Vol. 37 (2017) No. 4

态 Ro 代数

秦玉静1, 辛小龙1, 贺鹏飞2

(1. 西北大学数学学院, 陕西 西安 710127)

(2. 陕西师范大学数学与信息科学学院, 陕西 西安 710119)

摘要: 本文研究了 R_0 代数上有关态算子的问题. 利用 MV - 代数上内态的引入方法引入了态算子, 定义了态 R_0 代数, 它是 R_0 代数的一般化. 给出了一些非平凡态 R_0 代数的例子并讨论了态 R_0 代数的一些基本性质. 在此基础上给出了态滤子和态局部 R_0 代数的概念, 并利用态滤子刻画了态局部 R_0 代数. 推广了局部 R_0 代数的相关理论.

关键词: R_0 代数; 态 R_0 代数; 态滤子; 态局部

MR(2010) 主题分类号: 06F25 中图分类号: O141.1 文献标识码: A 文章编号: 0255-7797(2017)04-0881-08

1 引言

多值逻辑系统是 20 世纪 30 年代 Lukasiewicz 提出的. 随着 20 世纪 70 年代模糊集概念的提出,模糊逻辑与模糊推理理论得到了发展. 基于对模糊逻辑与经典逻辑本质区别的分析, 1997 年, 王国俊 [1] 提出了模糊命题的一种形式演绎系统 \mathcal{L}^* ,为了系统研究 \mathcal{L}^* ,王国俊 [2] 引入了一种新的逻辑代数 - R_0 代数. 这为这类演绎系统的研究提供了代数模型. 随后,很多学者 [3-5] 都对 R_0 代数进行了研究.

作为多值逻辑中命题真值的平均度, 1995 年 Mundici [6] 提出了 MV 代数上态的概念. 近年来, 国内外很多学者致力于逻辑代数上态理论的研究. 例如, 2008 年, 刘练珍 [14] 研究了 R_0 代数上的态存在问题. 2007 年, Flaminio 和 Montagna [7] 用一种新的方法研究了 MV 代数上的态. 他们在 MV 代数上定义了一个一元运算 σ (称为内部态或者态算子), 它是态的推广. 随后, 态算子在其他代数结构中进行了研究. 例如, 2011 年 Ciungu 等 [8] 提出了态 BL 代数, 它是态 MV 代数的推广. 2015 年, 贺鹏飞、辛小龙 [13] 提出了态 residuated lattices 并研究了其相关性质. 本文提出了态 R_0 代数的定义, 研究了它的性质, 又定义了态滤子和态局部 R_0 代数的概念, 并利用态滤子刻画了态局部 R_0 代数

2 预备知识

定义 2.1 [2] 设 $L = (L, \land, \lor, ', \rightarrow, 0, 1)$ 是 (2, 2, 1, 2, 0, 0) 型代数, 若

- (1) $(L, \land, \lor, 0, 1)$ 是一个有界分配格;
- (2) / 是关于序 < 而言的逆序对合对应;
- (3) 对于 L 中的任意元素 x, y, z, 有

*收稿日期: 2015-07-09 接收日期: 2016-01-06 基金项目: 国家自然科学基金资助 (11571281).

作者简介:秦玉静(1991-),女,河南焦作,硕士,主要研究方向:逻辑代数.

- (L1) $x' \to y' = y \to x$,
- (L2) $1 \rightarrow x = x$,
- (L3) $y \to z \le (x \to y) \to (x \to z)$,
- (L4) $x \to (y \to z) = y \to (x \to z)$,
- (L5) $x \to (y \lor z) = (x \to y) \lor (x \to z), x \to (y \land z) = (x \to y) \land (x \to z),$
- (L6) $(x \rightarrow y) \lor ((x \rightarrow y) \rightarrow (x' \lor y)) = 1$,

则称 $(L, \land, \lor, ', \rightarrow, 0, 1)$ 为 R_0 代数. 以下简记为 L.

在 R_0 代数 L 中定义序关系" \leq "为 $x \leq y$ 当且仅当 $x \rightarrow y = 1$.

性质 2.2 [2] 设 $L \in R_0$ 代数,则以下结论成立:对任意的 $x, y, z \in L$,

- (P1) $x \to y \le (y \to z) \to (x \to z)$,
- (P2) $x \rightarrow x = 1$,
- (P3) $x \le y \Leftrightarrow x \to y = 1 \Leftrightarrow y \to z \le x \to z \Leftrightarrow z \to x \le z \to y$,
- (P4) $x \to y = ((x \to y) \to y) \to y$,
- (P5) $(x \lor y) \to z = (x \to z) \land (y \to z), (x \land y) \to z = (x \to z) \lor (y \to z),$
- (P6) $x < (x \rightarrow y) \rightarrow y$,
- (P7) $x \to y = x \to (x \land y)$.

性质 2.3 [2] 设 $L \in \mathbb{R}_0$ 代数, 在 L 上定义 $x \otimes y = (x \to y')'$, 则有对任意的 $x, y, z \in L$,

- (1) $x \otimes y = y \otimes x$,
- (2) $z \le y \Rightarrow x \otimes z \le x \otimes y$,
- (3) $x \to y \le x \otimes z \to y \otimes z$,
- $(4) x \otimes y \leq x, y.$

定义 2.4 [9] 设 $L \in R_0$ 代数, $F \in L$ 的非空子集, 若以下条件成立: 对任意的 $x, y \in F$,

- $(1) 1 \in F;$
- (2) 若 $x \in F, x \to y \in F$ 则 $y \in F$.

则称 F 为 L 的滤子.

设 $L \in \mathbb{R}_0$ 代数, $F \to L$ 的滤子. 若 $F \neq L$, 则称 F 为真滤子. 显然, F 是真滤子当且 仅当 $0 \notin F$ 当且仅当对任意的 $x \in L$, x 和 x' 不能同时属于 F. 若 E 是任意一个滤子, 且 $F \subseteq E$, 有 E = F 或 E = L, 则称真滤子 F 为极大滤子.

引理 2.5 [10] 设 $L \in R_0$ 代数, $F \in L$ 的非空子集, 则 $F \in L$ 的滤子 \Leftrightarrow 以下条件成立: 对任意的 $x, y \in F$,

- $(1) 1 \in F$,
- (2) 若 $x \in F, x \leq y$, 则 $y \in F$,
- (3) 若 $x, y \in F$, 则 $x \otimes y \in F$.

推论 2.6 [10] 设 L 是 R_0 代数, F 是 L 的滤子, 定义二元关系 R_F 为 xR_Fy 当且仅当 $x \to y \in F$ 和 $y \to x \in F$. 则

- (1) R_F 为 L 上的同余关系,
- (2) L/F 为一个 R_0 代数, 这里 [x] 表示 x 所在的 R_F 等价类并且 $L/F = \{[x] | x \in L\}$.

定义 2.7 [9] 设 L 是 R_0 代数, $x \in L$, 使 $x^m = 0$ 成立的最小自然数 m 叫做元素 x 的阶, 记为 ord(x). 若这样的 m 不存在, 则称 x 的阶为无限, 即 ord(x) = ∞ .

引理 2.8 ^[11] 设 L 是 R_0 代数, X 是 L 的非空子集, 称包含 X 的最小滤子为由 X 生成的滤子, 记为 $\langle X \rangle$, 则 $\langle X \rangle = \{x \in L | x \geq x_1 \otimes x_2 \otimes \cdots \otimes x_n, \text{ 存在 } x_1, x_2 \cdots x_n \in X\}$. 记 L 的所有滤子集为 F(L), 且 F(L) (关于包含关系) 可构成完备格.

引理 2.9 ^[9] 设 L 为 R_0 代数, F 为 L 的任意一个真滤子, 则 F 可延拓为一个极大滤子. 定义 **2.10** ^[12] 设 L 为 R_0 代数, 若 L 有唯一的极大滤子, 则称 L 为局部的.

3 态 R₀ 代数

定义 3.1 设 $L \in R_0$ 代数, $\sigma: L \to L$ 为 L 上的自映射. 若 σ 满足: 对任意的 $x, y \in L$,

(SL1)
$$\sigma(0) = 0$$
,

(SL2)
$$x \to y = 1 \Rightarrow \sigma(x) \to \sigma(y) = 1$$
,

(SL3)
$$\sigma(x \to y) = \sigma(x) \to \sigma(x \land y)$$
,

(SL4)
$$\sigma(\sigma(x) \vee \sigma(y)) = \sigma(x) \vee \sigma(y)$$
.

则称 σ 为 L 上的态算子, 此时称 $(L;\sigma)$ 为态 R_0 代数.

设 σ 为 L 上的任意的态算子, $\operatorname{Ker}(\sigma)=\{x\in L|\sigma(x)=1\}$. 若 $\operatorname{Ker}(\sigma)=\{1\}$, 则称 σ 为 忠实的.

例 3.2 设 L 为 R_0 代数, 由性质 2.2 可知, id_L 为 L 上的态算子. 因此 $(L;id_L)$ 为态 R_0 代数, 即一个 R_0 代数 L 可以看成是一个态 R_0 代数.

例 3.3 设 $L = \{0, a, b, c, d, e, f, g, 1\}$, L 上的偏序关系为 $0 \le a \le c, d \le f \le 1, 0 \le b \le d, e < g < 1$, 其上的二元运算 \rightarrow 和一元运算 '的定义如下表所示

\rightarrow	0	a	b	c	d	e	f	g	1
0	1	1	1	1	1	1	1	1	1
a	g	1	g	1	1	g	1	1	1
b	f	f	1	f	1	1	1	1	1
c	e	g	e	1	g	e	1	g	1
d	d	f	g	f	1	g	1	1	1
e	c	c	f	c	f	1	f	1	1
f	b	d	e	f	g	e	1	g	1
g	a	c	d	c	f	g	f	1	1
1	0	a	b	c	d	e	f	g	1
\boldsymbol{x}	0	a	b	c	d	e	f	g	1
x'	1	g	f	e	d	c	b	a	0

容易验证 $(L, \land, \lor, ', \rightarrow, 0, 1)$ 是 R_0 代数. 在 L 上定义 σ 如下

$$\sigma(x) = \begin{cases} 0, & x = 0, a, c, \\ d, & x = b, d, f, \\ 1, & x = e, g, 1, \end{cases}$$

则容易验证 σ 是 L 上的态算子, 即 $(L;\sigma)$ 是态 R_0 代数.

性质 3.4 设 $(L;\sigma)$ 为态 R_0 代数,则以下结论成立:对任意的 $x,y \in L$,

- (1) $\sigma(1) = 1$,
- (2) $x \le y \Rightarrow \sigma(x) \le \sigma(y)$,

- (3) $\sigma(x') = (\sigma(x))'$,
- (4) $\sigma\sigma(x) = \sigma(x)$,
- (5) $\sigma(\sigma(x) \wedge \sigma(y)) = \sigma(x) \wedge \sigma(y)$,
- (6) $\sigma(\sigma(x) \to \sigma(y)) = \sigma(x) \to \sigma(y)$,
- (7) $\sigma(\sigma(x) \otimes \sigma(y)) = \sigma(x) \otimes \sigma(y)$,
- (8) $\sigma(x \to y) \le \sigma(x) \to \sigma(y)$. 特别地, 若 x, y 可比较, 则 $\sigma(x \to y) = \sigma(x) \to \sigma(y)$,
- (9) 若 σ 是忠实的, 则 $x < y \Rightarrow \sigma(x) < \sigma(y)$,
- (11) $\sigma(x \otimes y) \geq \sigma(x) \otimes \sigma(y)$. 特别地, 若 x, y 可比较, 则 $\sigma(x \otimes y) = \sigma(x) \otimes \sigma(y)$,
- (12) $Ker(\sigma)$ 是 L 的滤子,
- (13) $\sigma(L)$ 是 L 的子代数.
- 证 (1) 由 (SL2) 可得 $\sigma(0 \to 1) = \sigma(0) \to \sigma(0 \land 1)$, 即 $\sigma(1) = \sigma(0) \to \sigma(0) = 1$.
- (2) 由 $x \le y$ 可得 $x \to y = 1$, 又由 (SL2) 可知 $\sigma(x) \to \sigma(y) = 1$ 即 $\sigma(x) \le \sigma(y)$.
- (3) 由 (SL3) 可知 $\sigma(x') = \sigma(x \to 0) = \sigma(x) \to \sigma(x \land 0) = \sigma(x) \to \sigma(0) = (\sigma(x))'$.
- (4) 由 (SL1) 和 (SL4) 可得 $\sigma(\sigma(x) \vee \sigma(0)) = \sigma(x) \vee \sigma(0)$, 即 $\sigma\sigma(x) = \sigma(x)$.
- (5) 由 (SL4) 和 (3),

$$\sigma(\sigma(x) \wedge \sigma(y)) = \sigma[(\sigma(x))' \vee (\sigma(y))']' = \sigma(\sigma(x') \vee \sigma(y'))' = (\sigma(\sigma(x') \vee \sigma(y')))'$$

$$= (\sigma(x') \vee \sigma(y'))' = [(\sigma(x))' \vee (\sigma(y))']' = \sigma(x) \wedge \sigma(y).$$

(6) 由 (SL3), (4) 和 (5) 可得

$$\sigma(\sigma(x) \to \sigma(y)) = \sigma\sigma(x) \to \sigma(\sigma(x) \land \sigma(y)) = \sigma(x) \to (\sigma(x) \land \sigma(y))$$
$$= (\sigma(x) \to \sigma(x)) \land (\sigma(x) \to \sigma(y)) = \sigma(x) \to \sigma(y).$$

(7) 由(3)和(6)可得

$$\sigma(\sigma(x) \otimes \sigma(y)) = \sigma(\sigma(x) \to (\sigma(y))')' = \sigma(\sigma(x) \to \sigma(y'))'$$

= $(\sigma(\sigma(x) \to \sigma(y')))' = (\sigma(x) \to \sigma(y'))' = \sigma(x) \otimes \sigma(y).$

(8) 由于 $x \wedge y \leq y$, 即 $(x \wedge y) \rightarrow y = 1$, 由 (SL2) 可得 $\sigma(x \wedge y) \rightarrow \sigma(y) = 1$ 即 $\sigma(x \wedge y) \leq \sigma(y)$. 由 (P3) 可知 $\sigma(x) \rightarrow \sigma(x \wedge y) \leq \sigma(x) \rightarrow \sigma(y)$, 又根据 (SL3), $\sigma(x \rightarrow y) = \sigma(x) \rightarrow \sigma(x \wedge y) \leq \sigma(x) \rightarrow \sigma(y)$.

若 $x \leq y$, 则 $\sigma(x) \leq \sigma(y)$ 即 $\sigma(x) \to \sigma(y) = 1$, $\sigma(x \to y) = \sigma(1) - 1$, 所以 $\sigma(x \to y) = \sigma(x) \to \sigma(y)$.

若 $y \le x$, 则 $x \land y = y$. 由 (SL3) 可知, $\sigma(x \to y) = \sigma(x) \to \sigma(x \land y) = \sigma(x) \to \sigma(y)$.

- (9) 由 x < y 可得 $\sigma(x) \le \sigma(y)$. 假设 $\sigma(x) = \sigma(y)$, 由 (SL3), $\sigma(y \to x) = \sigma(y) \to \sigma(y \land x) = \sigma(y) \to \sigma(x) = 1$ 即 $y \to x \in Ker(\sigma) = \{1\}$, 则 $y \to x = 1$, 即 $y \le x$, 与条件矛盾. 所以 $\sigma(x) < \sigma(y)$.
- (10) 若对任意 $y \in \sigma(L)$, 则存在 $x \in L$ 使得 $y = \sigma(x)$, $\sigma(y) = \sigma(x) = \sigma(x) = y$, 即 $y \in \text{Fix}(\sigma)$. 若对任意 $y \in \text{Fix}(\sigma)$, 即 $\sigma(y) = y$, 则 $y \in \sigma(L)$. 所以 $\sigma(L) = \text{Fix}(\sigma)$.

- (11) 由 (P3), (3) 和 (8) 可得 $\sigma(x \otimes y) = \sigma(x \to y')' = (\sigma(x \to y'))' \geq (\sigma(x) \to \sigma(y'))' = \sigma(x) \otimes \sigma(y)$. 特别地, 若 x, y 可比较, 则由 (3) 和 (8) 得 $\sigma(x \otimes y) = \sigma(x \to y')' = (\sigma(x \to y'))' = (\sigma(x) \to \sigma(y'))' = \sigma(x) \otimes \sigma(y)$.
- (12) 由 $\sigma(1) = 1$ 可知 $1 \in \text{Ker}(\sigma)$. 任意 $x, y \in L$, 若 $x, x \to y \in \text{Ker}(\sigma)$, 则有 $\sigma(x) = 1, \sigma(x \to y) = 1$. $\sigma(x) \to \sigma(y) = 1 \to \sigma(y) = \sigma(y)$, 由 (7), $\sigma(y) = \sigma(x) \to \sigma(y) \geq \sigma(x \to y) = 1$, 即 $\sigma(y) = 1$, 所以 $y \in \text{Ker}(\sigma)$. 则 $\sigma(y) \in \text{Ker}(\sigma)$ 为 $\sigma(y) \in \text{Ker}(\sigma)$ 升 $\sigma(y) \in \text{Ker}(\sigma)$ 升 $\sigma(y) \in \text{Ker}(\sigma)$
- (13) 由 (L1), (L4) 和 (1), (3), (5), (6) 知 $\sigma(L)$ 对运算 \land , \lor , ', \rightarrow 且对 0, 1 封闭. 所以 $\sigma(L)$ 为 L 的子代数.

4 态 R_0 代数上的态滤子

定义 4.1 设 $(L;\sigma)$ 是态 R_0 代数, F 为 L 的滤子. 若对任意的 $x \in F$, 有 $\sigma(x) \in F$, 则称 F 为 $(L;\sigma)$ 的态滤子. 设 F 为真态滤子, E 是任意一个态滤子, 若 $F \subseteq E$, 有 E = F 或 E = L, 则称 F 为 $(L;\sigma)$ 的极大态滤子.

记 SF[L] 为 $(L;\sigma)$ 的所有态滤子的集合.

例 4.2 设 $F_1 = \{e, g, 1\}, F_2 = \{c, f, 1\}$ 为例 3.2 中 L 的子集, 显然, F_1, F_2 都是 L 的滤子. 容易验证 F_1 是 $(L; \sigma)$ 的态滤子. 而在 F_2 中, $c, f \in F_2$ 但 $\sigma(c) = 0 \notin F_2, \sigma(f) = d \notin F_2$, 所以 F_2 不是 $(L; \sigma)$ 的态滤子.

设 $(L;\sigma)$ 是态 R_0 代数, X 是 L 的非空子集, 称包含 X 的最小 态滤子为由 X 生成的态滤子, 记为 $\langle X \rangle_{\sigma}$.

定理 4.3 设 $(L;\sigma)$ 为态 R_0 代数, X 是 L 的非空子集. 则 $\langle X \rangle_{\sigma} = \{x \in L | x \geq (x_1 \otimes \sigma(x_1))^{n_1} \otimes \cdots \otimes (x_k \otimes \sigma(x_k))^{n_k}, x_i \in X, n_i \geq 1, k \geq 1\}.$

证 证明和文献 [8] 中定理 5.4 的证明类似.

引理 4.4 设 $(L;\sigma)$ 是态 R_0 代数, F 为 $(L;\sigma)$ 的真态滤子, 则 F 为极大态滤子当且仅当对任意的 $x \notin F$, 存在正整数 $n \ge 1$ 使得 $(\sigma(x)^n)' \in F$.

证 证明和文献 [8] 中定理 5.4 的证明类似.

定义 4.5 设 $(L;\sigma)$ 为态 R_0 代数, 若 $(L;\sigma)$ 有唯一的极大态滤子, 则称 $(L;\sigma)$ 为态局部的.

设 $(L; \sigma)$ 是态 R_0 代数, 定义 $D(L; \sigma) = \{x \in L | \forall n \geq 1, (\sigma(x))^n > 0\}.$

注 $\forall x \in L, x \in D(L; \sigma)$ 当且仅当 $\operatorname{ord}(\sigma(x)) = \infty$.

引理 **4.6** 设 $(L;\sigma)$ 为态 R_0 代数, F 是 $(L;\sigma)$ 的真态滤子, 则 $F \subseteq D(L;\sigma)$.

证 任意 $x \in F$, 有 $\sigma(x) \in F$, 则对任意的 $n \ge 1$, $(\sigma(x))^n \in F$, 又 $0 \notin F$, 所以 $(\sigma(x))^n \ne 0$ 即 $x \in D(L;\sigma)$. 所以, $F \subseteq D(L;\sigma)$.

引理 **4.7** 设 $(L;\sigma)$ 为态 R_0 代数,则下列结论等价.

- (1) $D(L;\sigma)$ 是 $(L;\sigma)$ 的态滤子.
- (2) 对任意 $x, y \in L$ 和 $n \ge 1$, 由 $(\sigma(x))^n, (\sigma(y))^n \ne 0$ 能推出 $(\sigma(x \otimes y))^n \ne 0$.

证 $(1) \Rightarrow (2)$ 任意 $x, y \in L$, 对任意的 $n \ge 1$, 若 $(\sigma(x))^n, (\sigma(y))^n \ne 0$ 即 $x, y \in D(L; \sigma)$, 则 $x \otimes y \in D(L; \sigma)$. 所以 $(\sigma(x \otimes y))^n \ne 0$.

 $(2) \Rightarrow (1)$ 显然 $1 \in D(L; \sigma)$. 设 $x, x \to y \in D(L; \sigma)$, 则对任意 $n \ge 1$, 有 $(\sigma(x))^n$, $(\sigma(x \to y))^n > 0$, 由 (2) 可知 $[\sigma(x \otimes (x \to y))]^n > 0$. 由于 $y \ge x \otimes (x \to y)$, 即 $\sigma(y) \ge \sigma(x \otimes (x \to y))$, 所以 $(\sigma(y))^n \ge [\sigma(x \otimes (x \to y))]^n > 0$. 因此 $y \in D(L; \sigma)$ 即 $D(L; \sigma)$ 为滤子. 设任意

 $x \in D(L; \sigma)$ 则对任意 $n \ge 1$, 有

$$(\sigma(x))^n > 0, \ [\sigma(\sigma(x))]^n = (\sigma(x))^n > 0,$$

所以 $\sigma(x) \in D(L;\sigma)$. 因此 $D(L;\sigma)$ 为态滤子.

定理 4.8 设 $(L;\sigma)$ 为态 R_0 代数,则下列条件等价.

- (1) $D(L;\sigma)$ 是态滤子;
- (2) $\langle D(L;\sigma)\rangle_{\sigma}$ 是真态滤子;
- (3) $D(L;\sigma)$ 是 $(L;\sigma)$ 的唯一极大态滤子;
- (4) (L; σ) 是态局部的.

证 $(1) \Rightarrow (2)$ 显然 $\langle D(L;\sigma) \rangle_{\sigma} = D(L;\sigma)$. 由于 $0 \notin D(L;\sigma)$, 故 $\langle D(L;\sigma) \rangle_{\sigma}$ 是真态滤子.

 $(2)\Rightarrow (3)$ 设 $\langle D(L;\sigma)\rangle_{\sigma}$ 是真态滤子, 由引理 4.6 知 $\langle D(L;\sigma)\rangle_{\sigma}\subseteq D(L;\sigma)$, 又 $D(L;\sigma)\subseteq \langle D(L;\sigma)\rangle_{\sigma}$, 因此 $\langle D(L;\sigma)\rangle_{\sigma}=D(L;\sigma)$ 即 $D(L;\sigma)$ 为真态滤子. 假设 F 为 $(L;\sigma)$ 的极大态滤子, 即 $F\subseteq D(L;\sigma)$, 由 F 的极大性知 $F=D(L;\sigma)$. 因此 $D(L;\sigma)$ 是 $(L;\sigma)$ 的唯一极大态滤子.

 $(3) \Rightarrow (4)$ 显然.

 $(4) \Rightarrow (1)$ 设 F 为 $(L;\sigma)$ 的唯一极大态滤子. 设 $x \in D(L;\sigma)$, 则 $\langle x \rangle_{\sigma}$ 是真态滤子, $\langle x \rangle_{\sigma}$ 可以延拓为极大态滤子 F_x , 由唯一性知 $F_x = F$, 因此 $x \in F$, 所以 $D(L;\sigma) \subseteq F$. 又 $F \subseteq D(L;\sigma)$, 故 $D(L;\sigma) = F$. 因此 $D(L;\sigma)$ 为态滤子.

定理 **4.9** 设 $(L;\sigma)$ 为态 R_0 代数, $(L;\sigma)$ 是态局部的充要条件是对任意的 $x \in L$,

$$\operatorname{ord}(\sigma(x)) < \infty \text{ id } \operatorname{ord}(\sigma(x')) < \infty.$$

证 ⇒ 设 $(L; \sigma)$ 是态局部, 由定理 4.8 知, $D(L; \sigma)$ 是态滤子. 假设存在 $x \in L$ 使得对任意 $n \ge 1, (\sigma(x))^n > 0$ 且 $(\sigma(x'))^n > 0$, 由引理 4.7, $(\sigma(x \otimes x'))^n > 0$, 而 $x \otimes x' = 0, (\sigma(x \otimes x'))^n = 0$ 矛盾. 所以, 任意的 $x \in L$,

$$\operatorname{ord}(\sigma(x)) < \infty \text{ is } \operatorname{ord}(\sigma(x')) < \infty.$$

 \Leftarrow 显然 $1 \in D(L;\sigma)$. 设 $x,x \to y \in D(L;\sigma)$, 则有 $(x \otimes y')' = x \to y \in D(L;\sigma)$ 即 $\operatorname{ord}(\sigma(x \otimes y')') = \infty$, 由条件可得 $\operatorname{ord}(\sigma(x \otimes y')) < \infty$. 设 $\operatorname{ord}(\sigma(x \otimes y')) = m_1$, 即 $(\sigma(x \otimes y'))^{m_1} = 0$, 又

$$(\sigma(x))^{m_1} \otimes (\sigma(y'))^{m_1} = (\sigma(x) \otimes \sigma(y'))^{m_1} \leq (\sigma(x \otimes y'))^{m_1} = 0,$$

因此 $(\sigma(y'))^{m_1} \leq [(\sigma(x))^{m_1}]'$. $x \in D(L;\sigma)$, 即对任意 $n \geq 1, (\sigma(x))^n > 0$, 从而对任意 $m > 1, [(\sigma(x))^{m_1}]^m > 0$, 即 $\operatorname{ord}(\sigma(x))^{m_1} = \infty$, 所以 $\operatorname{ord}[(\sigma(x))^{m_1}]' = m_2 < \infty$, 即 $[((\sigma(x))^{m_1})']^{m_2} = 0$, 因此

$$(\sigma(y'))^{m_1 m_2} \le [((\sigma(x))^{m_1})']^{m_2} = 0,$$

有 $(\sigma(y'))^{m_1m_2} = 0$, $\operatorname{ord}(\sigma(y')) < \infty$, 所以 $\operatorname{ord}(\sigma(y)) = \infty$, 即 $y \in D(L;\sigma)$. 设 $x \in D(L;\sigma)$, 即 $(\sigma(x))^n > 0$, $(\sigma(\sigma(x)))^n = (\sigma(x))^n > 0$, 则 $\sigma(x) \in D(L;\sigma)$. 因此 $D(L;\sigma)$ 为态滤子, 由定理 4.9 知, $(L;\sigma)$ 是态局部的.

引理 **4.10** 设 $(L;\sigma)$ 为态 R_0 代数, F 是 $(L;\sigma)$ 的态滤子, $\sigma': L/F \to L/F$ 上的映射且 $\sigma'(x/F) = \sigma(x)/F$, 则 $(L/F;\sigma')$ 为态 R_0 代数.

证 由推论 2.6 可知 L/F 为 R_0 代数. 又 $\sigma'(0/F) = \sigma(0)/F = 0/F$, 当 $x \to y = 1$ 时,

$$\sigma'(x/F) \to \sigma'(y/F) = (\sigma(x) \to \sigma(y))/F = 1/F,$$

$$\sigma'((x \to y)/F) = (\sigma(x \to y))/F = (\sigma(x) \to \sigma(x \land y))/F$$

$$= \sigma(x)/F \to \sigma(x \land y)/F = \sigma'(x/F) \to \sigma'((x \land y)/F),$$

$$\sigma'(\sigma'(x/F) \lor \sigma'(y/F)) = \sigma'(\sigma(x)/F \lor \sigma(y)/F) = (\sigma(\sigma(x) \lor \sigma(y)))/F$$

$$= (\sigma(x) \lor \sigma(y))/F = \sigma(x)/F \lor \sigma(y)/F = \sigma'(x/F) \lor \sigma'(y/F).$$

因此由定义 3.1 可知 σ' 为 L/F 上的态算子, 所以 $(L/F; \sigma')$ 为态 R_0 代数.

定理 4.11 设 $(L;\sigma)$ 为态 R_0 代数, F 是 $(L;\sigma)$ 的态滤子, 则以下条件是等价的.

- (1) $(L/F;\sigma')$ 是态局部 R_0 代数,
- (2) 若对任意 $x,y \in L$, $x \otimes y' \in F$, 则存在正整数 $n \geq 1$ 使得 $((\sigma(x))^n)' \in F$ 或 $((\sigma(y))^n)' \in F$.

证 $(1) \Rightarrow (2)$ 设 $(L/F; \sigma')$ 为态局部 R_0 代数且 $x \otimes y' \in F$, 即 $y \to x' \in F$, 因此

$$y \to x'/F = 1/F$$
, $(\sigma(y) \to (\sigma(x)'))/F = 1/F$,

即 $\sigma(y)/F \leq (\sigma(x))/F$. 假设对任意 $n \geq 1$ 有 $((\sigma(x))^n)' \notin F$, $(\sigma(x))^n)'/F \neq 1/F$, 即 $(\sigma(x))^n/F \neq 0/F$, 由定理 4.9, $\operatorname{ord}(\sigma'(x'/F)) < \infty$, 即存在 $m \geq 1$ 使得

$$(\sigma'(x'/F))^m = 0/F, \ (\sigma'(y/F))^m \le (\sigma'(x'/F))^m = 0/F,$$

即 $(\sigma(y))^m/F = 0/F$, 所以 $((\sigma(y))^m)'/F = 1/F$, 即 $((\sigma(y))^m)' \in F$.

 $(2) \Rightarrow (1)$ 由于 $(x \otimes x')' = 1 \in F$, 故存在 $n \geq 1$ 使得 $((\sigma(x))^n)' \in F$ 或 $((\sigma(x'))^n)' \in F$, 即 $\sigma(x)^n/F = (\sigma'(x/F))^n = 0/F$ 或 $(\sigma'(x'/F))^n = 0/F$. 由定理 4.9 知 $(L/F; \sigma')$ 为态局部 R_0 代数.

定理 **4.12** 设 $(L;\sigma)$ 为态 R_0 代数, F 为 $(L;\sigma)$ 的一个态滤子, 则以下条件等价.

- (1) $(L;\sigma)$ 为态局部的,
- (2) 对任意 $x,y \in L$, 若 $x \otimes y' \in F$, 则存在正整数 $n \geq 1$ 使得 $((\sigma(x))^n)' \in F$ 或 $((\sigma(y))^n)' \in F$.
- 证 $(1) \Rightarrow (2)$ 设 $(L;\sigma)$ 为态局部的且 F 为 $(L;\sigma)$ 的真态滤子. 由引理 4.6 知, $F \subseteq D(L;\sigma)$. 由定理 4.8 知, $D(L;\sigma)$ 为态滤子. 若 $x \otimes y' \in F \subseteq D(L;\sigma)$, 则对任意 $n \geq 1, (\sigma(x \otimes y)')^n > 0$ 即 $\operatorname{ord}(\sigma(x \otimes y)) < \infty$, 因此存在 $n \geq 1$ 使得 $(\sigma(x \otimes y))^n = 0$, 即 $(\sigma(x))^n = 0$ 或 $(\sigma(y))^n = 0$, 从而 $((\sigma(x))^n)' = 1 \in F$ 或 $((\sigma(y))^n)' = 1 \in F$.
- $(2) \Rightarrow (1)$ 注意到 $\{1\}$ 是 $(L;\sigma)$ 的态滤子, σ' 为上述所定义的映射, 由定理 4.10 知 $(L/\{1\};\sigma')$ 为态局部 R_0 代数. 又 $(L;\sigma) \cong (L/\{1\};\sigma')$, 所以 $(L;\sigma)$ 为态局部 R_0 代数.

由定理 4.11 和定理 4.12, 有以下推论.

推论 **4.13** 设 $(L;\sigma)$ 为态 R_0 代数, F 是 $(L;\sigma)$ 的态滤子, $\sigma': L/F \to L/F$ 上的映射且 $\sigma'(x/F) = \sigma(x)/F$, 则以下条件是等价的.

(1) $(L;\sigma)$ 为态局部的,

- (2) $(L/F;\sigma')$ 是态局部 R_0 代数,
- (3) 对任意 $x,y \in L$, 若 $x \otimes y' \in F$, 则存在正整数 $n \geq 1$ 使得 $((\sigma(x))^n)' \in F$ 或 $((\sigma(y))^n)' \in F$.

参考文献

- [1] 王国俊. 模糊命题演算的一种形式演绎系统 [J]. 科学通报, 1997, 42(10): 1041-1045.
- [2] Wang G J. Non-classcal mathematical logic and approximate reasoning[M]. Beijing: Science Press, 2000.
- [3] 马学玲, 詹建明. 模糊参数模糊软 R₀ 代数 [J]. 模糊系统与数学, 2013, 25-29.
- [4] Ma X L, Zhan J M, Xu Y. Generalized fuzzy filters of R₀ algebras [J]. Soft Comput., 2007, 1079–1087.
- [5] 李志伟, 李桂华. 模糊蕴涵代数的结构特征 [J]. 数学杂志, 2008, 28(6): 701-705.
- [6] Mundici D. Averaging the truth-value in Lukasiewicz logic[J]. Studia Logica, 1995, 55(1): 113–127.
- [7] Flaminio T, Montagna F. An algebraic approach to state on MV-algebras[J]. Fuzzy Logic, 2007: 201–206.
- [8] Ciungu L C, Dvurecenskij A. State BL-algebras[J]. Soft Comput., 2011, 15: 619-634.
- [9] 裴道武, 王国俊. 形式系统 \mathcal{L}^* 的完备性及其应用 [J]. 中国科学 (E 辑), 2002, 32(1): 56-64.
- [10] 裴道武. R₀ 代数的 MP 滤子与同余关系 [J]. 模糊系统与数学, 2002, 16 (专辑): 2002, 16: 22-25.
- [11] 张家录. Ro 代数上的 MP 滤子格 [J]. 模糊系统与数学, 2006: 26-33.
- [12] 刘练珍, 李开泰. 局部 R₀ 代数 [J]. 数学研究与评论, 2005: 538-542.
- [13] He P F, Xin X L. On state residuated lattices[J]. Soft Comput., 2015, 19(8): 1–12.
- [14] Liu L Z, Zhang X Y. State on R₀-algebras[J]. Soft Comput., 2008, 12: 1099–1104.

ON STATE R_0 -ALGEBRAS

QIN Yu-jing 1 , XIN Xiao-long 1 , HE Peng-fei 2

(1.School of Mathematics, Northwest University, Xi'an 710127, China)
(2.School of Mathematics and Information Science, Shaanxi Normal University,
Xi'an 710119, China)

Abstract: In this paper, we study the problems of state operators. By using the method of introducing internal states on MV-algebras, we introduce the state operators on R_0 -algebras and define the state R_0 -algebras, which are generalization of R_0 -algebras. We give some non-trivial examples of state R_0 -algebras and study some basic properties of them. Based on the above arguments we define the state filters and state local R_0 -algebras. We characterise the state local R_0 -algebras by the state filters, which generalizes the theory of local R_0 -algebras.

Keywords: R_0 -algebra; state R_0 -algebra; state filter; state local **2010 MR Subject Classification:** 06F25