Ry = Ri
k

∂

∂xi

⊗
dxk : TxM → TxM

defined by

Ri
k = 2

∂Gi

∂xk
− yj ∂2Gi

∂xj∂yk
+ 2Gj ∂2Gi

∂yj∂yk
− ∂Gi

∂yj

∂Gj

∂yk
.

For a tangent plane P ⊂ TpM and a non-zero vector y ∈ TpM , the flag curvature K(P, y) is
defined by

K(P, y) :=
gy(u,Ry(u))

gy(y,y)gy(u,u)− gy(y,u)2
,

where P = span{y,u}. It is known that if F is projectively flat, the spray coefficients of F

are in the form Gi = Pyi where

P =
Fxkyk

2F
,

then F is of scalar curvature with flag curvature

K =
P 2 − Pxkyk

F 2
.

On the other hand, the study of spherically symmetric Finsler metrics attracted a lot
of attention. Many known Finsler metrics are spherically symmetric [1, 4, 7, 14, 15, 17]. A
Finsler metric F is said to be spherically symmetric (orthogonally invariant in an alternative
terminology in [6]) if F satisfies

F (Ax,Ay) = F (x, y) (1.2)

for all A ∈ O(m), equivalently, if the orthogonal group O(m) acts as isometrics of F . Such
metrics were first introduced by Rutz [16].

It was pointed out in [6] that a Finsler metric F on Bm(µ) is a spherically symmetric if
and only if there is a function φ : [0, µ)× R→ R such that

F (x, y) =| y | φ(| x |, 〈x, y〉
| y | ), (1.3)
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where (x, y) ∈ TRm(µ)\{0}. The spherically symmetric Finsler metric of form (1.3) can be
rewritten as the following form [8]

F =| y | φ(
| x |2

2
,
〈x, y〉
| y | ).

Spherically symmetric Finsler metrics are the simplest and most important general
(α, β)-metrics [4]. Mo, Zhou and Zhu classified the projective spherically symmetric Finsler
metrics with constant flag curvature in [2, 9, 10]. A lot of spherically symmetric Finsler
metrics with nice curvature properties were investigated by Mo, Huang and et al. [3, 6–11].

An important example of projectively flat Finsler metric was given by Berwald. It can
be written as

F =
(
√
| y |2 −(| x |2| y |2 −〈x, y〉2) + 〈x, y〉)2

(1− | x |2)2
√
| y |2 −(| x |2| y |2 −〈x, y〉2)

on the unit ball ⊂ Rm, where y ∈ TxBm ⊂ Rm. It could also be expressed as

F =| y | [g(t, s)(f0(t) + f2(t)s2) + h(t)s],

where

g(t, s) =
1√

1− 2t + s2
, f0(t) =

1
1− 2t

, f2(t) =
2

(1− 2t)2
,

h(t) =
2s

1− 2t
, t =

| x |2
2

, s =
〈x, y〉
| y | .

Inspired by the Berwald metric, we try to find the solution of the projectively flat eq.(1.1)
in the following forms

F =| y | φ(
| x |2

2
,
〈x, y〉
| y | ) =| y | φ(t, s),

where

φ(t, s) =
n∑

i=0

φi(t)si + (1− 2t + s2)−
1
r

l∑
j=0

fj(t)sj .

Through caculations, we have the following conclusions.
Theorem 1.1 Let φ(t, s) be a function defined by

φ(t, s) =φ0(t) + φ1(t)s +
1
2
φ′0(t)s

2 +
n∑

j=2

(−1)j−1 (2j − 3)!!
(2j)!

φ
(j)
0 (t)s2j

+ b(1− 2t + s2)−
1
2 [f0(t) + (

f0(t)
1− 2t

+
1
2
f ′0(t))s

2]

and f0(t) is a differentiable function which satisfies

f0(t) = C1 +
C2

t− 1
2

,
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where b, C1, C2 are constants and φ1 is an any continuous function, φ0 is a polynomial
function of N degree where N 6 n, φ

(j)
0 denotes the j-order derivative for φ0(t), φ(t, s) needs

to satisfy φ− sφs > 0, when m = 2. Moreover, the additional equality holds

φ− sφs + (t− s2)φss > 0,

when m ≥ 3. Then the following spherically symmetric Finsler metric on Bm(µ)

F =| y | φ(
| x |2

2
,
〈x, y〉
| y | )

is projectively flat.
Remark 1 Let us take a look at a special case b = 1, C1 = 0, C2 = − 1

2
, setting

φ0(t) = 0, φ1(t) = 2
1−2t

, we obtain the Berwald metric.
Theorem 1.2 Let φ(t, s) be a function defined by

φ(t, s) =φ0(t) + φ1(t)s +
1
2
φ′0(t)s

2 +
n∑

j=2

(−1)j−1 (2j − 3)!!
(2j)!

φ
(j)
0 (t)s2j

+ b
1

1− 2t + s2
(f0(t)− 3

5
f ′0(t)s

2)

and f0(t) is a differentiable function which satisfies f0(t) = C1(−1 + 2t), where b, C1 are
constants and φ1 is an any continuous function, φ0 is a polynomial function of N degree where
N 6 n, φ

(j)
0 denotes the j-order derivative for φ0(t), φ(t, s) needs to satisfy φ − sφs > 0,

when m = 2. Moreover, the additional equality holds

φ− sφs + (t− s2)φss > 0,

when m ≥ 3. Then the following spherically symmetric Finsler metric on Bm(µ)

F =| y | φ(
| x |2

2
,
〈x, y〉
| y | )

is projectively flat.
Theorem 1.3 Let φ(t, s) be a function defined by

φ(t, s) =φ0(t) + φ1(t)s +
1
2
φ′0(t)s

2 +
n∑

j=2

(−1)j−1 (2j − 3)!!
(2j)!

φ
(j)
0 (t)s2j + b

1
1− 2t + s2

[f0(t) + (
2f0(t)
1− 2t

+
1
2
f ′0(t))s

2 + (
2
3

1
(1− 2t)2

f0(t) +
1
3

1
1− 2t

f ′0(t)−
1
2
f ′′0 (t))s4]

and f0(t) is a differentiable function which satisfies f0(t) = C1(t− 1
2
) + C2(t− 1

2
)2, where b,

C1, C2 are constants and φ1 is an any continuous function, φ0 is a polynomial function of
N degree where N 6 n, φ

(j)
0 denotes the j-order derivative for φ0(t), φ(t, s) needs to satisfy

φ− sφs > 0, when m = 2. Moreover, the additional equality holds

φ− sφs + (t− s2)φss > 0,
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when m ≥ 3. Then the following spherically symmetric Finsler metric on Bm(µ)

F =| y | φ(
| x |2

2
,
〈x, y〉
| y | )

is projectively flat.
Theorem 1.4 Let F =| y | φ( |x|

2

2
, 〈x,y〉
|y| ) be a spherically symmetric Finsler metric on

Bm(µ). If F is projectively flat, its projective factor P is given by

P =| y | φs + sφt

2φ

and its flag curvature K is given by

K =
3
4

(φs + sφt)2

φ4
− φt

φ3
− φst + sφtt

2φ3
s.

2 The Solutions of the Hamel Equation

In this section, we will construct a lot of projectively flat Finsler metrics which contains
the Berwald metric. From [8], we know that

Lemma 2.1 F =| y | φ( |x|
2

2
, 〈x,y〉
|y| ) is a solution of (1.1) if and only if φ satisfies

sφts + φss − φt = 0, (2.1)

where t = |x|2
2

and s = 〈x,y〉
|y| .

Consider the spherically symmetric Finsler metric F =| y | φ( |x|
2

2
, 〈x,y〉
|y| ) on Bm(µ),

where φ = φ(t, s) is given by φ(t, s) =
l∑

j=0

φj(t)sj . By a direct caculation, we get

φt(t, s) =
l∑

j=0

φ′j(t)s
j , (2.2)

φts(t, s) =
l∑

j=0

jφ′j(t)s
j−1, (2.3)

φss(t, s) =
l∑

j=0

j(j − 1)φj(t)sj−2. (2.4)

Plugging (2.2), (2.3), (2.4) into (2.1), the following equation is deduced,

l∑
j=0

(j − 1)φ′j(t)s
j +

l−2∑
j=0

(j + 2)(j + 1)φj+2s
j = 0. (2.5)

It is equivalent to

l−2∑
j=0

[(j − 1)φ′j(t) + (j + 2)(j + 1)φj+2(t)]sj +
l∑

j=l−1

(j − 1)φ′j(t)s
j = 0. (2.6)
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By (2.6), F =| y | φ( |x|
2

2
, 〈x,y〉
|y| ) is projectively flat if and only if

(j − 1)φ′j(t) + (j + 2)(j + 1)φj+2(t) = 0, j = 0, 1, 2 · · · l − 2,

(j − 1)φ′j(t) = 0, j = l − 1, l.
(2.7)

When j = 0, from the first equation of (2.7), we get

φ′0(t) = 2φ2(t). (2.8)

Similarity, taking j = 1 and j = 2, we obtain

φ3(t) = 0, φ′2(t) + 12φ4(t) = 0. (2.9)

If k = j + 2, the first equation of (2.7) is equivalent to

k(k − 1)φk(t) + (k − 3)φ′k−2(t) = 0. (2.10)

It is easy to see the recurrence fomula on φk(t) and φ′k(t),

φk(t) = − k − 3
k(k − 1)

φ′k−2(t). (2.11)

If k = odd, k ≥ 3, then by (2.11),

φk(t) = (−1)
k−3
2

(k − 3)(k − 5) · · · 2
k(k − 1) · · · 4 φ

( k−3
2 )

3 (t) = 0. (2.12)

If k = even, k ≥ 4, we have

φk(t) = (−1)
k−4
2

24(k − 3)!!
k!

φ
( k−4

2 )
4 (t) = (−1)

k−2
2

(k − 3)!!
k!

φ
( k
2 )

0 (t). (2.13)

Case 1 k = odd ≥ 5, setting l = 2n + 1, by the second equation of (2.7),

φ2n+1(t) = 0, φ2n(t) = const., (2.14)

then it follows from (2.1), (2.12), (2.13), (2.14),

φ(t, s) = φ0(t) + φ1(t)s + φ2(t)s2 + · · ·+ φ2n−1(t)s2n−1 + φ2n(t)s2n + φ2n+1(t)s2n+1

= φ0(t) + φ1(t)s +
1
2
φ′0(t)s

2 +
n∑

j=2

(−1)j−1 (2j − 3)!!
(2j)!

φ
(j)
0 (t)s2j .

(2.15)

Case 2 k = even ≥ 4, setting l = 2n + 2, by the second equation of (2.7),

φ2n+2(t) = const., φ2n+1(t) = 0, (2.16)

then it follows from (2.1), (2.12), (2.13), (2.16),

φ(t, s) = φ0(t) + φ1(t)s +
1
2
φ′0(t)s

2 +
n∑

j=1

(−1)j (2j − 1)!!
(2j + 2)!

φ
(j+1)
0 (t)s2j+2. (2.17)
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The case l ∈ {1, 2, 3} is similar. Through the above analysis, we obtain the following.

Proposition 2.1 F =| y | φ( |x|
2

2
, 〈x,y〉
|y| ) in the form F =| y |

l∑
j=0

φj(t)sj is a solution of

the projectively flat eq.(2.1) if and only if φ(t, s) satisfies

φ(t, s) = φ0(t) + φ1(t)s + φ2(t)s2 + · · ·+ φl(t)sl

= φ0(t) + φ1(t)s +
1
2
φ′0(t)s

2 +
n∑

j=2

(−1)j−1 (2j − 3)!!
(2j)!

φ
(j)
0 (t)s2j

and φ
(n)
0 = const..

Consider the solution of (2.1) where φ = φ(t, s) is given by

φ(t, s) = (1− 2t + s2)−
1
r

l∑
j=0

fj(t)sj . (2.18)

Suppose that g = (1− 2t + s2)−
1
r , thus

gt =
2
r
gr+1, gs = −2

r
gr+1s. (2.19)

Differentiating (2.18), by using (2.19), we get

φt(t, s) =
2
r
gr+1(

l∑
j=0

fj(t)sj) + g(
l∑

j=0

f ′j(t)s
j), (2.20)

φs(t, s) = −2
r
gr+1s(

l∑
j=0

fj(t)sj) + g(
l∑

j=0

jfj(t)sj−1), (2.21)

φts(t, s) = −2
r
gr+1(

l∑
j=0

f ′j(t)s
j+1) + g(

l∑
j=0

jf ′j(t)s
j−1)

− 4
r2

(r + 1)g2r+1(
l∑

j=0

fj(t)sj+1) +
2
r
gr+1(

l∑
j=0

jfj(t)sj−1), (2.22)

φss(t, s) =
4
r2

(r + 1)g2r+1(
l∑

j=0

fj(t)sj+2)− 2
r
gr+1[

l∑
j=0

(j + 1)fj(t)sj ]

−2
r
gr+1(

l∑
j=0

jfj(t)sj) + g[
l∑

j=0

j(j − 1)fj(t)sj−2]. (2.23)

Plugging (2.20), (2.22), (2.23) into (2.1), we get the following

−2
r
gr(

l∑
j=0

f ′j(t)s
j+2)− 2

r
gr[

l∑
j=0

(j + 2)fj(t)sj ] +
l∑

j=0

(j − 1)f ′j(t)s
j +

l∑
j=0

j(j − 1)fj(t)sj−2 = 0.

(2.24)
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Multiplying g−r on the both sides of (2.24), then

0 =− 2
r
[

l∑
j=0

(j + 2)fj(t)sj ]− 2
r
(

l∑
j=0

f ′j(t)s
j+2) + g−r[

l∑
j=0

(j − 1)f ′j(t)s
j ]

+ g−r[
l∑

j=0

j(j − 1)fj(t)sj−2]

=− 2
r
[

l∑
j=0

(j + 2)fj(t)sj ] +
l∑

j=0

(j − 1− 2
r
)f ′j(t)s

j+2 +
l∑

j=0

(j − 1)(1− 2t)f ′j(t)s
j

+
l∑

j=0

j(j − 1)(1− 2t)fj(t)sj−2 +
l∑

j=0

j(j − 1)fj(t)sj

=
l∑

j=0

[j2 − (1 +
2
r
)j − 4

r
]fj(t)sj +

l+2∑
j=2

(j − 3− 2
r
)f ′j−2(t)s

j +
l∑

j=0

(j − 1)(1− 2t)f ′j(t)s
j

+
l−2∑
j=0

(j + 2)(j + 1)(1− 2t)fj+2(t)sj .

(2.25)
From (2.25), we obtain the following equations

[j2 − (1 +
2
r
)j − 4

r
]fj(t) + (j − 3− 2

r
)f ′j−2(t) + (j − 1)(1− 2t)f ′j(t)

+(j + 2)(j + 1)(1− 2t)fj+2(t) = 0, j = 2, · · · , l − 2, (2.26)

(j2 − j − 2j

r
− 4

r
)fj(t) + (j − 1)(1− 2t)f ′j(t) + (j + 2)(j + 1)(1− 2t)fj+2(t) = 0,

j = 0, 1, (2.27)

(j2 − j − 2j

r
− 4

r
)fj(t) + (j − 3− 2

r
)f ′j−2(t) + (j − 1)(1− 2t)f ′j(t) = 0,

j = l − 1, l, (2.28)

(j − 3− 2
r
)f ′j−2(t) = 0, j = l + 1, l + 2. (2.29)

Let us take a look at a special case l = 4, f1(t) = f3(t) = 0, then

−4
r
f0(t)− (1− 2t)f ′0(t) + 2(1− 2t)f2(t) = 0, (2.30)

(12− 12
r

)f4(t) + (1− 2
r
)f ′2(t) + 3(1− 2t)f ′4(t) = 0, (2.31)

(2− 8
r
)f2(t)− (1 +

2
r
)f ′0(t) + (1− 2t)f ′2(t) + 12(1− 2t)f4(t) = 0, (2.32)

f ′4(t) = 0. (2.33)

Case 1 r = 2. In this case, by (2.30)–(2.33), we can get the following equations




−2f2(t)− 2f ′0(t) + (1− 2t)f ′2(t) = 0,

−2f0(t) + (2t− 1)f ′0(t) + 2(1− 2t)f2(t) = 0,

6f4(t) + 3(1− 2t)f ′4(t) = 0,

f ′4(t) = 0.

(2.34)
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Substituting the fourth equation of (2.34) into the third equation of it, we have f4(t) = 0.

From (2.30), we obtain

f2(t) =
f0(t)
1− 2t

+
1
2
f ′0(t). (2.35)

Differentiating (2.35), we get

f ′2(t) = 2
f0(t)

(1− 2t)2
+

f ′0(t)
1− 2t

+
1
2
f ′′0 (t). (2.36)

Substituting (2.35), (2.36) into the first equation of (2.34), we obtain that f0(t) satisfies

−2f ′0(t) +
1
2
(1− 2t)f ′′0 (t) = 0. (2.37)

Solving (2.37), we have

f0(t) = C1 +
C2

t− 1
2

, (2.38)

where C1, C2 are constants. Thus we have the following proposition.

Proposition 2.2 φ(t, s) =
n∑

i=0

φi(t)si + (1 − 2t + s2)−
1
r

l∑
j=0

fj(t)sj is a solution of the

projectively flat eq.(2.2) if and only if

φ(t, s) =φ0(t) + φ1(t)s +
1
2
φ′0(t)s

2 +
n∑

j=2

(−1)j−1 (2j − 3)!!
(2j)!

φ
(j)
0 (t)s2j

+ b(1− 2t + s2)−
1
2 [f0(t) + (

f0(t)
1− 2t

+
1
2
f ′0(t))s

2]

and f0(t) = C1 + C2
t− 1

2
, where b, C1, C2 are constants.

Case 2 r 6= 2, f4(t) = 0. From (2.31), we know

f ′2(t) = 0. (2.39)

Plugging (2.39) into (2.32), we obtain

(2− 8
r
)f2(t) = (1 +

2
r
)f ′0(t). (2.40)

If r = 4, f ′0(t) = 0, from (2.30),

f2(t) =
2
r

1
1− 2t

f0(t). (2.41)

Thus f0(t) and f2(t) can’t be constants at the same time, so in this case, r 6= 4, together
with (2.39), (2.40), (2.41), we know that f2(t) needs to satisfy the following

{
f2(t) = 2

r
1

1−2t
f0(t) = (1+ 2

r )f ′0(t)
2− 8

r

,

f ′2(t) = 0.
(2.42)
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Through (2.42), we get that f0(t) needs to satisfy
{

(1+ 2
r )f ′0(t)

2− 8
r

= 2
r

1
1−2t

f0(t),

f ′′0 (t) = 0.
(2.43)

From the first equation of (2.43),

f0(t) = C1(−1 + 2t)
4
3r− 1

3 , (2.44)

where C1 is a constant. But the f0(t) in (2.44) doesn’t satisfy the second equation of (2.43)
only if r = 1, thus we can get the following proposition.

Proposition 2.3 φ(t, s) =
n∑

i=0

φi(t)si + (1 − 2t + s2)−
1
r

l∑
j=0

fj(t)sj is a solution of the

projectively flat eq.(2.2) if and only if

φ(t, s) = φ0(t) + φ1(t)s +
1
2
φ′0(t)s

2 +
n∑

j=2

(−1)j−1 (2j − 3)!!
(2j)!

φ
(j)
0 (t)s2j

+b
1

1− 2t + s2
(f0(t)− 3

5
f ′0(t)s

2)

and f0(t) = C1(−1 + 2t), where b, C1 are constants.
Case 3 r 6= 2, f4(t) 6= 0. In this case, from the first equation of (2.30),

f2(t) =
2
r

1
1− 2t

f0(t) +
1
2
f ′0(t). (2.45)

Differentiating (2.45), we have

f ′2(t) =
4
r

1
(1− 2t)2

f0(t) +
2
r

1
1− 2t

f ′0(t) +
1
2
f ′′0 (t), (2.46)

f ′′2 (t) =
16
r

1
(1− 2t)3

f0(t) +
8
r

1
(1− 2t)2

f ′0(t) +
2
r

1
1− 2t

f ′′0 (t) +
1
2
f ′′′0 (t). (2.47)

From (2.32), we get

f4(t) =
1
6r

1
(1− 2t)2

f0(t)(
8
r
− 4) +

1
3r

1
1− 2t

f ′0(t)−
1
2
f ′′0 (t). (2.48)

Differentiating (2.48), we obtain

f ′4(t) =
2
3r

(
8
r
− 4)

f0(t)
(1− 2t)3

+
4

3r2

1
(1− 2t)2

f ′0(t) +
1
3r

1
1− 2t

f ′′0 (t)− 1
2
f ′′′0 (t). (2.49)

Plugging (2.33) into (2.31), we have

(12− 12
r

)f4(t) + (1− 2
r
)f ′2(t) = 0. (2.50)

Thus from (2.50), no matter r = 1 or not,

f ′′2 (t) = 0. (2.51)
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Combining the fourth equation of (2.33) and (2.51), we obtain that f0(t) satisfies

16
r

1
(1− 2t)3

f0(t) +
8
r

1
(1− 2t)2

f ′0(t) +
2
r

1
1− 2t

f ′′0 (t) +
1
2
f ′′′0 (t) = 0,

2
3r

(
8
r
− 4)

f0(t)
(1− 2t)3

+
4

3r2

1
(1− 2t)2

f ′0(t) +
1
3r

1
1− 2t

f ′′0 (t)− 1
2
f ′′′0 (t) = 0.

(2.52)

Solving the first equation of (2.52), we get

f0(t) = C1(t− 1
2
) + C2(t− 1

2
)2 + C3(t− 1

2
)

2
r . (2.53)

Solving the second equation of (2.52), we know

f0(t) = C4(t− 1
2
)2 + C5(t− 1

2
)

3r−1+
√

9r2−18r+25
6r + C6(t− 1

2
)

3r−1−
√

9r2−18r+25
6r . (2.54)

If r = 1, C3 = C6 = 0, two equations of (2.52) have the same solutions. Thus we have the
following proposition.

Proposition 2.4 φ(t, s) =
n∑

i=0

φi(t)si + (1 − 2t + s2)−
1
r

l∑
j=0

fj(t)sj is a solution of the

projectively flat eq.(2.2) if and only if

φ(t, s) =φ0(t) + φ1(t)s +
1
2
φ′0(t)s

2 +
n∑

j=2

(−1)j−1 (2j − 3)!!
(2j)!

φ
(j)
0 (t)s2j + b

1
1− 2t + s2

[f0(t) + (
2f0(t)
1− 2t

+
1
2
f ′0(t))s

2 + (
2
3

1
(1− 2t)2

f0(t) +
1
3

1
1− 2t

f ′0(t)−
1
2
f ′′0 (t))s4]

and f0(t) = C1(t− 1
2
) + C2(t− 1

2
)2, where b, C1, C2 are constants.

3 Proof of Theorems

φ(t, s) in Propositions 2.2, 2.3, 2.4 can’t ensure that F =| y | φ( |x|
2

2
, 〈x,y〉
|y| ) is a Finsler

metric. In order to obtain projectively flat Finsler metric, φ(t, s) in Propositions 2.2–2.4
needs to satisfy the necessary and sufficient condition for F = αφ(‖βx‖α, β

α
) to be a Finsler

metric for any α and β with ‖βx‖α < b0 given by Yu and Zhu [4]. In particular, considering
F =| y | φ( |x|

2

2
, 〈x,y〉
|y| ) =| y | φ(t, s), then F is a Finsler metric if and only if the positive

function φ satisfies
φ− sφs > 0, φ− sφs + (t− s2)φss > 0, (3.1)

when m ≥ 3 or
φ− sφs + (t− s2)φss > 0, (3.2)

when m = 2.
Proof of Theorem 1.1 Combine Proposition 2.2, (3.1), (3.2) and the fundamental

property of the projectively flat equation (2.1).
Proof of Theorem 1.2 Combine Proposition 2.3, (3.1), (3.2) and the fundamental

property of the projectively flat equation (2.1).
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Proof of Theorem 1.3 Combine Proposition 2.4, (3.1), (3.2) and the fundamental
property of the projectively flat equation (2.1).

Proof of Theorem 1.4 Suppose that

r :=| y |, ri := ri :=
yi

| y | , xi := xi, si := si := xi − sri. (3.3)

Direct computations yield that

txi = xi = si + sri, sxi = ri, ryi = ri, syi =
si

r
, (3.4)

where we use of (3.3). By (3.3), (3.4), we get the following lemma.
Lemma 3.1 Let f = f(r, t, s) be a function on a domain U ⊂ R3. Then

fxi = ri(fs + sft) + sift, fyi = rifr + si
fs

r
. (3.5)

Let F =| y | φ( |x|
2

2
, 〈x,y〉
|y| ) = rφ(t, s) be a spherically symmetric Finsler metric on Bm(µ).

From (3.3), (3.4), (3.5), we have the following

Fr = φ, Ft = rφt, Fs = sφs. (3.6)

Note that si and ri are positively homogeneous of degree 0 and 1. Hence

siy
i = 0, riy

i = 0 (3.7)

and we get
Fxi = r[φtsi + (φs + sφt)ri], Fyi = φri + φssi. (3.8)

Thus from (3.7), (3.8), we have F0 = Fxiyi = r2(φs + sφt),

P =
F0

2F
=

(φs + sφt)r
2φ

. (3.9)

Differentiating (3.9), we know

Pxk =
r

2
[
2φtrk + (φst + sφtt)(sk + srk)

φ
− (φs + sφt)(φsrk + φtsk + φtsrk)

φ2
]. (3.10)

From (3.7), (3.10), we obtain

Pxkyk =
r2

2
[
2φt + (φst + sφtt)s

φ
− (φs + sφt)2

φ2
]. (3.11)

Thus using (3.9), (3.11), we have

K =
P 2 − Pxkyk

F 2
=

3
4

(φs + sφt)2

φ4
− φt

φ3
− φst + sφtt

2φ3
s.

Theorem 1.4 can be achieved.
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一类射影平坦的球对称的芬斯勒度量

陈亚力1,宋卫东2

(1.安徽师范大学环境科学与工程学院,安徽芜湖 241000)

(2.安徽师范大学数学计算机科学学院,安徽芜湖 241000)

摘要: 本文研究了射影平坦芬斯勒度量的构造问题. 通过分析射影平坦的球对称的芬斯勒度量的方程

的解, 构造了一类新的射影平坦的芬斯勒度量, 并得到了射影平坦的球对称的芬斯勒度量的射影因子和旗曲

率.
关键词: 射影平坦; 芬斯勒度量; 球对称; 射影因子; 旗曲率
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