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Abstract: In this paper, we investigate the construction of projectively flat Finsler metrics.
By analysing the solution of the spherically symmetric projectively flat equation, we construct new
examples of projectively flat Finsler metrics, and obtain the projective factor and flag curvature of
spherically symmetric Finsler metrics to be projectively flat.
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1 Introduction

It is an important problem in Finsler geometry to study and characterize projectively
flat Finsler metrics on an open domain in R™. Hilbert’s 4th problem is to characterize
the distance functions on an open subset in R™ such that straight lines are geodesics [5].
Regular distance functions with straight geodesics are projectively flat Finsler metrics. A
Finsler metric F' = F(z,y) on an open subset U C R™ is projectively flat if and only if it
satisfies the following equation

inyjyi = ij. (1.1)

In Finsler geometry, the flag curvature K(P,y) is an analogue of the sectional curva-
ture in Riemannian geometry. It is known that every projective Finsler metric is of scalar
curvature, namely, the flag curvature K(P,y) = K(y) is a scalar function of tangent vectors
y. Shen discussed the classification problem on projective Finsler metrics of constant flag
curvature [14]. The second author provided the projective factor of a class of projectively
flat general (v, 3)-metrics [12] and studied a necessary and sufficient condition for a class
of Finsler metric to be projectively flat [13]. Li proved the locally projectively flat Finsler

metrics with constant flag curvature K are totally determined by their behaviors at the
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origin by solving some nonlinear PDEs. The classifications when K =0, K= -1, K =1
are given in an algebraic way [15].
For a Finsler metric F = F(z,y) on a manifold M, the geodesics ¢ = ¢(t) of F in local
coordinates (z¢) are characterized by
d*z’ ,, dr
e +2G*(z, a) =0,

where (z%(t)) are the coordinates of ¢(t) and G = G*(x,y) are defined by

il
i g
G = TPy — [P},

where g;; = 1[F?],i,i and (¢¥) = (gi;) . G" are called the spray coefficients. The Riemann

curvature is a family of linear maps

R, = Rikaii Q) da* : .M — T, M
defined b
enned by & _28Gi_ ; 92(y © o 92G _aGian
B “gpe Y Oxd Oy Oyioyk Oyl Oyk”

For a tangent plane P C T, M and a non-zero vector y € T),M, the flag curvature K(P,y) is

defined by
gy(u) Ry(u))
9y (¥, ¥)gy(u, 1) — gy(y,u)?’
where P = span{y,u}. It is known that if F' is projectively flat, the spray coefficients of F

K(P7 y) =

are in the form G* = Py’ where

kayk
- 2F 7
then F' is of scalar curvature with flag curvature
K= pP? - sz yk '
2

On the other hand, the study of spherically symmetric Finsler metrics attracted a lot
of attention. Many known Finsler metrics are spherically symmetric [1, 4, 7, 14, 15, 17]. A
Finsler metric F is said to be spherically symmetric (orthogonally invariant in an alternative

terminology in [6]) if F' satisfies
F(Az, Ay) = F(z,y) (1.2)

for all A € O(m), equivalently, if the orthogonal group O(m) acts as isometrics of F. Such
metrics were first introduced by Rutz [16].

It was pointed out in [6] that a Finsler metric F' on B™(u) is a spherically symmetric if
and only if there is a function ¢ : [0, ) x R — R such that

(z,y) )

Flz,y) =y o =], ]

(1.3)
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where (z,y) € TR™(u)\{0}. The spherically symmetric Finsler metric of form (1.3) can be

rewritten as the following form [8]

Eds

F=|y|o(=

Spherically symmetric Finsler metrics are the simplest and most important general
(v, B)-metrics [4]. Mo, Zhou and Zhu classified the projective spherically symmetric Finsler
metrics with constant flag curvature in [2, 9, 10]. A lot of spherically symmetric Finsler
metrics with nice curvature properties were investigated by Mo, Huang and et al. [3, 6-11].
An important example of projectively flat Finsler metric was given by Berwald. It can

be written as

Wy P (= Ply P ~(z,9)) + (z,9))
(=2 P2y P =PIy P (o))

on the unit ball C R™, where y € T,,B™ C R™. It could also be expressed as

F=|y|lg(t,s)(fo(t) + f2(t)s*) + h(t)s],

where
1 1 2
ts) = ————, = fult
(k. =) VI—2t+ 52 o) = =5 200 (1—2t)
2 2
Moy = 2 =P @)
1— 2t 2 Iy

Inspired by the Berwald metric, we try to find the solution of the projectively flat eq.(1.1)

in the following forms

|z > (z,y)
9

,|y|):|y\¢(t,8),

F=ly|o(

where
l

o(t,s) = Z@ (s + (1 —2t+5%) 77 ) f;(t)s,

§=0
Through caculations, we have the following conclusions.
Theorem 1.1 Let ¢(t,s) be a function defined by

8(t,5) =60(t) + b1 (1)s + 34(1) Z i PR 0

fo()
1—2t

+b(1 =2t + 8%) 72 [fo(t) + ( + fo(t)) ]

and fo(t) is a differentiable function which satisfies

f() Cl+ 01

2
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where b, C, Cy are constants and ¢; is an any continuous function, ¢y is a polynomial

function of N degree where N < n, gb(()j ) denotes the j-order derivative for ¢q(¢), ¢(t, s) needs

to satisfy ¢ — s¢, > 0, when m = 2. Moreover, the additional equality holds

¢ - S¢s + (t - 32)¢ss > 07

when m > 3. Then the following spherically symmetric Finsler metric on B™ ()

|z |* (z,y)
F=lylo :
v e(-5 )
is projectively flat.
Remark 1 Let us take a look at a special case b = 1, C; = 0, Cy = —%, setting
¢o(t) =0, ¢1(t) = ﬁ, we obtain the Berwald metric.

Theorem 1.2 Let ¢(t, s) be a function defined by

010, =n(t) + 01(0)s + 5057 + Y (17 R0 )5
1 3., 9
+ bm(fo(t) - 3fo(t)5 )

and fo(t) is a differentiable function which satisfies fo(t) = C1(—1 + 2t), where b, C; are
constants and ¢, is an any continuous function, ¢y is a polynomial function of N degree where
N < n, gb(()j) denotes the j-order derivative for ¢(t), ¢(t,s) needs to satisfy ¢ — s¢ps > 0,

when m = 2. Moreover, the additional equality holds

¢ — 8¢5 + (t — 53)pss > 0,

when m > 3. Then the following spherically symmetric Finsler metric on B™(u)

Eds <xay>)

F=lylo(—-, T

is projectively flat.
Theorem 1.3 Let ¢(t, s) be a function defined by

o(t,5) =do(t) + Pu(t)s + %%(t)g? + Z(l)j—lw éj)(t)SQj + bﬁ
o)+ GG+ S e + Gz + 57z o® — 5RO

and fo(t) is a differentiable function which satisfies fo(t) = C1(t — 3) + C2(t — 3)?, where b,
C1, Cy are constants and ¢; is an any continuous function, ¢q is a polynomial function of
N degree where N < n, ¢§f ) denotes the j-order derivative for ¢o(t), ¢(t, s) needs to satisfy
¢ — s¢ps > 0, when m = 2. Moreover, the additional equality holds

¢ - S¢s + (t - 32>¢ss > 0)
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when m > 3. Then the following spherically symmetric Finsler metric on B™(u)

is projectively flat.

Theorem 1.4 Let F' =| y | ¢(%, <Ty3|’>) be a spherically symmetric Finsler metric on

B™(u). If F is projectively flat, its projective factor P is given by
¢s + S¢t

P=|y| %

and its flag curvature K is given by

3(ds +5P1)* b b+ Shu s
T4 P! @3 203

2 The Solutions of the Hamel Equation

In this section, we will construct a lot of projectively flat Finsler metrics which contains
the Berwald metric. From [8], we know that

Lemma 2.1 F =|y | qﬁ(lg”l , \ﬂ|!>) is a solution of (1.1) if and only if ¢ satisfies

Sql)ts + ¢ss - ¢t = 07 (21>
(z,y)

lyl -~

Consider the spherically symmetric Finsler metric F' =| y | gb(‘zj, <Tyl\/>) on B™(u),

2
where t = % and s =

where ¢ = ¢(t, s) is given by (¢, s) Z ¢;(t)s?. By a direct caculation, we get

ST

i) (2.2)
7=0
l
Pes(t, 9) Z](;S t)s? (2.3)
Gss(t,s) Z](] —1)g;(t)s’ . (2.4)
Plugging (2.2), (2.3), (2.4) into (2.1), the following equation is deduced,
! -2
DG =10+ G+ 2 + s’ =0. (25)
=0 =0
It is equivalent to
1-2 !
DG =D + G +2G + Dgjua(®]s’ + Y (G —1)¢)(t)s’ =0. (2.6)

§j=0 j=l—1
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y (2.6), F =|y| (;5(7', gﬁy 1) is projectively flat if and only if
When j = 0, from the first equation of (2.7), we get
bo(t) = 262(2). (2.8)
Similarity, taking j = 1 and j = 2, we obtain
¢3(t) =0, ¢5(t) + 12¢4(t) = 0. (2.9)
If k = j + 2, the first equation of (2.7) is equivalent to
k(k — 1) (t) + (k = 3)¢),_5(t) = 0. (2.10)
It is easy to see the recurrence fomula on ¢ (t) and ¢} (¢),
k—3
= — 2.11
01(0) = s halt) (211)
If k = odd, k > 3, then by (2.11),
_ ps (k=3)(k—=5)---2 (453)
o) = (-1’2 B2 0 —o, (212)

If K = even, k > 4, we have

o) = (= 2 g e b )

Case 1 k = odd > 5, setting | = 2n + 1, by the second equation of (2.7),
Dani1(t) =0, ¢Pop(t) = const., (2.14)
then it follows from (2.1), (2.12), (2.13), (2.14),
O(t,5) = Go(t) + 1(t)s + ¢a(t)s” + - + Pan1(1)s™ " + P2 (£)8*" + Ponpa ()™

= ¢o(t) + ¢1(t)s + %(%(t)s? + Z(_l)]l%jﬁw ) (1)s2. (2.15)

Case 2 k = even > 4, setting | = 2n 4 2, by the second equation of (2.7),

¢2n+2(t) = COHSt., ¢2n+1(t) = O, (216)

then it follows from (2.1), (2.12), (2.13), (2.16),

Blt,5) = dult) + r(0)s + 565 (1)s +Z BB ean
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The case [ € {1,2,3} is similar. Through the above analysis, we obtain the following.

!
Proposition 2.1 F =| y | gb(%, <"|Lyl">) in the form F =|y | > ¢;(t)s’ is a solution of
=0

the projectively flat eq.(2.1) if and only if ¢(¢, s) satisfies

B¢, 5) = do(t) + d1(t)s + Ga(t)s® + - + du(t)s'

_ 1, 2 - j—1 (2.7 - 3)” ©)) 25
= ¢o(t) + d1(t)s + 5%(75)5 + z;(—l)] W% (t)s™
]:
and ¢\ = const..
Consider the solution of (2.1) where ¢ = ¢(t, s) is given by
!
Bt s) = (1=2t+5°)77 > fi(t)s. (2.18)
=0
Suppose that g = (1 — 2t + %)~ 7, thus
2 2
g=-g"" g.=—"g"s. (2.19)
r r
Differentiating (2.18), by using (2.19), we get
5 l !
Pu(t,s) = ;QT“(Z £+ 90 £(0)s), (2.20)
Jj=0 j=0
5 l l
(t = gt (t)s? ) fi i-1 .
u(5) = =2 oK) + (33509 2.2
J= J=

Pis(tys) = fgg"“(z FOS) + 9> ifit)s )

=0
l

l
RN KOS 4 2 (a0, (222)

l l
bultis) = 3l DD O = 2 DG + D05
2 an09) + 9356 - DS )2, (2:23)

Plugging (2.20), (2.22), (2.23) into (2.1), we get the following

l l l

=20 (B0 =29 (3G + 2505+ 36 - D5 + Y46 - D0 =0
= = = = (2.24)
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Multiplying ¢g—" on the both sides of (2.24), then
! !
2 ” . ;
0=-"1_(G+2f®)] - Zf S 49T (- DF)s]
7=0 7=0
!

+g D iG]

== 230G+ Y6 - 1= D057+ 3G - D= 2080
l
+ G =1 =20 f5()s7 2+Z] j—1Dfit)s’
lji l-‘,—JQ ‘ l '
=D "=+ )a - f}fg t)s’ +Z j—3-= ;_2@)3] +D_U =D =200
+ ) (+2)(F+1)(1—2t) fi42(t)s".
= (2.25)
From (2.25), we obtain the following equations
52 (1 207 = 215500+ G = 3= D) fjalt) + G~ D1~ 20500
+(] + 2)(] + 1)(1 - 2t)f]+2( ) =0, j=2,-- =2, (2'26>
(=7 - 27‘7 - f)fg( )+ (= DA = 20)fi(t) + (G +2) (5 + (L = 2t) f12(t) =0,
j=0,1, (2.27)
(== L= 25500+ (=3 = D) ffalt) + (G~ (1 = 20£(6) =0,
j=1-1,, (2.28)
(j—3—§)f;_2(t)20, J=l4+1,0+2 (2.29)
Let us take a look at a special case | =4, fi(t) = f3(t) = 0, then
—%fo(t) C (= 20)f5(6) +2(1 — 20 fa(t) = O, (2.30)
(12 = 2)f0) + (1= 2)a(0) + 31~ 20) (1) = (2:31)
(2= ) ft) ~ (4 D0 + (12050 +120 - 20/ =0, (232)
fit) =0. (2.33)

Case 1 r = 2. In this case, by (2.30)—(2.33), we can get the following equations

=2f2(t) = 2f5(t) + (1 = 2t) f5(t) =

=2fo(t) + (2t = 1) f5(t) + 2(1 — 2t) f2(t) = 0, (2.34)
6.f2(t) + 3(1 —2t) fi(t) = 0,

fi(t) =
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Substituting the fourth equation of (2.34) into the third equation of it, we have f4(t) = 0.
From (2.30), we obtain

_ fO(t) 1 l
fa(t) = 19 +§f0(t)- (2.35)
Differentiating (2.35), we get
TR (10 fo( )

Substituting (2.35), (2.36) into the first equation of (2.34), we obtain that fy(t) satisfies

_ofl(t) + %(1 — %) f1(t) = 0. (2.37)

Solving (2.37), we have
(2.38)

where Cq, Cy are constants. Thus we have the follovvlng proposition

Proposition 2.2 ¢(t,s) Z di(t)st + (1 — 2t + s2)~ > Z f;(t)s? is a solution of the
7=0
projectively flat eq.(2.2) if and only if

n

Blt,5) =60(t) + 615 + So0(1)s + 3 (~1)

j=2

folt )
1-—

11M

27)! ¢0 (t)SQj

+b(1 = 26+ %) [fo(t) + ( s fo(t)) ’]

and fo(t) = Cy + tf—i, where b, C', Cy are constants.
Case 2 r # 2, f4(t) = 0. From (2.31), we know
f5(t) = 0. (2.39)
Plugging (2.39) into (2.32), we obtain

(2= D)5t = (L4 D) f300). (2.40)

If r =4, fi(t) =0, from (2.30),

2 1

fa(t) = ;ﬁfo(t) (2.41)

Thus fo(t) and f5(¢) can’t be constants at the same time, so in this case, r # 4, together
with (2.39), (2.40), (2.41), we know that f>(¢) needs to satisfy the following

(2.42)

{ o Tﬁfo@) = W80
£3(t)
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Through (2.42), we get that fy(t) needs to satisfy

A+2)f6@) _
{ 2780 - rl 2tf0( ) (243)
o(t) =0.
From the first equation of (2.43),
folt) = Cr (=1 +2t)3 75, (2.44)

where C} is a constant. But the fy(t) in (2.44) doesn’t satisfy the second equation of (2.43)

only if r = 1, thus we can get the following proposition.
1

Proposition 2.3 ¢(t,s) Z oi(t (1—2t+ %) Z t)s? is a solution of the

projectively flat eq.(2.2) if and only if

1 (27 =3 ()

o(t,s) = éo(t)+ od1(t)s+ %(ﬁg(t)sg + Z(—I)J_ @) g (t)s%
1 3 ! 2
+bm(fo(t) - gfo(t)s )

and fo(t) = C1(—1+ 2t), where b, C are constants.
Case 3 7 # 2, f4(t) # 0. In this case, from the first equation of (2.30),

Falt) = 215 o) + 5 4). (245)
Differentiating (2.45), we have
4 1 2 1 1
fo(t) = ;mfo(t) + ;?%fé(t) + §f(/)/(t)7 (2.46)
11 . 16 1 8 1 ! 2 1 1 ///
5 (1) = 7mfo(t) + ;mfo(t) t Tl (t) + fo'(®). (2.47)
From (2.32), we get
1 1 8 1 1 1
fa(t) = amfo(t)(r 4) + glifo( ) — B 0 (B)- (2.48)
Differentiating (2.48), we obtain
o 2 8 fO(t) 4 1 / 1 1 7 1 "
fit) = 3r(r 4)m + 32 (1= 202 o(t) + 31— o (t) — 570 (t). (2.49)
Plugging (2.33) into (2.31), we have
(12 - )£ + (1= D) A3 =0, (2.50)

Thus from (2.50), no matter » = 1 or not,

7(t) = 0. (2.51)
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Combining the fourth equation of (2.33) and (2.51), we obtain that fy(¢) satisfies

16 1 8 2 1
v ¢ © (¢ /// _
r<1—2t)3f°()Jr (1 2t)2f°() 1—2t0<)+ o) =0, (2.52)
2 8 fO(t) 4 1 1 " 1 " .
Sl ) L7 ¢ t) =
37’(7’ )(1—2t)3 3r2 (1 2t)2f0() 3r1—2t 0(t) - 2 0'(t) =0
Solving the first equation of (2.52), we get
1 1, 1.2
fo(t) - Cl(t - 5) + Cg(t - 5) + Cg(t - 5)7 (253)
Solving the second equation of (2.52), we know
1 7‘1\/7‘2172\) 1 Tl—\/r217‘20
folt) = Cult — 7) FOs(t—=) e Gyt — 7)3 L (2.54)

2
If r =1, C3 = Cs = 0, two equations of (2.52) have the same solutions. Thus we have the

following proposition.
!
Proposition 2.4 ¢(t,s) Z ¢i(t) (1 —2t+ )"+ > f;(t)s’ is a solution of the

projectively flat eq.(2.2) if and only if

00,5 =n(0) + 01(0)s + 30057 + Y (-1 E R 05

Jj=2

1
1—2t+ s2

2f0() 2 2 1 1 1 / 1 " 4
—o T fo( ))s +(§mfo(t) t31 % o(t) — 3 0 (£)s°]

[fo(t) + (
and fo(t) = C1(t — 1) + Ca(t — 5)?, where b, Cy, C; are constants.

3 Proof of Theorems

¢(t,s) in Propositions 2.2, 2.3, 2.4 can’t ensure that F' =| y | (ﬁ(@, <Ty3|’>) is a Finsler

metric. In order to obtain projectively flat Finsler metric, ¢(t,s) in Propositions 2.2-2.4
needs to satisfy the necessary and sufficient condition for F' = a(||8:/la, 2) to be a Finsler
metric for any « and 3 with ||3,|lo« < b given by Yu and Zhu [4]. In particular, considering

F=|y| d)(‘xl , <xy3|’ ) =| y | ¢(t,s), then F is a Finsler metric if and only if the positive
function ¢ satisfies

b —5ps >0, ¢—sb,+ (t —5%)pss >0, (3.1)
when m > 3 or

& —5¢ps+ (t — %) pgs > 0, (3.2)

when m = 2.

Proof of Theorem 1.1 Combine Proposition 2.2, (3.1), (3.2) and the fundamental
property of the projectively flat equation (2.1).

Proof of Theorem 1.2 Combine Proposition 2.3, (3.1), (3.2) and the fundamental
property of the projectively flat equation (2.1).
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Proof of Theorem 1.3 Combine Proposition 2.4, (3.1), (3.2) and the fundamental
property of the projectively flat equation (2.1).
Proof of Theorem 1.4 Suppose that

ri=|yl|, ri=r = , T=x, sti=s; =1 — STy (3.3)

Direct computations yield that
tyi =a' =8, + ST5, Sgi =7y, Tyi =Ti, Syi = %, (3.4)
where we use of (3.3). By (3.3), (3.4), we get the following lemma.
Lemma 3.1 Let f = f(r,t,s) be a function on a domain U C R3. Then
fur = rilfu £+ sifis fyr = el + 522, (3.5)

r

Let F =|y| gb(%, <Ty7T>) = r¢(t, s) be a spherically symmetric Finsler metric on B ().

From (3.3), (3.4), (3.5), we have the following
F.=¢, Fi=r¢;, Fs=sps. (3.6)
Note that s; and r; are positively homogeneous of degree 0 and 1. Hence
sy =0, ry' =0 (3.7)

and we get
Foi = r[pesi + (ps + sdp)ri], Fyi = ¢ri + dssi. (3.8)
Thus from (3.7), (3.8), we have Fy = Fiy' = r2(¢s + sy),

p—FO _M_

=3T3 (3.9)
Differentiating (3.9), we know
Py = L2t (0 +;¢tt><sk +ork) (6 + s@)(cm; okt sn)) g gy
From (3.7), (3.10), we obtain
Pyt — ﬁ[2¢t + (Pt +50u)s (¢ + s@)z]‘ (3.11)

2 ¢ ¢?

Thus using (3.9), (3.11), we have

P? — Py _ 3(ps +50)° b ¢st+3¢tt8

K= 2 4 o o3 203

Theorem 1.4 can be achieved.
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